首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Evaporation of intercepted rain by a canopy is an important component of evapotranspiration, particularly in the humid boreal forest, which is subject to frequent precipitation and where conifers have a large surface water storage capacity. Unfortunately, our knowledge of interception processes for this type of environment is limited by the many challenges associated with experimental monitoring of the canopy water balance. The objective of this study is to observe and estimate canopy storage capacity and wet canopy evaporation at the sub-daily and seasonal time scales in a humid boreal forest. This study relies on field-based estimates of rainfall interception and evapotranspiration partitioning at the Montmorency Forest, Québec, Canada (mean annual precipitation: 1600 mm, mean annual evapotranspiration: 550 mm), in two balsam fir-white birch forest stands. Evapotranspiration was monitored using eddy covariance sensors and sap flow systems, whereas rainfall interception was measured using 12 sets of throughfall and six stemflow collectors randomly placed inside six 400-m2 plots. Changes in the amount of water stored on the canopy were also directly monitored using the stem compression method. The amount of water intercepted by the forest canopy was 11 ± 5% of the total rainfall during the snow-free (5 July–18 October) measurement periods of 2017 and 2018. The maximum canopy storage estimated from rainfall interception measurements was on average 1.6 ± 0.7 mm, though a higher value was found using the stem compression method (2.2 ± 1.6 mm). Taking the average of the two forest stands studied, evaporation of intercepted water represented 21 ± 8% of evapotranspiration, while the contribution of transpiration and understory evapotranspiration was 36 ± 9% and 18 ± 8%. The observations of each of the evapotranspiration terms underestimated the total evapotranspiration observed, so that 26 ± 12% of it was not attributed. These results highlight the importance to account for the evaporation of rain intercepted by humid boreal forests in hydrological models.  相似文献   

2.
The interception storage capacity has been measured for a range of dryland plants. Interception losses over time, however, arise in rain events that deliver either less or more than the canopy capacity. The fate of water in these cases depends on the efficiency with which the intercepted water is returned to the atmosphere by evaporation from the plant canopies. Two primary methods to estimate interception losses are (i) calibrated process‐based models of interception and evaporative loss and (ii) direct measurement. Models have been applied only rarely to dryland plant communities, and direct measurement techniques are in need of additional testing and refinement. Most published estimates of interception loss in dryland plant communities therefore appear to be based upon inadequate data and methods. Research needs in this area are highlighted. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

3.
A rainfall interception measuring system was developed and tested for open‐grown trees. The system includes direct measurements of gross precipitation, throughfall and stemflow, as well as continuous collection of micrometeorological data. The data were sampled every second and collected at 30‐s time steps using pressure transducers monitoring water depth in collection containers coupled to Campbell CR10 dataloggers. The system was tested on a 9‐year‐old broadleaf deciduous tree (pear, Pyrus calleryana ‘Bradford’) and an 8‐year‐old broadleaf evergreen tree (cork oak, Quercus suber) representing trees having divergent canopy distributions of foliage and stems. Partitioning of gross precipitation into throughfall, stemflow and canopy interception is presented for these two mature open‐grown trees during the 1996–1998 rainy seasons. Interception losses accounted for about 15% of gross precipitation for the pear tree and 27% for the oak tree. The fraction of gross precipitation reaching the ground included 8% by stemflow and 77% by throughfall for the pear tree, as compared with 15% and 58%, respectively, for the oak tree. The analysis of temporal patterns in interception indicates that it was greatest at the beginning of each rainfall event. Rainfall frequency is more significant than rainfall rate and duration in determining interception losses. Both stemflow and throughfall varied with rainfall intensity and wind speed. Increasing precipitation rates and wind speed increased stemflow but reduced throughfall. Analysis of rainfall interception processes at different time‐scales indicates that canopy interception varied from 100% at the beginning of the rain event to about 3% at the maximum rain intensity for the oak tree. These values reflected the canopy surface water storage changes during the rain event. The winter domain precipitation at our study site in the Central Valley of California limited our opportunities to collect interception data during non‐winter seasons. This precipitation pattern makes the results more specific to the Mediterranean climate region. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

4.
Leaf litter interception of water is an integral component of the water budget for some vegetated ecosystems. However, loss of rainfall to litter receives considerably less attention than canopy interception due to lack of suitable sensors to measure changes in litter water content. In this study, a commercially available leaf wetness sensor was calibrated to the gravimetric water content of eastern redcedar (Juniperus virginiana ) litter and used to estimate litter interception in a subhumid eastern redcedar woodland in north‐central Oklahoma. Under controlled laboratory conditions, a strong positive correlation between the leaf wetness sensor output voltage (mV) and measured gravimetric litter water content (? g) was determined: ? g = (.0009 × mV2) ? (0.14 × mV) ? 11.41 (R 2 = .94, p  < .0001). This relationship was validated with field sampling and the output voltage (mV) accounted for 48% of the observed variance in the measured water content. The maximum and minimum interception storage capacity ranged between 1.16 and 12.04 and 1.12 and 9.62 mm, respectively. The maximum and minimum amount of intercepted rain was positively correlated to rainfall amount and intensity. The continuous field measurements demonstrated that eastern redcedar litter intercepted approximately 8% of the gross rainfall that fell between December 16, 2014 and May 31, 2015. Therefore, rainfall loss to litter can constitute a substantial component of the annual water budget. Long‐term in situ measurement of litter interception loss is necessary to gain a better estimate of water availability for streamflow and recharge. This is critical to manage water resources in the south‐central Great Plains, USA where grasslands are rapidly being transformed to woodland or woody dominated savanna.  相似文献   

5.
A study of partitioning of rainfall into throughfall, stemflow, and interception was conducted in a dry sclerophyll eucalypt forest and an adjacent pine plantation over a period of seven years, on a rainfall event basis. The following three issues are discussed: (1) the relationship between canopy storage capacity and interception of continuous events, (2) interception, throughfall, and stemflow, and (3) the effect on interception of thinning the pine plantation.
  • 1 The canopy storage capacity/interception interaction for the eucalypt forest was assessed by comparing a gravimetric estimate of canopy storage capacity with interception. The maximum possible value for canopy storage capacity was found to be a small proportion of interception for events of all sizes. This suggests that evaporation of intercepted water during the continuous events was responsible for most of the interception. This ‘within event’ evaporation appears to be responsible also for the net rainfall/gross rainfall estimate of canopy storage capacity being four times the gravimetric value. For the pines the regression estimate was more closely related to interception.
  • 2 Interception, throughfall, and stemflow of these forests were measured for four years. Data are presented for each year with overall average interception being 11-4 per cent of precipitation for the eucalypt forest and 18-3 per cent for the pine plantation. Topography and rainfall event type are considered in the comparison.
Species composition and tree type are considered when comparing these results with published studies from similar forest types in southeastern Australia. The periodic (annual) variations of interception in this and the other studies makes comparison difficult.
  • 3 The effect of thinning on the throughfall, stemflow, and interception in a Pinus radiata plantation is examined. Throughfall increased, interception decreased but not in proportion to the removed biomass; stemflow decreased on an area basis, but increased on a per tree basis. A positive relationshiip is established between interception and stemflow on the thinned plantation but not in the unthinned. Reasons for this are suggested. The results are compared to those reported from similar experiments in other forests.
  • 4 The periodic variations in interception and errors inherent in its estimation suggest that caution should be exercised when using average interception figures in water balance studies.
  相似文献   

6.
The aim of this study is to understand the canopy interception of Qinghai spruce forest under conditions of different precipitation characteristics and canopy structures in the upper reach of Heihe River basin, northwestern China. On the basis of a continuous record covering our investigating period by an automatic throughfall‐collecting system, we analysed the relationships between the canopy interception and the precipitation characteristics. Our results support the well‐established exponential decay relationship between the gross precipitation and the interception percentage after the canopy is saturated. But our results sufficiently illustrate a notable point that the variations in the interception percentage are almost independent from the variations in the gross precipitation before the canopy is saturated. Our examination into the relationship between the interception and the 10‐min average intensity of precipitation demonstrates a divergent relationship, and the divergent relationship is bracketed by an upper ‘dry line’ indicating that 100% of gross precipitation was intercepted before saturation and by a lower ‘wet line’ suggesting that the actual canopy storage capacity reached the maximum and evaporation was the only component of the interception. To search for the relationship between canopy structures and interception, we grouped the canopy covers over the 90 throughfall‐collecting tanks into ten categories ranging from 0 (no cover) to 0.9 (nearly completely covered), and the corresponding canopy interception was calculated by subtracting the averaged throughfall of each canopy‐cover category from the gross precipitation. The results show that the interception percentage increases faster with increasing canopy cover under intermediate rainfall conditions than that under heavy rainfall conditions. Unexpectedly, under light rainfall conditions the increasing rate of interception percentage with increasing canopy cover and also with increasing plant area index is not faster than that under the intermediate rainfall conditions simply because the tank‐measured percentage of interception was extremely high at near‐zero canopy cover conditions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Water resource scarcity and uneven distribution are 2 major environmental issues in China today. Forest structure is a dominant factor that influences hydrological processes, but the specific interactions remain uncertain due to the predominant use of individual or 1‐dimensional forest structure metrics in previous studies. In this study, forest structures in 8 run‐off plots on Mount Miaofeng in north China were parameterized by metrics of different dimensionalities. The relation between canopy interception and forest structure, shrub/litter interception, and forest structure as well as run‐off and forest structure were analysed by regression method and validated by leave‐one‐out cross test. The results showed that canopy interception rates ranged from less than 0.10 all the way to 0.80, affected by forest structure and precipitation, with interception rate decreasing logarithmically as precipitation increased. Forests with a larger canopy area (CA), leaf area index (LAI), and higher average height (H) had a narrow range of canopy interception rates, and forest with larger value of diameters at breath height (DBH), H, LAI, vertical heterogeneity coefficient (T), and structure complexity index (SCI) had higher interception rates. Forests with higher value of DBH, H, and horizontal heterogeneity coefficient (R) had higher shrub/litter interception rates on the forest floor. The run‐off coefficient was only significantly associated with LAI, T, and SCI. The validation test indicated that regression analysis of canopy interception rates and shrub interception are reliable and SCI is a key factor to influence the run‐off coefficient. However, the regression results of litter interception have a relatively large error. According to the results, to reduce the risks of the landslides and floods, forest managers should complicate the canopy and preserve trees with thicker stems and larger canopies. By contrast, to obtain more water resource from run‐off in arid regions, forest managers should harvest trees with large canopies and construct complex vertical structures by intermediate cutting.  相似文献   

8.
Depending on season, rainfall characteristics and tree species, interception amounts to 15–50% of total precipitation in a forest under temperate climates. Many studies have investigated the importance of interception of different tree species in all kinds of different climates. Often authors merely determine interception storage capacity of that specific species and the considered event, and only sometimes a distinction is made between foliated and non‐foliated trees. However, interception is highly variable in time and space. First, since potential evaporation is higher in summer, but secondly because the storage capacity has a seasonal pattern. Besides weather characteristics, such as wind and rain intensity, snow causes large variations in the maximum storage capacity. In an experimental beech plot in Luxembourg, we found storage capacity of canopy interception to show a clear seasonal pattern varying from 0·1 mm in winter to 1·2 mm in summer. The capacity of the forest floor appears to be rather constant over time at 1·8 mm. Both have a standard deviation as high as ± 100%. However, the process is not sensitive to this variability resulting only in 11% variation of evaporation estimates. Hence, the number of raindays and the potential evaporation are stronger driving factors on interception. Furthermore, the spatial correlation of the throughfall and infiltration has been investigated with semi‐variograms and time stability plots. Within 6–7 m distance, throughfall and infiltration are correlated and the general persistence is rather weak. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Cloud water interception (CWI) occurs when cloud droplets are blown against the forest canopy, where they are retained on the vegetation surface, forming larger water droplets that drip into the forest floor. CWI was measured from 1 October 1997 to 30 September 1999, on a first‐line tree heath (Erica arborea), at Bica da Cana, Madeira Island. Rainfall was corrected for wind‐loss effect and compared with throughfall and other climatological normals. The CWI depletion rate along a forest stand transect was also analysed during three distinct fog events in 2008. Cloud water was 28 mm day?1, corresponding to 68% of total throughfall and 190% of the gross precipitation. Cloud water correlates directly with monthly normals of fog days and wind speed and correlates inversely with the monthly air temperature normal. CWI has an exponential correlation with monthly relative humidity normal. Cloud water capture depletion along the stand shows a logarithmic decrease. Although a forest stand does not directly relate to a first‐line tree heath, this study shows that CWI is a frequent phenomenon in the Paul da Serra massif. Restoration and protection of high altitude ecosystems in Madeira should be a priority, not only for biodiversity, ecological and economical purposes but also for its role in regional water resources. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Evan Pugh  Eric Gordon 《水文研究》2013,27(14):2048-2060
In regions of western North America with snow‐dominated hydrology, the presence of forested watersheds can significantly influence streamflow compared to areas with other vegetation cover types. Widespread tree death in these watersheds can thus dramatically alter many ecohydrologic processes including transpiration, canopy solar transmission and snow interception, subcanopy wind regimes, soil infiltration, forest energy storage and snow surface albedo. One of the more important causes of conifer tree death is bark beetle infestation, which in some instances will kill nearly all of the canopy trees within forest stands. Since 1996, an ongoing outbreak of bark beetles (Coleoptera: Scolytidae) has caused widespread mortality across more than 600,000 km2 of coniferous forests in western North America, including numerous Rocky Mountain headwaters catchments with high rates of lodgepole pine (Pinus contorta) mortality from mountain pin beetle (Dendroctonous ponderosae) infestations. Few empirical studies have documented the effects of MPB infestations on hydrologic processes, and little is known about the direction and magnitude of changes in water yield and timing of runoff due to insect‐induced tree death. Here, we review and synthesize existing research and provide new results quantifying the effects of beetle infestations on canopy structure, snow interception and transmission to create a conceptual model of the hydrologic effects of MPB‐induced lodgepole pine death during different stages of mortality. We identify the primary hydrologic processes operating in living forest stands, stands in multiple stages of death and long‐dead stands undergoing regeneration and estimate the direction of change in new water yield. This conceptual model is intended to identify avenues for future research efforts. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Under winter conditions, stemflow drainage in forested ecosystems is often assumed to be a negligible component of the hydrological cycle. This paper reports on mid-winter stemflow drainage from the broadleaved deciduous tree species Populus grandidentata. Stemflow volumes from this species at air temperatures of < 0°C were found to be comparable to rainfall-generated stemflow during summer. Over the three-month period January–March 1993, stemflow ranged from 5.4 to 9.9% of the incident gross precipitation. Expressed as depth equivalents per unit trunk basal area, these stemflow inputs ranged from 1.8 to 4.9 m. These concentrated mid-winter inputs of liquid water to the bases of canopy trees were attributable to: (1) snow interception by the leafless woody frame of each tree; (2) snow retention by glazed ice precipitation associated with the snowfall event; (3) increased temperature at the bark/snow interface caused by the low albedo of the bark tissue; and (4) convergence of snowmelt drainage from steeply inclined upthrust primary branches. The hydrological and ecological significance of liquid water inputs to the forest floor under sub-zero conditions are discussed. © 1997 by John Wiley & Sons Ltd.  相似文献   

12.
Leaching is an important process in the biogeochemical cycling of nutrients from above‐ground vegetative surfaces to the forest floor. Little is known about winter leaching from deciduous tree species and the influence of branch inclination angle on leachate chemistry. Using a set of field‐based isolated branches harvested from mature crowns of Betula lenta, Carya glabra and Quercus rubra, we tested the null hypothesis that during winter neither branch inclination angle nor branch species would have a detectable influence on differences in leachate chemistry and the quantity of intercepted precipitation from the branch surface. Leachate concentrations were significantly greater from branches inclined at 20° than 5° or 38°. Absolute nutrient inputs were also greatest for branches inclined at 20°. The significantly enriched branchflow and greater total nutrient input from branches inclined at 20° were attributed to increased residence time of intercepted precipitation with the branch surface, the lower probability of branch drip than branches inclined at 5°, and only minimal differences in branchflow quantity compared with branches inclined at 38°. Branchflow was more enriched from all three branch angles during precipitation events of longer duration and lower intensity than shorter, intense events. The leachate quantities of K+ and Ca2+ differ significantly among species. Carya glabra and Quercus rubra leached more K+ than Betula lenta. All three species leached significantly different amounts of Ca2+, with Quercus rubra leaching the most and Carya glabra the least. The adaptive geometry of deciduous canopy trees should be considered in relation to the interception of precipitation and aqueous leaching during winter when the canopy is leafless. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
Tim P. Duval 《水文研究》2019,33(11):1510-1524
Partitioning of rainfall through a forest canopy into throughfall, stemflow, and canopy interception is a critical process in the water cycle, and the contact of precipitation with vegetated surfaces leads to increased delivery of solutes to the forest floor. This study investigates the rainfall partitioning over a growing season through a temperate, riparian, mixed coniferous‐deciduous cedar swamp, an ecosystem not well studied with respect to this process. Seasonal throughfall, stemflow, and interception were 69.2%, 1.5%, and 29.3% of recorded above‐canopy precipitation, respectively. Event throughfall ranged from a low of 31.5 ± 6.8% for a small 0.8‐mm event to a high of 82.9 ± 2.4% for a large 42.7‐mm event. Rain fluxes of at least 8 mm were needed to generate stemflow from all instrumented trees. Most trees had funnelling ratios <1.0, with an exponential decrease in funnelling ratio with increasing tree size. Despite this, stand‐scale funnelling ratios averaged 2.81 ± 1.73, indicating equivalent depth of water delivered across the swamp floor by stemflow was greater than incident precipitation. Throughfall dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) averaged 26.60 ± 2.96 and 2.02 ± 0.16 mg L?1, respectively, which were ~11 and three times above‐canopy rain levels. Stemflow DOC averaged 73.33 ± 7.43 mg L?1, 35 times higher than precipitation, and TDN was 4.45 ± 0.56 mg L?1, 7.5 times higher than rain. Stemflow DOC concentration was highest from Populus balsamifera and TDN greatest from Thuja occidentalis trees. Although total below‐canopy flux of TDN increased with increasing event size, DOC flux was greatest for events 20–30 mm, suggesting a canopy storage threshold of DOC was readily diluted. In addition to documenting rainfall partitioning in a novel ecosystem, this study demonstrates the excess carbon and nitrogen delivered to riparian swamps, suggesting the assimilative capacity of these zones may be underestimated.  相似文献   

14.
Evapotranspiration (ET) and canopy wetness were measured over a 2‐year intensive field campaign at the Chi‐Lan Mountain cloud forest site in Taiwan. Eddy covariance and sap flow methods were applied to measure ET and tree sap flow of the endemic yellow cypress (Chamaecyparis obtusa var. formosana). ET was 553 mm yr?1 over the study period with an annual rainfall and fog deposition of 4893 and 288 mm yr–1, respectively. The duration of canopy wetness exceeded actual fog or rain events (mostly in the afternoon), and the intercepted water was evaporated later in the following dry morning. The cumulative wet duration accounted for 52% of time over the study period, which was longer than the duration of rainfall and fog altogether (41%). As it adapted to the extremely moist environment, the yellow cypress behaved in a wet‐enhanced/dry‐reduced water use strategy and was sensitive to short periods of dry atmosphere with high evaporation potential. During dry days, the sap flow rate rose quickly after dawn and led to conservative water use through midday and the afternoon. During periodically wet days, the canopy was mostly wetted in the morning, and the interception evaporation contributed largely to the morning ET. The initiation of morning sap flow was postponed 1–3 h, and the sap flow rate tended to peak later at midday. The midday canopy conductance was higher in the periodically wet days (10.6 mm s–1) as compared with 7.6 mm s?1 in the dry days. Consequently, the dry‐reduced water use strategy led to much lower annual ET with respect to the available energy (~46%) and high precipitation input (~11%). The moist‐adapted ecohydrology we report reveals the vulnerability of montane cloud forests to prolonged fog‐free periods. More research is urgently needed to better understand the resilience of these ecosystems and formulate adaptive management plans. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Redistribution of ground‐level rainfall and interception loss by an isolated Quercus ilex tree were measured over 2 years in a Mediterranean oak savannah. Stemflow, meteorological variables and sap flow were also monitored. Rainfall at ground level was measured by a set of rain‐gauges located in a radial layout centred on the tree trunk and extending beyond the crown limits. Interception loss was computed as the difference between the volume of rainwater that would reach the ground in the absence of the tree and the volume of water that actually fell on the ground sampling area (stemflow included). This procedure provided correct interception loss estimates, irrespective of rainfall inclination. Results have shown a clear non‐random spatial distribution of ground‐level rainfall, with rainwater concentrations upwind beneath the crown and rain‐shadows downwind. Interception loss amounted to 22% of gross rainfall, per unit of crown‐projected area. Stand interception loss, per unit of ground area, was only 8% of gross rainfall and 28% of tree evapotranspiration. These values reflect the low crown cover fraction of the stand (0·39) and the specific features of the Mediterranean rainfall regime (predominantly with few large storms). Nevertheless, it still is an important component of the water balance of these Mediterranean ecosystems. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
Water losses from snow intercepted by forest canopy can significantly influence the hydrological cycle in seasonally snow‐covered regions, yet how snow interception losses (SIL) are influenced by a changing climate are poorly understood. In this study, we used a unique 30 year record (1986–2015) of snow accumulation and snow water equivalent measurements in a mature mixed coniferous (Picea abies and Pinus sylvestris ) forest stand and an adjacent open area to assess how changes in weather conditions influence SIL. Given little change in canopy cover during this study, the 20% increase in SIL was likely the result of changes in winter weather conditions. However, there was no significant change in average wintertime precipitation and temperature during the study period. Instead, mean monthly temperature values increased during the early winter months (i.e., November and December), whereas there was a significant decrease in precipitation in March. We also assessed how daily variation in meteorological variables influenced SIL and found that about 50% of the variation in SIL was correlated to the amount of precipitation that occurred when temperatures were lower than ?3 °C and to the proportion of days with mean daily temperatures higher than +0.4 °C. Taken together, this study highlights the importance of understanding the appropriate time scale and thresholds in which weather conditions influence SIL in order to better predict how projected climate change will influence snow accumulation and hydrology in boreal forests in the future.  相似文献   

17.
A. Iroum  A. Huber 《水文研究》2002,16(12):2347-2361
For a 26 month period, between 1 February 1998 and 31 March 2000, total precipitation, throughfall, stemflow and interception losses were measured for two different forest covers, one a managed broadleaved native forest and the other a Pseudotsuga menziesii (Mirb.) Franco (Douglas fir) plantation. Regressions between throughfall and stemflow and total precipitation (P) for individual storms and forest covers were computed and also for values of interception losses (expressed as a percentage of P) and P for each forest cover and period of development of the forest vegetation. Results obtained demonstrate the importance of forest canopies in rainfall distribution processes and for the availability of water resources. Also, that these forests generate particular interception patterns not strongly associated with the variation in crown cover throughout the year. These patterns are more closely related to the characteristics of rainfall and meteorological conditions during the growing and dormant periods. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
Abstract

Abstract The water storage capacity (WSC) of dehiscent fruits that constitute a portion of litter on the forest floor is inadequately understood. This study has quantified the WSC of empty fruiting heads of sweetgum (Liquidambar styraciflua L.) in an effort to reduce the data gap on the WSC and interception of fruit litter. In a laboratory experiment, empty fruiting heads of sweetgum were found to have a mean WSC of 399% of their oven-dried weight. The maximum volume of water detained by fruiting heads in the field was 507 ml container-1. Interception by the empty fruiting heads is considerable, ranging from 2.6 to 218.5% of the incident gross precipitation, with a mean of 42.7%. The data indicate that the interception storage capacity of empty fruiting heads is reached at 2.5 cm depth equivalent of incident gross precipitation. A logarithmic relationship was observed between the volume of water detained by the fruiting heads and the length of time since precipitation. Results of the study suggest that fruit litter may have a considerable influence on the seasonal water balance and ecohydrology of plantations and forests with significant proportions of sweetgum.  相似文献   

19.
Recent improvements in the Utah Energy Balance (UEB) snowmelt model are focused on snow–vegetation–atmosphere interactions to understand how different types of vegetation affect snow processes in the mountains of Western USA. This work presents field work carried out in the Rocky Mountains of Northern Utah to evaluate new UEB model algorithms that represent the processes of canopy snow interception, sublimation, mass unloading and melt. Four years' continuous field observations showed generally smaller accumulations of snow beneath the forest canopies in comparison with open (sage and grass) areas, a difference that is attributed to interception and subsequent sublimation and redistribution of intercepted snow by wind, much of it into surrounding open areas. Accumulations beneath the denser forest (conifer) canopies were found to be less than the accumulation beneath the less dense forest (deciduous) canopies. The model was able to represent the accumulation of snow water equivalent in the open and beneath the deciduous forest quite well but without accounting for redistribution tended to overestimate the snow water equivalent beneath the conifer forest. Evidence of redistribution of the intercepted snow from the dense forest (i.e. conifer forest) to the adjacent area was inferred from observations. Including a simple representation of redistribution in the model gave satisfactory prediction of snow water equivalent beneath the coniferous forest. The simulated values of interception, sublimation and unloading were also compared with previous studies and found in agreement. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Canopy interception and its evaporation into the atmosphere during irrigation or a rainfall event are important in irrigation scheduling, but are challenging to estimate using conventional methods. This study introduces a new approach to estimate the canopy interception from measurements of actual total evapotranspiration (ET) using eddy covariance and estimation of the transpiration from measurements of sap flow. The measurements were conducted over a small‐scale sprinkler‐irrigated cotton field before, during and after sprinkler irrigation. Evaporation and sap flow dynamics during irrigation show that the total ET during irrigation increased significantly because of the evaporation of free intercepted water while transpiration was suppressed almost completely. The difference between actual ET and transpiration (sap flow) during and immediately following irrigation (post irrigation) represents the total canopy evaporation while the canopy interception capacity was calculated as the difference between actual ET and transpiration (sap flow) during drying (post irrigation) following cessation of the irrigation. The canopy evaporation of cotton canopy was calculated as 0.8 mm, and the interception capacity was estimated to be 0.31 mm of water. The measurement uncertainty in both the non‐dimensional ET and non‐dimensional sap flow was shown to be very low. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号