首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Water and nutrient budgets in dryland agroecosystems are difficult to manage for efficiency and water quality. This is particularly true where complex terrain and soilscapes interact with pronounced hydrologic seasonality. The purpose of this research was to understand water and hydrologic nitrogen (N) export from a hillslope dryland agroecosystem in a semiarid region where most precipitation occurs outside the growing season. We studied 13 years (2001–2013) of records of water and N inputs and outputs from a 12 ha no‐till artificially drained catchment in the semiarid Palouse Basin of eastern Washington State, USA. Fall‐ and winter‐dominated annual precipitation averaged 462 mm. About 350 mm went to evapotranspiration; crops used ~160 mm from stored soil water during the summer dry‐down season. Soil water replenishment after crop senescence, during the fall wet‐up season, delayed the threshold onset of the high‐discharge season until December. Winter‐dominated drainage fluxes averaged 111 mm or 24% of annual precipitation. Nitrate export in drainage averaged 15 kg·N·ha?1·year?1, which was about 10 times the average rate of dissolved organic N export and 15% of the average rate of N application in chemical fertilizer. Fertilizer applications to the catchment were reduced, due to cropping changes, by 1/3 during the last 5 years of the study; however, no corresponding reduction was observed in the nitrate export flux. This lack of change could not be attributed to mineralization of the soil‐organic N legacy of fertilization nor to hydrologic lag of the catchment. Likeliest explanations are (a) despite the reduction, N application continued to exceed crop uptake and accumulation in organic matter; (b) seasonal and interannual variability of catchment connectivity resulted in year‐to‐year field‐scale nitrate storage and carryover. Water and N use efficiencies observed here may be near maximum obtainable for existing crops in this climate. Substantial improvements that would also address multiple environmental issues associated with the N cascade may involve shifts to perennial systems and/or rotations in which N is fixed biologically.  相似文献   

2.
This study focuses on problems related to estimating the exact exported suspended sediment quantity and quality from flow‐proportional samples taken at a fixed height at the outlet of a small, agricultural catchment in central Belgium. First, a correction factor is introduced to estimate the real suspended sediment concentration. This factor depends on the stream depth and the grain size distribution of the sediment and is necessary because of the presence of a concentration gradient in the stream. Secondly, water depth is corrected for the sediment volume, and thirdly, the grain size distribution of the exported sediment is corrected. The application of these correction factors leads to a reduction of the estimated total sediment export by 18 per cent (from 4810 Mg over a period of three years to 3930 Mg). Furthermore, the importance of small grain size fractions increases, leading to higher enrichment ratios for the clay fraction and lower ratios for the sand fraction. Suspended sediment export is thus more selective than was previously thought. Due to the overestimation of the sediment export, total phosphorus losses from the catchment are also overestimated by 17 per cent. This paper therefore emphasizes that point sampling of suspended sediment is biased and that a method should be incorporated to correct the sediment export in terms of quantity and quality. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
This study examines the particle size characteristics of hillslope soils and fluvial suspended sediments in an agricultural catchment. Samples of surface runoff and stream flow were collected periodically and analysed for the size distributions of the effective (undispersed) sediment. This sediment was subsequently dispersed and the ultimate size distributions determined. The median effective particle size of stream suspended sediment was considerably coarser than the median ultimate particle size, indicating that most of the load included a substantial proportion of aggregates. Moreover, the proportion of fine material (i.e. silt and clay) increased, and the proportion of sand-sized material decreased, with increasing discharge. This decrease in sediment size with increased flow, which is contrary to the traditional assumption of a positive discharge/particle size relationship, is thought to reflect: (i) the influx of silt and clay, predominantly the former, originating on the catchment slopes and brought to the stream by overland flow along vehicle wheelings, roads and tracks; and (ii) erosion of fine material from the channel bed and banks. During large storms, however, the proportion of sand-sized sediment increased during the rising limb of the hydrograph, as a result of the entrainment of coarser source material from the valley floor during overbank flooding. The stream suspended sediment was finer than the catchment soils and considerably finer than material eroding from the catchment slopes during storms. The degree of clay and silt enrichment in the suspended sediments was largely the result of preferential deposition of the coarser fraction during the transport and delivery of sediment from its source to basin outlet. The data from this study confirm that a significant mode of sediment transport in fluvial systems is in the form of aggregates, and that the dispersed sediment size distribution is inappropriate for determining the transportability of sediment by flow. © 1997 by John Wiley & Sons, Ltd.  相似文献   

4.
A number of studies in north Queensland over the past two decades have concluded that large amounts of nutrients and sediments are exported from agricultural watersheds, particularly during wet season rainfall events. With the co-operation of a number of growers, runoff from Queensland Wet Tropics banana and cane farm paddocks in two distinct tropical river catchments was examined to provide an estimate of nutrient and sediment concentrations and export, with comparison to water quality of flow through a small urban lakes system. Median total nitrogen concentrations in cane drainage runoff (3110 microg N/L) were higher than for banana paddock drainage (2580 microg N/L), although the maximum concentration was recorded from a banana paddock (20,900 microg N/L). Nitrogen losses during post-event drainage flow were supplemented by high proportions of NO(X) (nitrate + nitrite) sourced from groundwater inputs. Banana paddocks had the highest maximum and median total phosphorus and TSS concentrations (5120 and 286 microg P/L, and 7250 and 75 mg/L respectively) compared to the cane farms (1430 and 50 microg P/L, and 1840 and 14 mg/L respectively). The higher phosphorus and TSS concentrations in the banana runoff were attributed to higher paddock slopes and a greater proportion of exposed ground surface during the wet season. Highest nutrient and TSS concentrations corresponded with samples collected near the peak discharge periods; however, the rising stage of the drainage flows, where the highest nutrient and TSS concentrations are often reported, were difficult to target because of the manual sampling strategy used. This study shows that high concentrations of nutrients and TSS occur in the runoff from cane and banana paddocks. Median total nitrogen, total phosphorus and TSS concentrations in flow through the urban lakes were 369 microg N/L, 16 microg P/L and 11 mg/L, respectively. Flux estimates of 9.2 kg N, 0.8 kg P and 126 kg TSS/ha were determined for drainage runoff from a banana paddock during a single intensive storm event.  相似文献   

5.
Bank erosion rates and processes across a range of spatial scales are poorly understood in most environments, especially in the seasonally wet tropics of northern Australia where sediment yields are among global minima. A total of 177 erosion pins was installed at 45 sites on four sand‐bed streams (Tributaries North and Central, East Tributary and Ngarradj) in the Ngarradj catchment in the Alligator Rivers Region. Bank erosion was measured for up to 3·5 years (start of 1998/99 wet season to end of 2001/02 wet season) at three spatial scales, namely a discontinuous gully (0·6 km2) that was initiated by erosion of a grass swale between 1975 and 1981, a small continuous channel (2·5 km2) on an alluvial fan that was formed by incision of a formerly discontinuous channel between 1964 and 1978, and three medium‐sized, continuous channels (8·5–43·6 km2) with riparian vegetation. The bank erosion measurements during a period of average to above‐average rainfall established that substantial bank erosion occurred during the wet season on the two smaller channels by rapid lateral migration (Tributary Central) and by erosion of gully sidewalls due to a combination of within‐gully flows and overland flow plunging over the sidewalls (Tributary North). Minor bank erosion also occurred during the dry season by faunal activity, by desiccation and loss of cohesion of the sandy bank sediments and by dry flow processes. The larger channels with riparian vegetation (East Tributary and Ngarradj) did not generate significant amounts of sediment by bank erosion. Deposition (i.e. negative pin values) was locally significant at all scales. Bank profile form and channel planform exert a strong control on erosion rates during the wet season but not during the dry season. Copyright © 2006 Commonwealth Government of Australia.  相似文献   

6.
Catchment hydrology is influenced by land‐use change through alteration of rainfall partitioning processes. We compared rainfall partitioning (throughfall, stemflow and interception) and soil water content in three land‐use types (primary forest, secondary forest and agriculture) in the Santa Fe region of Panama. Seasonal patterns were typified by larger volumes of throughfall and stemflow in the wet season, and the size of precipitation events was the main driver of variation in rainfall redistribution. Land‐use‐related differences in rainfall partitioning were difficult to identify due to the high variability of throughfall. However, annual throughfall in agricultural sites made up a larger proportion of gross precipitation than throughfall in forest sites (94 ± 1, 83 ± 6 and 81 ± 1% for agriculture, primary and secondary forests, respectively). Proportional throughfall (% of gross precipitation becoming throughfall) was consistent throughout the year for primary forest, but for secondary forest, it was larger in the dry season than the wet season. Furthermore, proportional stemflow in the dry season was larger in secondary forest than primary forest. Stemflow, measured only in primary and secondary forests, ranged between 0.9 and 3.2% of gross precipitation. Relative soil moisture content in agricultural plots was generally elevated during the first half of the dry season in comparison to primary and secondary forests. Because throughfall is elevated in agricultural plots, we suggest careful management of the spatial distribution and spread of this land‐use type to mitigate potential negative impacts in the form of floods and high erosion rates in the catchment. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
A study was carried out on a rural catchment located in northwest Spain to examine the sediment yield from the catchment by measuring suspended sediments during rainfall events. Within the catchment regular surveys were conducted to obtain data on the suspended sediment sources. Important variations in sediment load were detected at event scale (0·3–21·0 Mg); some of these can be explained in terms of event size, antecedent conditions, rainfall distribution and soil surface erosion. To study the variables controlling suspended sediment yield during the events in the catchment, several event and pre‐event variables were calculated for all events. The sediment load is strongly influenced by discharge variables. During the events discharge–suspended sediments were also analysed. When the soil surface was unprotected, the formation of rills and ephemeral gullies on agricultural land at the catchment head was an important source of suspended sediments in the catchment. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
The suspended sediment yield and the transfer of polluted sediment are investigated for the Puyango river basin in southern Ecuador. This river system receives metal (Cd, Cu, Hg, Pb and Zn) and cyanide pollution generated by mining, and is associated with large‐scale hydrological variability, which is partly governed by El Niño events. Field sampling and statistical modelling methods are used to quantify the amount of mine tailings that is discharged into the basin. Annual suspended sediment yields are estimated using a novel combination of the suspended sediment rating method and Monte Carlo simulations, which allow for propagation of the uncertainties of the calculations that lead to final load estimates. Geochemical analysis of suspended and river bed sediment is used to assess the dispersion and long‐term fate of contaminated sediment within the river catchment. Knowledge of the inter‐ and intra‐annual variation in suspended sediment yield is shown to be crucial for judging the importance of mining discharges, and the extent to which the resultant pollution is diluted by river flows. In wet years, polluted sediments represent only a very small proportion of the yield estimates, but in dry years the proportion can be significant. Evidence shows that metal contaminated sediments are stored in the Puyango river bed during low flows. Large flood events flush this sediment periodically, both on an annual cycle associated with the rainy season, and also related to El Niño events. Therefore, environmental impacts of mining‐related discharges are more likely to be severe during dry years compared with wet years, and in the dry season rather than the wet season. The hydrological consequences of El Niño events are shown to depend upon the extent to which these events penetrate inland. It is, thus, shown that the general conclusion that El Niño events can significantly affect suspended sediment yields needs evaluation with respect to the particular way in which those events affect a given catchment. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
The Fitzroy estuary (Queensland, Australia) receives large, but highly episodic, river flows from a catchment (144,000 km(2)) which has undergone major land clearing. Large quantities of suspended sediments, and particulate and dissolved organic carbon are delivered. At peak flows, delta(13)C (-21.7+/-0.8 per thousand) and C/N (14.8+/-1.3) of the suspended solids indicate that the particulate organic material entering the estuary is principally soil organic carbon. At the lower beginning flows the particulate organic matter comes from in-stream producers (delta(13)C=-26 per thousand). The DOC load is about 10 times the POC load. Using the inverse method, budgets for POC and DOC were constructed for high and low flows. Under high flows, only a small portion of the POC and DOC load is lost in the estuary. Under dry season (low flow) conditions the estuary is a sink for DOC, but remains a source of POC to the coastal waters.  相似文献   

10.
Concentrations of suspended particulate matter (SPM), NO3-N and P fractions: PO4-P, dissolved organic P (DOP), particulate P (PP) and bioavailable exchangeable P were examined over 5 storm events in two nested agricultural catchments in NE Scotland: a (51 km2) catchment and its headwater (4 km2). NO3-N showed anticlockwise hysteresis for all storms in both catchments. In contrast, the headwater showed strong clockwise hysteresis of SPM, dissolved and particulate P concentrations, but which weakened through summer to spring. Less pronounced hysteresis of P forms in the larger catchment was attributed to a combination of factors: a less energetic system, nutrient leaching from the floodplain, a point source of a small sewage treatment works and the occurrence of coarser soil and sediment parent materials with less P adsorption and transport capacity. The headwater exhibited a strong ‘first flush’ effect of sediment and dissolved P, particularly following dry conditions, received a significant transfer of readily-solubilized organic P from the surrounding soils in late summer and after manure applications in winter, and was the likely cause of large sediment associated P signals observed in the 51 km2 catchment. Our results suggest that steeper gradient headwaters should be targeted for riparian improvements to mitigate soil erosion from headwater fields. The efficiency of riparian erosion controls is also dependant on the size of the store of fine sediment material within the stream channel and this may be large.  相似文献   

11.
The response of intermittent catchments to rainfall is complex and difficult to model. This study uses the spatially distributed CATchment HYdrology (CATHY) model to explore how the frequency of daily rainfall (λ) can affect the hydrologic regime of intermittent catchments. After a multi-objective calibration and validation of CATHY against experimental measurements of streamflow and groundwater levels in a catchment used as a pasture, the role of λ in affecting streamflow characteristics was explored using different scenarios. With different values of λ for the dry and wet periods of the year, CATHY showed that a series of frequent rainfall events was often associated with incipient streamflow, independent of the season. Activation of streamflow during the wet season was related to multiple factors and was not often associated with the shallow groundwater levels near the outlet of the catchment. The interplay between rainfall depth and intensity acted as the most important factor for the generation of streamflow. Using the difference between accumulated rainfall and evapotranspiration as a measure of wetness, saturated subsurface flow mechanism generated streamflow in simulations with wetness at least three times larger than mean wetness of other simulations. Although groundwater uprise near the outlet did not effectively contribute to streamflow in the initial days of flow, it strongly correlated with the magnitude of the runoff coefficient. Values of λ close or equal to the maximum value in the wet season can sustain the connectivity between groundwater and streamflow in the riparian zone. This connectivity increases the catchment wetness, which consequently results in an increase of the generated streamflow. Our study showed that rainfall regimes characterized by different λ were able to identify distinct flow regimes typical of either intermittent, ephemeral, or nonflowing catchments. Decrease of λ in the wet season is likely associated with a reduction of streamflow, with a shift of flow regime from intermittent to ephemeral or no-flow.  相似文献   

12.
《Journal of Hydrology》1999,214(1-4):165-178
Karst aquifers are capable of transporting and discharging large quantities of suspended sediment, which can have an important impact on water quality. Here we present the results of intensive monitoring of sediment discharging from a karst spring in response to two storm events, one following a wet season and the other following a dry season; we describe temporal changes in total suspended solids (TSS), mineralogy, and particle size distribution. Peak concentrations of suspended sediment coincided with changes in aqueous chemistry indicating arrival of surface water, suggesting that much of the discharging sediment had an allochthonous origin. Concentrations of suspended sediment peaked 14–16 h after rainfall, and the bulk of the sediment (approximately 1 metric ton in response to each storm) discharged within 24 h after rainfall. Filtered material included brightly colored fibers and organic matter. Suspended sediments consisted of dolomite, calcite, quartz, and clay. Proportions of each mineral constituent changed as the aquifer response to the storm progressed, indicating varying input from different sediment sources. The hydraulic response of the aquifer to precipitation was well described by changes in parameters obtained from the particle size distribution function, and corresponded to changes seen in TSS and mineralogy. Differences between storms in the quantity and mineralogy of sediment transported suggest that seasonal effects on surface sediment supply may be important. The quantity of sediment discharging and its potential to sorb and transport contaminants indicates that a mobile solid phase should be included in contaminant monitoring and contaminant transport models of karst. Temporal changes in sediment quantity and characteristics and differences between responses to the two storms, however, demonstrate that the process is not easily generalized.  相似文献   

13.
Research into torrent erosion has focused on bedload transport dynamics, debris flow propagation during flood events, and fan sedimentation. Studies have frequently been biased towards specific events and have not considered sediment delivery in the catchment as a whole. The aim of this study is to examine spatial variations and process controls on sediment transfer in an upland torrent system (hillslopes, channel and fan). The study site is Iron Crag, a small torrent system (catchment area 2·4 ha) situated in the northern Lake District, UK. Particle size analysis of hillslope sediments trapped during transport suggests sediment calibre is controlled primarily by sediment source. Freeze–thaw and rainfall processes impart a weak but recognizable size sorting signature on the trapped sediments. However, these variations are less significant in determining sediment supply to the basal fan, than those operating in the channel system. Channel sediment movement is strongly influenced by storm events, the type of flow process (debris flow or fluvial flow), the sediment characteristics, and the local channel topography. The importance of the channel–fan coupling is clearly demonstrated in that more than 90 per cent of fan sedimentation is derived from channel sediment sources. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
Hydrological and sediment fluxes were monitored for a 1 yr period in a tropical headwater catchment where a 3 yr old logging road caused substantial Hortonian overland flow (HOF) and intercepted subsurface flow (ISSF). On a 51·5 m road section, ISSF became an increasingly important component of total road runoff, up to more than 90% for large storms. The proportion of ISSF contributed by road cuts along more or less planar slopes compared with ISSF from a zero‐order basin (convergent slopes) truncated by the road declined with increasing rainfall. During the monitored storms that generated ISSF along the road, on average, 28% of sediment export and 79% of runoff from the road section were directly attributable to ISSF. Estimates of total sediment export from the road surface (170 t ha?1 yr?1) and suspended sediment export from the logging‐disturbed catchment (4 t ha?1 yr?1) were exceptionally high despite 3 yr of recovery. ISSF caused not only additional road‐generated sediment export, but also exacerbated HOF‐driven erosion by creating a poor foundation for vegetation recovery on the road surface. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
The dynamics of dissolved and particulate N, P and organic C were examined for field drains, through a headwater (4 km2), into a mesoscale stream (51 km2) and river (1844 km2) catchment. Distributions of N and P forms were similar in the agricultural headwater and field drains; annual P fluxes of particulate and dissolved forms were of equal magnitude, whilst N was dominated by NO3–N. Across all scales organic P was an important, often dominant, component of the dissolved P. Temporal variation in nutrient concentrations and proportions was greatest in the headwater, where storms resulted in the generation of large concentrations of suspended particulate matter, particulate and dissolved P, particularly following dry periods. The data suggest that groundwater and minor point source inputs to the mesoscale catchment buffered the temporal variability in hydrochemistry relative to the headwater. Summer low flows were associated with large PO4–P concentrations in the mesoscale catchment at a critical time of biological sensitivity. At the largest river catchment scale, organic forms of C, N and P dominated. Inorganic nutrient concentrations were kept small through dilution by runoff from upland areas and biological processes converted dissolved N and P to particulate forms. The different processes operating between the drain/headwater to the large river scale have implications for river basin management. Given the prevalence of organic and particulate P forms in our catchment transect, the bioavailability of these fractions needs to be better understood.  相似文献   

16.
Increased erosion associated with land use change often alters the flux of sediments and nutrients, but few studies have looked at the interaction between these disrupted cycles. We studied the effects of gully erosion on carbon and nitrogen storage in surface soil/sediment and herbaceous vegetation and on C and N mineralization in a headwater catchment used for cattle grazing. We found significantly lower C and N stored in an incising gully compared with an intact valley. This storage was significantly higher in an adjacent stabilizing gully, although not to the levels found in the intact valley. The intact valley had two to four times higher soil/sediment concentrations of total organic C, total N and Colwell extractable P than the incising gully. Lower storage was not explained by differences in vegetation biomass density or silt and clay content. Vegetation accounted for only 8% of C and 2% of N storage. Although not a significant store in itself, vegetation has an important indirect role in restoring and maintaining soil/sediment C and N stocks in eroding areas. We found significant linear relationships between C and N mineralization rates and soil/sediment C and N content, with lower rates occurring in the eroded sediment. These findings support our initial hypothesis that gully erosion reduces C and N storage and mineralization rates in eroding catchments. The implications of this study include a change to the quality of eroded sediments in headwater catchments, causing C‐poorer and N‐poorer sediments to be exported but overall loads to increase. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
To investigate the effects of anthropogenic activity, namely, land use change and reservoir construction, on particulate organic carbon (POC) transport, we collected monthly water samples during September 2007 to August 2009 from the Longchuanjiang River to understand seasonal variations in the concentrations of organic carbon species and their sources and the yield of organic and inorganic carbon from the catchment in the Upper Yangtze basin. The contents of riverine POC, total organic carbon and total suspended sediment (TSS) changed synchronously with water discharge, whereas the contents of dissolved organic carbon had a small variation. The POC concentration in the suspended sediment decreased non‐linearly with increasing TSS concentration. Higher molar C/N ratio of particulate organic matter (average 77) revealed that POC was dominated by terrestrially derived organic matter in the high flows and urban wastewaters in the low flows. The TSS transported by this river was 2.7 × 105 t/yr in 2008. The specific fluxes of total organic carbon and dissolved inorganic carbon (DIC) were 5.6 and 6 t/km2/yr, respectively, with more than 90% in the high flow period. A high carbon yield in the catchment of the upper Yangtze was due to human‐induced land use alterations and urban wastes. Consistent with most rivers in the monsoon climate regions, the dissolved organic carbon–POC ratio of the export flux was low (0.41). Twenty‐two percent (0.9 t/km2/yr) of POC out of 4 t/km2/yr was from autochthonous production and 78% (3.1 t/km2/yr) from allochthonous production. The annual sediment load and hence the organic carbon flux have been affected by environmental alterations of physical, chemical and hydrological conditions in the past 50 years, demonstrating the impacts of human disturbances on the global and local carbon cycling. Finally, we addressed that organic carbon flux should be reassessed using adequate samples (i.e. at least two times in low‐flow month, four times in high‐flow month and one time per day during the flood period), daily water discharge and sediment loads and appropriate estimate method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
The composition and amount of colloidal and suspended participate matter transported during a small flood event in Magela Creek in tropical northern Australia was investigated. The flood studied constituted approximately 3 % of the total annual flow, most (90%) of which occurred between mid-January and mid-February of the study year. Three fractions were separated from water samples using a sequential method involving a continuous flow centrifuge to separate suspended particulate matter (SPM; nominally > 1 μm) followed by hollow fibre filtration, first using a 0.1 μm filter to separate course colloidal matter (CCM; nominal size 1–0.1 μm) and then a 0–015 μm filter to separate fine colloidal matter (FCM; nominal size 0.1–0.015 μm). The SPM was predominantly inorganic (organic matter 21 %), whereas the colloidal fractions were dominantly organic matter (CCM 60%; FCM 83%). Analysis of individual particles using electron microprobe and automated image analysis indicated that the mineral fractions in both the SPM and CCM were dominated by iron-enriched aluminosilicates (including kaolinite) (72–82%) and quartz (9–10%), indicative of a highly weathered and extensively laterized catchment. Surprisingly there was very little difference in the composition of the SPM or CCM fractions during the flood event studied, which may indicate either that sediment availability was restricted following the major run-off events in January and February, or that all the sediment sources within the catchment are geochemically similar. Approximately the same amounts of particulate (20 tonne), colloidal (21 tonne) and dissolved material (17 tonne) were transported during the 25 hour period of the main flood peak; over 90% of the colloidal matter was 0.1–1.0 μm in size. These data suggest that previous estimates of the amounts of particulate (and colloidal) matter transported by Magela Creek, which were based on suspended solids measurements, may have underestimated the particulate matter load by as much as 50%. It is possible that the relatively high proportion of colloidal matter is unique to Magela Creek because coagulation and aggregation of colloidal matter to particulate matter is slow due to the very low concentations of calcium and magnesium in these waters. However, if the result is more widespread, there are important implications for the global estimates of fluvially transported particulate and dissolved materials as many of the previous studies may have underestimated the particulate load and overestimated the dissolved load.  相似文献   

19.
Accurate estimates of N and P loads were obtained for four contrasting UK river basins over a complete annual cycle. The fractionation of these loads into dissolved and particulate, and inorganic and organic components allowed a detailed examination of the nutrient load composition and of the factors influencing both the relative and absolute magnitude of these components. The particulate phosphorus (TPP) loads account for 26–75% of the annual total phosphorus (TP) transport and are predominantly inorganic. The inorganic (PIP) and organic (POP) fractions of the TPP loads represent 20–47% and 6–28% of the annual TP transport, respectively. In contrast, the particulate nitrogen loads (TPN) represent 8% or less of the annual total nitrogen (TN) loads and are predominately organic. For dissolved P transport, the dissolved inorganic fraction (DIP) is more important, representing 15–70% of the TP loads, whereas the dissolved organic fraction (DOP) represents only 3–9% of the TP loads. The TN loads are dominated by the dissolved component and more particularly the total oxidized fraction (TON), which is composed of nitrate and nitrite and represents 76–82% of the annual TN transport. The remaining dissolved N species, ammonium (NH4-N) and organic N (DON) account for 0·3–1·2% and 13–16% of the annual TN transport, respectively. The TPN and TPP fluxes closely reflect the suspended sediment dynamics of the study basins, which are in turn controlled by basin size and morphology. The dissolved inorganic nutrient fluxes are influenced by point source inputs to the study basins, especially for P, although the TON flux is primarily influenced by diffuse source contributions and the hydrological connectivity between the river and its catchment area. The dissolved organic fractions are closely related to the dissolved organic carbon (DOC) dynamics, which are in turn influenced by land use and basin size. The magnitude of the NH4-N fraction was dependent on the proximity of the monitoring station to point source discharges, because of rapid nitrification within the water column. However, during storm events, desorption from suspended sediment may be temporarily important. Both the magnitude and relative contribution of the different nutrient fractions exhibit significant seasonal variability in response to the hydrological regime, sediment mobilization, the degree of dilution of point source inputs and biological processes. © 1998 John Wiley & Sons, Ltd.  相似文献   

20.
Understanding the influence of complex interactions among hydrological factors, soil characteristics and biogeochemical functions on nutrient dynamics in overland flow is important for efficiently managing agricultural nonpoint pollution. Experiments were conducted to assess nutrient export from Ultisol soils in the Sunjia catchment, Jiangxi province, southern China, between 2003 and 2005. Four plots were divided into two groups: two peanut plots and two agroforestry (peanut intercropped with citrus) plots. During the study period, we collected water samples for chemical analyses after each rainfall event that generated overland flow to assess nutrient export dynamics. The concentrations of potassium (K) and nitrate‐N (NO3–N) in overland flow were higher during the wetting season (winter and early spring). This reflects the solubility of K and NO3–N, the accumulation of NO3–N during the dry season and an increase in desorption processes and mixing with pre‐event water caused by prolonged contact with soil in areas with long‐duration, low‐intensity rainfall. In contrast, concentrations of total nitrogen (TN) and total phosphorus (TP) were higher during the wet season (late March to early July) and during the dry season (mid‐July to the end of September or early October). This was due to the interaction between specific hydrological regimes, the properties of the Ultisol and particulate transport processes. Variations in nutrient concentrations during storm events further identified that event water was the dominant source of total nitrogen and total phosphorus, and pre‐event water was the dominant source of NO3–N. In addition, the results obtained for the different land uses suggest that agroforestry practices reduce nutrient loss via overland flow. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号