首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes delta development processes with particular reference to Cimanuk Delta in Indonesia. Cimanuk river delta, the most rapidly growing river delta in Indonesia, is located on the northern coast of Java Island. The delta is subject to ocean waves of less than 1 m height due to its position in the semi‐enclosed Java Sea in the Indonesian archipelago. The study has been carried out using a hydrodynamic model that accounts for sediment movement through the rivers and estuaries. As an advanced approach to management of river deltas, a numerical model, namely MIKE‐21, is used as a tool in the management of Cimanuk river delta. From calibration and verification of hydrodynamic model, it was found that the best value of bed roughness was 0·1 m. For the sediment‐transport model, the calibration parameters were adjusted to obtain the most satisfactory results of suspended sediment concentration and volume of deposition. By comparing the computed and observed data in the calibration, the best values of critical bed shear stress for deposition, critical bed shear stress for erosion and erosion coefficient were 0·05 N m?2, 0·15 N m?2, and 0·00001 kg m?2 s?1, respectively. The calibrated model was then used to analyse sensitivity of model parameters and to simulate delta development during the periods 1945–1963 and 1981–1997. It was found that the sensitive model parameters were bed shear stresses for deposition and erosion, while the important model inputs were river suspended sediment concentration, sediment characteristics and hydrodynamic. The model result showed reasonable agreement with the observed data. As evidenced by field data, the mathematical model proves that the Cimanuk river delta is a river‐dominated delta because of its protrusion pattern and very high sediment loads from the Cimanuk river. It was concluded that 86% of sediment load from the Cimanuk river was deposited in the Cimanuk delta. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
Sediment transport in ice-covered channels   总被引:1,自引:0,他引:1  
The existence of ice cover has important effects on sediment transport and channel morphology for rivers in areas with an annual occurrence of an ice season. The interaction of sediment transport and s...  相似文献   

3.
The HIRHAM regional climate model suggests an increase in temperature in Denmark of about 3 °C and an increase in mean annual precipitation of 6–7%, with a larger increase during winter and a decrease during summer between a control period 1961–1990 and scenario period 2071–2100. This change of climate will affect the suspended sediment transport in rivers, directly through erosion processes and increased river discharges and indirectly through changes in land use and land cover. Climate‐change‐induced changes in suspended sediment transport are modelled for five scenarios on the basis of modelled changes in land use/land cover for two Danish river catchments: the alluvial River Ansager and the non‐alluvial River Odense. Mean annual suspended sediment transport is modelled to increase by 17% in the alluvial river and by 27% in the non‐alluvial for steady‐state scenarios. Increases by about 9% in the alluvial river and 24% in the non‐alluvial river were determined for scenarios incorporating a prolonged growing season for catchment vegetation. Shortening of the growing season is found to have little influence on mean annual sediment transport. Mean monthly changes in suspended sediment transport between ? 26% and + 68% are found for comparable suspended sediment transport scenarios between the control and the scenario periods. The suspended sediment transport increases during winter months as a result of the increase in river discharge caused by the increase in precipitation, and decreases during summer and early autumn months. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
The lake levels in Lake Michigan‐Huron have recently fallen to near historical lows, as has the elevation difference between Lake Michigan‐Huron compared to Lake Erie. This decline in lake levels has the potential to cause detrimental impacts on the lake ecosystems, together with social and economic impacts on communities in the entire Great Lakes region. Results from past work suggest that morphological changes in the St Clair River, which is the only natural outlet for Lake Michigan‐Huron, could be an appreciable factor in the recent trends of lake level decline. A key research question is whether bed erosion within the river has caused an increase in water conveyance, therefore, contributed to the falling lake level. In this paper, a numerical modeling approach with field data is used to investigate the possibility of sediment movement in the St Clair River and assess the likelihood of morphological change under the current flow regime. A two‐dimensional numerical model was used to study flow structure, bed shear stress, and sediment mobility/armoring over a range of flow discharges. Boundary conditions for the numerical model were provided by detailed field measurements that included high‐resolution bathymetry and three‐dimensional flow velocities. The results indicate that, without considering other effects, under the current range of flow conditions, the shear stresses produced by the river flow are too low to transport most of the coarse bed sediment within the reach and are too low to cause substantial bed erosion or bed scour. However, the detailed maps of the bed show mobile bedforms in the upper St Clair River that are indicative of sediment transport. Relatively high shear stresses near a constriction at the upstream end of the river and at channel bends could cause local scour and deposition. Ship‐induced propeller wake erosion also is a likely cause of sediment movement in the entire reach. Other factors that may promote sediment movement, such as ice cover and dredging in the lower river, require further investigation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Physics‐based models have been increasingly developed in recent years and applied to simulate the braiding process and evolution of channel units in braided rivers. However, limited attention is given to lowland braided rivers where the transport of suspended sediment plays a dominant role. In the present study, a numerical model based on the basic physics laws of hydrodynamics and sediment transport is used to simulate the evolution process of a braided river dominated by suspended load transport. The model employs a fractional method to simulate the transport of graded sediments and uses a multiple‐bed‐layer approach to represent the sediment sorting process. An idealized braided river has been produced, with the hydrodynamic, sediment transport and morphological processes being analysed. In particular, the formation process of local pool–bar units in the predicted river has been investigated. A sensitivity analysis has also been undertaken to investigate the effects of grid resolution and an upstream perturbation on the model prediction. A variety of methods are applied to analyse the geometrical and topographical properties of the modelled river. Self‐organizing characteristics related to river geometry and topography are analysed by state‐space plots, which indicate a close relationship with the periodical erosion and deposition cycles of braiding. Cross‐sectional topography and slope frequency display similar geometries to natural rivers. Scaling characteristics are found by correlation analysis of bar parameters. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
In most aquatic ecosystems, hydrodynamic conditions are a key abiotic factor determining species distribution and aquatic plant abundance. Recently, local differences in hydrodynamic conditions have been shown to be an explanatory mechanism for the patchy pattern of Callitriche platycarpa Kütz. vegetation in lowland rivers. These local conditions consists of specific areas of increased shear zones, resulting in additional plant stress and erosion of the sediment on the one hand and local decreased shear zones resulting in zones favourable to plant growth and sedimentation of bed material on the other hand. In this study, the process of this spatial plant-flow-sedimentation interaction has been illustrated quantitatively by in situ flume measurements. By disturbing the incoming discharge on a single patch in such flume, we have quantified the behaviour and influence of a C. platycarpa patch under normal field conditions (base flow). Additionally, the behaviour of a C. platycarpa patch under different conditions of hydrodynamic stress has been examined in a laboratory flume. Indeed, flexible, submerged macrophytes are capable to adapt patch dimensions with changing stream velocities. At times of modest hydrodynamic stress, the species takes a position near the water surface and optimises its leaf stand, thereby maximising its photosynthetic capacity. At times of peak discharge, the patch will bend down towards the river bed and become more confined and streamlined, as such averting the stream velocity and diminishing the risk of breaking or being uprooted.In this paper, the processes of local hydrodynamic conditions on the patch and the patch’ intriguing life strategy of avoiding negative feedback was shown.  相似文献   

7.
8.
9.
The headwaters of many rivers are characterized by gullies and incised streams that generate significant volumes of sediment and degrade downstream water quality. These systems are characterized by harsh climates, ephemeral flows that do not reach bank top, and bare cohesive banks of clay and weathered bedrock. We investigated the rates and processes of bank erosion in an incised canal that has such characteristics. Detailed measurements of bank position were made over two years with a purpose‐built groundprofiler and photo‐electronic erosion pins (PEEPs). Stage height and turbidity were also monitored. The bare banks eroded at 13 ± 2 mm a−1. Erosion is controlled by subaerial processes that loosen bank material. Observations show that needle‐ice growth is important in winter and desiccation of clays predominates in summer. Flows are unable to erode firm cohesive clays from the banks, and erosion is generally limited by the availability of loosened material. This produces strong hysteresis in turbidity during events. Peak turbidity is related to the number of days with low flow between events, and not peak stage. Rehabilitation with a moderate cover of grass is able to prevent bank erosion by limiting the subaerial erosion processes. Projections of current erosion suggest that without vegetation cover the banks are unlikely to stabilize for many years. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

10.
This paper presents a field investigation on river channel storage of fine sediments in an unglaciated braided river, the Bès River, located in a mountainous region in the southern French Prealps. Braided rivers transport a very large quantity of bedload and suspended sediment load because they are generally located in the vicinity of highly erosive hillslopes. Consequently, these rivers play an important role because they supply and control the sediment load of the entire downstream fluvial network. Field measurements and aerial photograph analyses were considered together to evaluate the variability of fine sediment quantity stored in a 2·5‐km‐long river reach. This study found very large quantities of fine sediment stored in this reach: 1100 t per unit depth (1 dm). Given that this reach accounts for 17% of the braided channel surface area of the river basin, the quantities of fine sediment stored in the river network were found to be approximately 80% of the mean annual suspended sediment yields (SSYs) (66 200 t year?1), comparable to the SSYs at the flood event scale: from 1000 t to 12 000 t depending on the flood event magnitude. These results could explain the clockwise hysteretic relationships between suspended sediment concentrations and discharges for 80% of floods. This pattern is associated with the rapid availability of the fine sediments stored in the river channel. This study shows the need to focus on not only the mechanisms of fine sediment production from hillslope erosion but also the spatiotemporal dynamics of fine sediment transfer in braided rivers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
In this study,annular flume experiments were carried out,using the sediment samples collected from the lower part of the inter-tidal zone at Xiaoyangkou,Jiangsu coast,China.The Ariathurai-Partheniades equation was used to determine the bed shear stress,by evaluating variations in the suspended sediment concentration within the water column.The derived relation between the bed shear stress and suspended sediment concentration shows that,at various stages of seabed erosion, suspended sediment concentration increases rapidly when the flow velocity is increased,but the pattern of change in the bed shear stress does not follow suit.At low concentrations,bed shear stress initially increases markedly with increasing flow velocity.However,when the concentration reaches an apparently critical level around 0.55 kg m"3,the rate of change in the bed shear stress abruptly slows down,or becomes almost constant,in response to further increases in the flow velocity.Results of experiments indicate that,from a critical level onward,suspended sediment concentration has a strong influence on the bed shear stress.  相似文献   

12.
We describe additions made to a multi‐size sediment routing model enabling it to simulate width adjustment simultaneously alongside bed aggradation/incision and fining/coarsening. The model is intended for use in single thread gravel‐bed rivers over annual to decadal timescales and for reach lengths of 1–10 km. It uses a split‐channel approach with separate calculations of flow and sediment transport in the left and right sides of the channel. Bank erosion is treated as a function of excess shear stress with bank accretion occurring when shear stress falls below a second, low, threshold. A curvature function redistributes shear stress to either side of the channel. We illustrate the model through applications to a 5·6‐km reach of the upper River Wharfe in northern England. The sediment routing component with default parameter values gives excellent agreement with field data on downstream fining and down‐reach reduction in bedload flux, and the width‐adjustment components with approximate calibration to match maximum observed rates of bank shifting give plausible patterns of local change. The approach may be useful for exploring interactions between sediment delivery, river management and channel change in upland settings. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Dam removal has been demonstrated to be one of the most frequent and effective fluvial restoration actions but at most dam removals, especially of small dams, there has been little geomorphological monitoring. The results of the geomorphological monitoring implemented in two dams in the rivers Urumea and Leitzaran (northern Spain) are presented. The one from the River Urumea, originally 3.5 m high and impounding 500 m of river course, was removed instantaneously whereas that in the River Leitzaran, 12.5 m high, and impounding 1500 m of river course, is in its second phase of a four‐stage removal process. Changes in channel morphology, sediment size and mobility and river bed morphologies were assessed. The monitoring included several different techniques: topographical measurements of the channel, terrestrial laser scanner measurements of river bed and bars, sediment grain size and transport; all of them repeated in four (May, August, November 2011 and May 2012) and five (July and September 2013, April and August 2014 and June 2015) fieldwork campaigns in the River Urumea and River Leitzaran, respectively. Geomorphic responses of both dam removals are presented, and compared. Morphological channel adjustments occurred mainly shortly after dam removals, but with differences among the one removed instantaneously, that was immediate, whereas that conducted by stages took longer. Degradational processes were observed upstream of both dams (up to 1.2 m and 4 m in the River Urumea and River Leitzaran, respectively), but also aggradational processes (pool filling), upstream of Inturia Dam (2.85 m at least). Less evident aggradational processes were observed downstream of the dams (up to 0.37 m and 0.50 m in the River Urumea and River Leitzaran, respectively). Flood events, especially a 100 year flood registered during the monitoring period of Mendaraz Dam removal, reactivated geomorphological processes as incision and bank erosion, whereas longitudinal profile recovery, grain‐size sorting and upstream erosion took longer. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Anthropogenic climate change is expected to change the discharge and sediment transport regime of river systems. Because rivers adjust their channels to accommodate their typical inputs of water and sediment, changes in these variables can potentially alter river morphology. In this study, a hierarchical modeling approach was developed and applied to examine potential changes in reach‐averaged bedload transport and spatial patterns of erosion and deposition for three snowmelt‐dominated gravel‐bed rivers in the interior Pacific Northwest. The modeling hierarchy was based on discharge and suspended‐sediment load from a basin‐scale hydrologic model driven by a range of downscaled climate‐change scenarios. In the field, channel morphology and sediment grain‐size data for all three rivers were collected. Changes in reach‐averaged bedload transport were estimated using the Bedload Assessment of Gravel‐bedded Streams (BAGS) software, and the Cellular Automaton Evolutionary Slope and River (CAESAR) model was used to simulate the spatial pattern of erosion and deposition within each reach to infer potential changes in channel geometry and planform. The duration of critical discharge was found to control bedload transport. Changes in channel geometry were simulated for the two higher‐energy river reaches, but no significant morphological changes were found for a lower‐energy reach with steep, cohesive banks. Changes in sediment transport and river morphology resulting from climate change could affect the management of river systems for human and ecological uses. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Accurately measuring sediment flux in large rivers remains a challenge due to the spatial and temporal cross‐sectional variability of suspended sediment concentrations in conjunction with sampling procedures that fail to accurately quantify these differences. This study presents a field campaign methodology that can be used to improve the measurement of suspended sediment concentrations in the Amazon River or similarly large rivers. The turbidity signal and Rouse model are together used in this study to define the spatial distribution of suspended sediment concentrations in a river cross‐section, taking into account the different size fractions of the sediment. With this methodology, suspended sediment fluxes corresponding to each sediment class are defined with less uncertainty than with manual samples. This paper presents an application of this methodology during a field campaign at different gauging stations along a 3,000‐km stretch of the Solimões/Amazon River during low water and flood periods. Vertical concentration profiles and Rouse model applications for distinctive sediment sizes are explored to determine concentration gradients throughout a cross‐section of the river. The results show that coupling both turbidity technology and the Rouse model may improve our understanding of the spatial distribution of different sediments fractions sizes in the Solimões/Amazon River. These data are very useful in defining a pertinent monitoring strategy for suspended sediment concentrations in the challenging context of large rivers.  相似文献   

16.
Cohesive sediment dynamics in mountainous rivers is poorly understood even though these rivers are the main providers of fine particles to the oceans. Complex interactions exist between the coarse matrix of cobble bed rivers and fine sediments. Given that fine sediment load in such environments can be very high due to intense natural rainfall or snowmelt events and to man‐induced reservoir or dam flushing, a better understanding of the deposition and sedimentation processes is needed in order to reduce ecohydrological downstream impacts. We tested a field‐based approach on the Arc and Isère alpine rivers combining measurements of erosion and settling properties of river bed deposits before and after a dam flushing, with the U‐GEMS (Gust Erosion Microcosm System) and SCAF (System Characterizing Aggregates and Flocs), respectively. These measurements highlight that critical shears, rates of erosion, settling velocities and propensity of particles to flocculate are highly variable in time and space. This is reflective of the heterogeneity of the hydrodynamic conditions during particle settling, local bed roughness, and nature and size of particles. Generally the deposits were found to be stable relative to what is measured in lowland rivers. It was, however, not possible to make a conclusive assessment of the extent to which the dynamics of deposits after reservoir flushing were different from those settled after natural events. The absence of any relationships between erosion and deposition variables, making it impossible to predict one from another, underlined the need to measure all of them to have a full assessment of the fine sediment dynamics and to obtain representative input variables for numerical models. While the SCAF was found to be effective, an alternative to the U‐GEMS device will have to be found for the erodibility assessment in cobble bed rivers, in order to make more rapid measurements at higher shears. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

17.
Tides are often considered to be the dominant hydrodynamic process within mesotidal estuaries although waves can also have a large influence on intertidal erosion rates. Here, we use a combination of hydrodynamic measurements and sediment deposition records to determine the conditions under which observed waves are ‘morphologically significant’, in which case they influence tidal and suspended sediment flux asymmetry and subsequently infilling over geomorphological timescales. Morphological significant conditions were evaluated using data from contrasting arms in a dendritic mesotidal estuary, in which the orientation of the arms relative to the prevailing wind results in a marked difference in wave conditions, deposition rates and morphology. By defining the morphological significance of waves as a product of the magnitude of bed shear stress and frequency of occurrence, even small (but frequently occurring) winds are shown to be capable of generating waves that are morphologically significant given sufficient fetch. In the arm in which fetch length is restricted, only stronger but rare storm events can influence sediment flux and therefore tides are more morphologically significant over longer timescales. Water depth within this mesotidal estuary is shown to be a critical parameter in controlling morphological significance; the rapid attenuation of short period waves with depth results in contrasting patterns of erosion occurring during neaps and accretion during springs. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
Ice streams are integral components of an ice sheet's mass balance and directly impact on sea level. Their flow is governed by processes at the ice‐bed interface which create landforms that, in turn, modulate ice stream dynamics through their influence on bed topography and basal shear stresses. Thus, ice stream geomorphology is critical to understanding and modelling ice streams and ice sheet dynamics. This paper reviews developments in our understanding of ice stream geomorphology from a historical perspective, with a focus on the extent to which studies of modern and palaeo‐ice streams have converged to take us from a position of near‐complete ignorance to a detailed understanding of their bed morphology. During the 1970s and 1980s, our knowledge was limited and largely gleaned from geophysical investigations of modern ice stream beds in Antarctica. Very few palaeo‐ice streams had been identified with any confidence. During the 1990s, however, glacial geomorphologists began to recognise their distinctive geomorphology, which included distinct patterns of highly elongated mega‐scale glacial lineations, ice stream shear margin moraines, and major sedimentary depocentres. However, studying relict features could say little about the time‐scales over which this geomorphology evolved and under what glaciological conditions. This began to be addressed in the early 2000s, through continued efforts to scrutinise modern ice stream beds at higher resolution, but our current understanding of how landforms relate to processes remains subject to large uncertainties, particularly in relation to the mechanisms and time‐scales of sediment erosion, transport and deposition, and how these lead to the growth and decay of subglacial bedforms. This represents the next key challenge and will require even closer cooperation between glaciology, glacial geomorphology, sedimentology, and numerical modelling, together with more sophisticated methods to quantify and analyse the anticipated growth of geomorphological data from beneath active ice streams. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

19.
Sediment transport models require appropriate representation of near-bed processes. We aim here to explore the parameterizations of bed shear stress, bed load transport rate and near-bed sediment erosion rate under the sheet flow regime. To that end, we employ a one-dimensional two-phase sheet flow model which is able to resolve the intrawave boundary layer and sediment dynamics at a length scale on the order of the sediment grain. We have conducted 79 numerical simulations to cover a range of collinear wave and current conditions and sediment diameters in the range 210–460 μmμm. The numerical results confirm that the intrawave bed shear stress leads the free stream velocity, and we assess an explicit expression relating the phase lead to the maximum velocity, wave period and bed roughness. The numerical sheet flow model is also used to provide estimates for the bed load transport rate and to inspect the near-bed sediment erosion. A common bed load transport rate formulation and two typical reference concentration approaches are assessed. A dependence of the bed load transport rate on the sediment grain diameter is observed and parameterized. Finally, the intrawave near-bed vertical sediment flux is further investigated and related to the time derivative of the bed shear stress.  相似文献   

20.
Ditch cleaning in drained peatland forests increases sediment loads and degrades water quality in headwater streams and lakes. A better understanding of the processes controlling ditch erosion and sediment transport in such systems is a prerequisite for proper peatland management. In order to relate hydrological observations to key erosion processes in headwater peatlands drained for forestry, a two‐year study was conducted in a nested sub‐catchment system (treated with ditch cleaning) and at two reference sites. The treated catchment was instrumented for continuous discharge and turbidity monitoring, erosion pin measurements of changes in ditch bed and banks and time‐integrated sampling of suspended sediment (SS) composition. The results showed that ditch cleaning clearly increased transient suspended sediment concentrations (SSCs) and suspended sediment yields (SSYs), and resulted in temporary storage of loosely deposited organic sediment in the ditch network. After exhaustion of this sediment storage, subaerial processes and erosion from ditch banks became dominant in producing sediment for transport. Recorded SSCs were higher on the rising limbs of event hydrographs throughout the study period, indicating that SS transport was limited by availability of erosion‐prone sediment. A strong positive correlation (R2 = 0.84, p < 0.001) between rainfall intensity (above a threshold of 1 mm h?1) and average SSC obtained on the rising limb of hydrographs for the sub‐catchment showed that soil detachment from ditch banks by raindrop impact can directly increase SSC in runoff. At the main catchment outlet, variation in SSC was best explained (R2 = 0.67, p < 0.05) by the linear combination of initial discharge (?), peak discharge (+) and the lag time from initial to peak discharge (?). Based on these factors, ditch cleaning slightly increased peak discharges and decreased transit times in the study catchment. The implications of the results for water pollution management in peatland forests are discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号