首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Compound meander bends with multiple lobes of maximum curvature are common in actively evolving lowland rivers. Interaction among spatial patterns of mean flow, turbulence, bed morphology, bank failures and channel migration in compound bends is poorly understood. In this paper, acoustic Doppler current profiler (ADCP) measurements of the three‐dimensional (3D) flow velocities in a compound bend are examined to evaluate the influence of channel curvature and hydrologic variability on the structure of flow within the bend. Flow structure at various flow stages is related to changes in bed morphology over the study timeframe. Increases in local curvature within the upstream lobe of the bend reduce outer bank velocities at morphologically significant flows, creating a region that protects the bank from high momentum flow and high bed shear stresses. The dimensionless radius of curvature in the upstream lobe is one‐third less than that of the downstream lobe, with average bank erosion rates less than half of the erosion rates for the downstream lobe. Higher bank erosion rates within the downstream lobe correspond to the shift in a core of high velocity and bed shear stresses toward the outer bank as flow moves through the two lobes. These erosion patterns provide a mechanism for continued migration of the downstream lobe in the near future. Bed material size distributions within the bend correspond to spatial patterns of bed shear stress magnitudes, indicating that bed material sorting within the bend is governed by bed shear stress. Results suggest that patterns of flow, sediment entrainment, and planform evolution in compound meander bends are more complex than in simple meander bends. Moreover, interactions among local influences on the flow, such as woody debris, local topographic steering, and locally high curvature, tend to cause compound bends to evolve toward increasing planform complexity over time rather than stable configurations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Recent field and modeling investigations have examined the fluvial dynamics of confluent meander bends where a straight tributary channel enters a meandering river at the apex of a bend with a 90° junction angle. Past work on confluences with asymmetrical and symmetrical planforms has shown that the angle of tributary entry has a strong influence on mutual deflection of confluent flows and the spatial extent of confluence hydrodynamic and morphodynamic features. This paper examines three‐dimensional flow structure and bed morphology for incoming flows with high and low momentum‐flux ratios at two large, natural confluent meander bends that have different tributary entry angles. At the high‐angle (90°) confluent meander bend, mutual deflection of converging flows abruptly turns fluid from the lateral tributary into the downstream channel and flow in the main river is deflected away from the outer bank of the bend by a bar that extends downstream of the junction corner along the inner bank of the tributary. Two counter‐rotating helical cells inherited from upstream flow curvature flank the mixing interface, which overlies a central pool. A large influx of sediment to the confluence from a meander cutoff immediately upstream has produced substantial morphologic change during large, tributary‐dominant discharge events, resulting in displacement of the pool inward and substantial erosion of the point bar in the main channel. In contrast, flow deflection is less pronounced at the low‐angle (36°) confluent meander bend, where the converging flows are nearly parallel to one another upon entering the confluence. A large helical cell imparted from upstream flow curvature in the main river occupies most of the downstream channel for prevailing low momentum‐flux ratio conditions and a weak counter‐rotating cell forms during infrequent tributary‐dominant flow events. Bed morphology remains relatively stable and does not exhibit extensive scour that often occurs at confluences with concordant beds. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
This study reports the results of a large woody debris (LWD) removal experiment in a meander bend along a low‐energy stream in the Midwestern United States. The LWD obstacle was located in the center of the channel at the bend exit and consisted of a mature tree with an intact soil‐covered root wad and a large accumulation of logs, branches and pieces of lumber on top of and adjacent to the main tree. The results indicate that the LWD obstruction influenced 3D flow structure in this bend at all flow stages. The main effect of LWD is to dramatically decelerate flow throughout the majority of the bend, while locally accelerating flow where it passes through the narrow chute at the downstream end of the LWD obstruction. Results from the LWD removal experiment indicate that patterns of three‐dimensional flow structure in meander bends are sensitive to complete removal of LWD. After the removal of LWD from the bend, both downstream and secondary velocities increased and, though still weak, secondary flow intensified. Large, relatively stable, obstructions that span a significant portion of the channel may act as natural dams, effectively ponding water upstream of the LWD, thereby producing substantial convective deceleration of the flow. This research is the first to document three‐dimensional flow structure before and after a controlled removal of LWD from a meander bend. Studies of the type reported here represent a first step toward determining the ensemble of process interactions between LWD and bend dynamics. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
An in‐house fully three‐dimensional general‐purpose finite element model is applied to solve the hydrodynamic structure in a periodic Kinoshita‐generated meandering channel. The numerical model solves the incompressible Reynolds‐averaged Navier–Stokes equations for mass and momentum, while solving the k ? ε equations for turbulence. The free surface is described by the rigid‐lid approximation (using measured water surface data) for flat (smooth‐bed) and self‐formed (rough‐bed) conditions. The model results are compared against experimental measurements in the ‘Kinoshita channel’, where three‐dimensional flow velocities and turbulence parameters were measured. This validation was carried out for the upstream‐valley meander bend orientation under smooth (flat bed) conditions. After validation, several simulations were carried out to predict the hydrodynamics in conditions where either it was not possible to perform measurements (e.g. applicability of the laboratory acoustic instruments) and to extrapolate the model to other planform configurations. For the flat smooth‐bed case, a symmetric (no skewness) planform configuration was modeled and compared to the upstream‐skewed case. For the self‐formed rough‐bed case, prediction of the hydrodynamics during the progression of bedforms was performed. It appears that the presence of bedforms on a bend has the following effects: (i) the natural secondary flow of the bend is disrupted by the presence of the bedforms, thus depending on the location of the dune, secondary flows might differ completely from the traditional orientation; (ii) an increment on both the bed and bank shear stresses is induced, having as much as 50% more fluvial erosion, and thus a potential increment on the migration rate of the bend. Implications on sediment transport and bend morphodynamics are also discussed in the paper. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Sediment often enters rivers in the form of sediment pulses associated with landslides and debris flows. This is particularly so in gravel‐bed rivers in earthquake‐prone mountain regions, such as Southwest China. Under such circumstances, sediment pulses can rapidly change river topography and leave the river in repeated states of gradual recovery. In this paper, we implement a one‐dimensional morphodynamic model of river response to pulsed sediment supply. The model is validated using data from flume experiments, so demonstrating that it can successfully reproduce the overall morphodynamics of experimental pulses. The model is then used to explore the evolution of a gravel‐bed river subject to cycled hydrographs and repeated sediment pulses. These pulses are fed into the channel in a fixed region centered at a point halfway down the calculational domain. The pulsed sediment supply is in addition to a constant sediment supply at the upstream end. Results indicate that the river can reach a mobile‐bed equilibrium in which two regions exist within which bed elevation and surface grain size distribution vary periodically in time. One of these is at the upstream end, where a periodic discharge hydrograph and constant sediment supply are imposed, and the other is in a region about halfway down the channel where periodic sediment pulses are introduced. Outside these two regions, bed elevation and surface grain size distribution reach a mobile‐bed equilibrium that is invariant in time. The zone of fluctuation‐free mobile‐bed equilibrium upstream of the pulse region is not affected by repeated sediment pulses under the scenarios tested, but downstream of the pulse region, the channel reaches different fluctuation‐free mobile‐bed equilibriums under different sediment pulse scenarios. The vertical bed structure predicted by the simulations indicates that the cyclic variation associated with the hydrograph and sediment pulses can affect the substrate stratigraphy to some depth. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
Meander bends of many large, sand‐bed meandering rivers are partitioned by chute channels that convey permanent flow, and co‐exist with the mainstem for decades. As a first step toward understanding the dynamics and morphodynamic implications of these ‘bifurcate meander bends’, this study applied binary logistic regression analysis to determine whether it is possible to predict chute initiation based on attributes of meander bend character and dynamics. Regression models developed for the Strickland River, Papua New Guinea, the lower Paraguay River, Paraguay/Argentina, and the Beni River, Bolivia, revealed that the probability of chute initiation at a meander bend is a function of the bend extension rate (the rate at which a bend elongates in a direction perpendicular to the valley axis trend). Image analyses of all rivers and field observations from the Strickland suggest that the majority of chute channels form during scroll–slough development. Rapid extension is shown to favour chute initiation by breaking the continuity of point bar deposition and vegetation encroachment at the inner bank, resulting in widely‐spaced scrolls with intervening sloughs that are positively aligned with primary over‐bar flow. The rivers plot in order of increasing chute activity on an empirical meandering‐braided pattern continuum defined by potential specific stream power (ωpv) and bedload calibre (D50). Increasing stream power is considered to result in higher bend extension rates, with implications for chute initiation. In addition, chute stability is shown to depend on river sediment load relative to flow discharge (Qs/Q), such that while the Beni may plot in the region of highly braided rivers by virtue of a high potential specific stream power, the formation of stable chute channels is suppressed by the high sediment load. This tendency is consistent with previous experimental studies, and results in a planform that is transitional between single‐thread meandering and braided. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Experimental results of the mean flow field and turbulence characteristics for flow in a model channel bend with a mobile sand bed are presented. Acoustic Doppler velocimeters (ADVs) were used to measure the three components of instantaneous velocities at multiple cross sections in a 135° channel bend for two separate experiments at different stages of clear water scour conditions. With measurements at multiple cross sections through the bend it was possible to map the changes in both the spatial distribution of the mean velocity field and the three Reynolds shear stresses. Turbulent stresses are known to contribute to sediment transport and the three‐dimensionality inherent to flow in open channel bends presents a useful case for determining specific relations between three‐dimensional turbulence and sediment entrainment and transport. These measurements will also provide the necessary data for validating numerical simulations of turbulent flow and sediment transport. The results show that the magnitude and distribution of three‐dimensional Reynolds stresses increase through the bend, with streamwise‐cross stream and cross stream‐vertical components exceeding the maximum principal Reynolds stress through the bend. The most intriguing observation is that near‐bed maximum positive streamwise‐cross stream Reynolds stress coincides with the leading edge of the outer bank scour hole (or thalweg), while maximum cross stream‐vertical Reynolds stress (in combination with high negative streamwise‐cross stream Reynolds stress near the bend apex) coincides with the leading edge of the inner bank bar. Maximum Reynolds stress and average turbulent kinetic energy appear to be greater and more localized over the scour hole before final equilibrium scour is reached. This suggests that the turbulent energy in the flow is higher while the channel bed is developing, and both lower turbulent energy and a broader distribution of turbulent stresses near the bed are required for cessation of particle mobilization and transport. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Confluences with low discharge and momentum ratios, where narrow steep tributaries with high sediment load join a wide low‐gradient main channel that provides the main discharge, are often observed in high mountain regions such as in the upper‐Rhone river catchment in Switzerland. Few existing studies have examined the hydro‐morphodynamics of this type of river confluence while considering sediment discharge in both confluent channels. This paper presents the evolution of the bed morphology and hydrodynamics as observed in an experimental facility with a movable bed. For that purpose, one experiment was carried out in a laboratory confluence with low discharge and momentum ratios, where constant sediment rates were supplied to both flumes. During the experiment, bed topography and water surface elevations were systematically recorded. When the bed topography reached a steady state (so‐called equilibrium) and the outgoing sediment rate approximated the incoming rate, flow velocity was measured at 12 different points distributed throughout the confluence, and the grain size distribution of the bed surface was analyzed. Typical morphodynamic features of discordant confluences such as a bank‐attached bar and a flow deflection zone are identified in this study. Nevertheless, the presence of a marked scour hole in the discordant confluence and distinct flow regimes for the tributary and main channel, differ from results obtained in previous studies. Strong acceleration of the flow along the outer bank of the main channel is responsible for the scour hole. This erosion is facilitated by the sediment discharge into the confluence from the main channel which inhibits bed armoring in this region. The supercritical flow regime observed in the tributary is the hydrodynamic response to the imposed sediment rate in the tributary. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
We propose a bio-morphodynamic model at bend cross-sectional scale for the lateral migration of river meander bends, where the two banks can migrate separately as a result of the mutual interaction between river flow, sediments and riparian vegetation, particularly at the interface between the permanently wet channel and the advancing floodplain. The model combines a non-linear analytical model for the morphodynamic evolution of the channel bed, a quasi-1D model to account for flow unsteadiness, and an ecological model describing riparian vegetation dynamics. Simplified closures are included to estimate the feedbacks among vegetation, hydrodynamics and sediment transport, which affect the morphology of the river-floodplain system. Model tests reveal the fundamental role of riparian plants in generating bio-morphological patterns at the advancing floodplain margin. Importantly, they provide insight into the biophysical controls of the ‘bar push’ mechanism and into its role in the lateral migration of meander bends and in the temporal variations of the active channel width.  相似文献   

10.
Channel bars and banks strongly affect the morphology of both braided and meandering rivers. Accordingly, bar formation and bank erosion processes have been greatly explored. There is, however, a lack of investigations addressing the interactions between bed and bank morphodynamics, especially over short timescales. One major implication of this gap is that the processes leading to the repeated accretion of mid‐channel bars and associated widenings remain unsolved. In a restored section of the Drau River, a gravel‐bed river in Austria, mid‐channel bars have developed in a widening channel. During mean flow conditions, the bars divert the flow towards the banks. One channel section exhibited both an actively retreating bank and an expanding mid‐channel bar, and was selected to investigate the morphodynamic processes involved in bar accretion and channel widening at the intra‐event timescale. We repeatedly surveyed riverbed and riverbank topography, monitored riverbank hydrology and mounted a time‐lapse camera for continuous observation of riverbank erosion processes during four flow events. The mid‐channel bar was shown to accrete when it was submerged during flood events, which at the subsequent flow diversion during lower discharges narrowed the branch along the bank and increased the water surface elevation upstream from the riffle, which constituted the inlet into the branch. These changes of bed topography accelerated the flow along the bank and triggered bank failures up to 20 days after the flood events. Four analysed flow events exhibited a total bar expansion from initially 126 m2 to 295 m2, while bank retreat was 6 m at the apex of the branch. The results revealed the forcing role of bar accretion in channel widening and highlighted the importance of intra‐event scale bed morphodynamics for bank erosion, which were summarized in a conceptual model of the observed bar–bank interactions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
This paper illustrates how the acoustic Doppler current profiler (ADCP) and single-beam echo-sounder (SBES) recordings can be used for the calibration of existing software to assist in generalizing the morphodynamic processes in large rivers at key sites such as bifi.trcations and confluences. Calibration of the MIKE21C numerical model by the Danish Hydraulic Institute at the 25-km-long reach of Lower Paran~ near Rosario (Argentina) is presented. This reach includes two downstream confluences and two bifurcations. The model simulates a 2-D depth-averaged flow velocity and the related sediment fluxes to predict the bifurcation morphodynamics that affects the Paranh waterway. To investigate the river channel bathymetry, roughness, flow discharge allocation at bifurcations, suspended sediment concentration and grain size distributions, several instruments were used. These instruments included two ADCPs by Teledyne RDI working at frequencies of 600 and 1,200 kHz, a Sontek ADCP working at a frequency of 1,000 kHz and a SBES. The method to assess suspended sediment concentration and grain size distributions has been previously described. This paper focuses primarily on investigating dune morphology (by means of SBES depth measurements) and friction velocity (by means of ADCP profiling) to determine the river channel bed-roughness. The 2-D model results agree with observed values of bed-roughness, flow velocity and suspended sediment concentration distributions at the investigated sections, known data of water slope and total load of bed sediment are in good agreement with model results.  相似文献   

12.
Large‐scale flow structures (LSFS) in the streamwise direction are important features of gravel‐bed river flows, because they may contribute to sediment transport and gas exchange. In the present study, these structures are detected using Huang's empirical mode decomposition and reconstructed with phase‐averaging techniques based on a Hilbert transform of the velocity signal. The analysis is based on the fluctuating component of 15 quasi‐instantaneous velocity profiles measured with a three‐dimensional (3D) acoustic Doppler velocity profiler (ADVP) in an armoured gravel‐bed river with a low relative submergence of 2.9 (ratio between flow depth and bed grain diameter). LSFS were identified in most of the measured profiles and consistently showed similar features. We were able to characterize the geometry of these large‐scale coherent structures: the front has a vertical linear shift in the time domain and a vertical profile corresponding to a first quarter moon with the apex situated at z/h ≈ 0.4. In the vertical, the front scales with flow depth h, and in the streamwise direction, LSFS scale with three to seven times the mean flow depth. On the bed, the effect of LSFS is a periodic non‐linear variation of the friction velocity on average between 0.90 and 1.10 times the mean value. A model for the friction velocity cycle resulting from LSFS oscillation is presented. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
We present herein clear field evidence for the persistence of a coarse surface layer in a gravel‐bed river during flows capable of transporting all grain sizes present on the channel bed. Detailed field measurements of channel topography and bed surface grain size were made in a gravel‐bed reach of the Colorado River prior to a flood in 2003. Runoff produced during the 2003 snowmelt was far above average, resulting in a sustained period of high flow with a peak discharge of 27 m3/s (170% of normal peak flow); all available grain sizes within the study reach were mobilized in this period of time. During the 2003 peak flow, the river avulsed immediately upstream of the study reach, thereby abandoning approximately one half kilometer of the former channel. The abandonment was rapid (probably within a few hours), leaving the bed texture essentially frozen in place at the peak of the flood. All locations sampled prior to the flood were resampled following the stream abandonment. In response to the high flow, the surface median grain size (D50s) coarsened slightly in the outer part of the bend while remaining nearly constant along the inner part of the bend, resulting in an overall increase from 18 to 21 mm for the study reach. Thus, the coarse bed surface texture persisted despite shear stresses throughout the bend that were well above the critical entrainment value. This may be explained because the response of the bed texture to increases in flow strength depends primarily upon the continued availability of the various grain size percentiles in the supply, which in this case was essentially unlimited for all sizes present in the channel. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
There is a paucity of data and insight in the mechanisms of, and controls on flow separation and recirculation at natural sharply‐curved river bends. Herein we report on successful laboratory experiments that elucidate flow structure in one constant‐width bend and a second bend with an outer‐bank widening. The experiments were performed with both a flat immobile gravel bed and mobile sand bed with dominant bedload sediment transport. In the constant‐width bend with immobile bed, a zone of mainly horizontal flow separation (vertical rotational axis) formed at the inner bank that did not contain detectable flow recirculation, and an outer‐bank cell of secondary flow with streamwise oriented rotational axis. Surprisingly, the bend with widening at the outer bank and immobile bed did not lead to a transverse expansion of the flow. Rather, flow in the outer‐bank widening weakly recirculated around a vertical axis and hardly interacted with the inner part of the bend, which behaved as a constant‐width bend. In the mobile bed experiment, downstream of the bend apex a pronounced depositional bar developed at the inside of the bend and pronounced scour occurred at the outside. Moreover the deformed bed promoted flow separation over the bar, including return currents. In the constant‐width bend, the topographic steering impeded the generation of an outer‐bank cell of secondary flow. In the bend with outer‐bank widening, the topographic steering induced an outward expansion of the flow, whereby the major part of the discharge was conveyed in the central part of the widening section. Flow in the outer‐bank widening was highly three dimensional and included return currents near the bottom. In conclusion, the experiments elucidated three distinct processes of flow separation common in sharp bends: flow separation at the inner bank, an outer‐bank cell of secondary flow, and flow separation and recirculation in an outer‐bank widening. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Neck cutoffs and their resultant oxbow lakes are important and prominent features of riverine landscapes. Detailed field-based research focusing on the morphologic evolution of neck cutoffs is currently insufficient to fully characterize cutoff evolution. High-resolution bathymetric data were collected over 3 years for the purpose of determining channel morphology and morphologic change on three actively evolving neck cutoffs. Results indicate the following general trends in morphologic adjustment: (1) a longitudinal bar in the upstream meander limb that develops near the entrance to the abandoned bend; (2) a deep scour hole in the downstream meander limb immediately downstream of the cutoff channel; (3) erosion of the bank opposite the cutoff in the downstream meander limb; (4) a cutoff bar in the downstream meander limb at the junction corner of the cutoff channel and the downstream meander limb; and (5) perching of the exit of the abandoned bend above the cutoff channel due to channel bed incision. The results presented herein were used to develop a conceptual model that depicts the morphologic evolution of highly curving neck cutoffs. The findings of this research are combined with recent analyses of the three-dimensional flow structure through neck cutoffs to provide a mechanistic explanation for the morphodynamics of neck cutoffs. © 2019 John Wiley & Sons, Ltd.  相似文献   

16.
The effects of ice cover on flow characteristics in meandering rivers are still not completely understood. Here, we quantify the effects of ice cover on flow velocity, the vertical and spatial flow distribution, and helical flow structure. Comparison with open‐channel low flow conditions is performed. An acoustic doppler current profiler (ADCP) is used to measure flow from up to three meander bends, depending on the year, in a small sandy meandering subarctic river (Pulmanki River) during two consecutive ice‐covered winters (2014 and 2015). Under ice, flow velocities and discharges were predominantly slower than during the preceding autumn open‐channel conditions. Velocity distribution was almost opposite to theoretical expectations. Under ice, velocities reduced when entering deeper water downstream of the apex in each meander bend. When entering the next bend, velocities increased again together with the shallower depths. The surface velocities were predominantly greater than bottom/riverbed velocities during open‐channel flow. The situation was the opposite in ice‐covered conditions, and the maximum velocities occurred in the middle layers of the water columns. High‐velocity core (HVC) locations varied under ice between consecutive cross‐sections. Whereas in ice‐free conditions the HVC was located next to the inner bank at the upstream cross‐sections, the HVC moved towards the outer bank around the apex and again followed the thalweg in the downstream cross‐sections. Two stacked counter‐rotating helical flow cells occurred under ice around the apex of symmetric and asymmetric bends: next to the outer bank, top‐ and bottom‐layer flows were towards the opposite direction to the middle layer flow. In the following winter, no clear counter‐rotating helical flow cells occurred due to the shallower depths and frictional disturbance by the ice cover. Most probably the flow depth was a limiting factor for the ice‐covered helical flow circulation, similarly, the shallow depths hinder secondary flow in open‐channel conditions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
Field measurements and morphodynamic simulations were carried out along a 5‐km reach of the sandy, braided, lower Tana River in order to detect temporal and spatial variations in river bed modifications and to determine the relative importance of different magnitude discharges on river bed and braid channel evolution during a time span of one year, i.e. 2008–2009. Fulfilling these aims required testing the morphodynamic model's capability to simulate changes in the braided reach. We performed the simulations using a 2‐D morphodynamic model and different transport equations. The survey showed that more deposition than erosion occurred during 2008–2009. Continuous bed‐load transport and bed elevation changes of ±1 m, and a 70–188‐m downstream migration of the thalweg occurred. Simulation results indicated that, during low water periods, modifications occurred in both the main channel and in other braid channels. Thus, unlike some gravel‐bed rivers, the sandy lower Tana River does not behave like a single‐thread channel at low discharge. However, at higher discharge, i.e. exceeding 497 m3/s, the river channel resembled a single‐thread channel when channel banks confined the flow. Although the spring discharge peaks caused more rapid modifications than slower flows, the cumulative volumetric changes of the low water period were greater. The importance of low water period flows for channel modifications is emphasized. Although the 2‐D model requires further improvements, the results were nevertheless promising for the future use of this approach in braided rivers. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Channel curvature produces secondary currents and a transverse sloping channel bed, along which the depth increases towards the outer bank. As a result deep pools tend to form adjacent to the outer bank, promoting bank collapse. The interaction of sediment grains with the primary and secondary flow and the transverse sloping bed also causes meanders to move different grain sizes in different proportions and directions, resulting in a consistent sorting pattern. Several models have been developed to describe this process, but they all have the potential to over‐predict pool depth because they cannot account for the influence of erodible banks. In reality, bank collapse might lead to the development of a wider, shallower cross‐section and any resulting flow depth discrepancy can bias associated predictions of flow, sediment transport, and grain‐size sorting. While bed topography, sediment transport and grain sorting in bends will partly be controlled by the sedimentary characteristics of the bank materials, the magnitude of this effect has not previously been explored. This paper reports the development of a model of flow, sediment transport, grain‐size sorting, and bed topography for river bends with erodible banks. The model is tested via intercomparison of predicted and observed bed topography in one low‐energy (5·3 W m?2 specific stream power) and one high‐energy (43·4 W m?2) study reach, namely the River South Esk in Scotland and Goodwin Creek in Mississippi, respectively. Model predictions of bed topography are found to be satisfactory, at least close to the apices of bends. Finally, the model is used in sensitivity analyses that provide insight into the influence of bank erodibility on equilibrium meander morphology and associated patterns of grain‐size sorting. The sensitivity of meander response to bank cohesion is found to increase as a function of the available stream power within the two study bends. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
The 1999 jökulhlaup at Sólheimajökull was the first major flood to be routed through the proglacial system in over 600 years. This study reconstructed the flood using hydrodynamic, sediment transport and morphodynamic numerical modelling informed by field surveys, aerial photograph and digital elevation model analysis. Total modelled sediment transport was 469 800 m3 (+/‐ 20%). Maximum erosion of 8.2 m occurred along the ice margin. Modelled net landscape change was –86 400 m3 (+/‐ 40%) resulting from –275 400 m3 (+/‐ 20%) proglacial erosion and 194 400 m3 (+/‐ 20%) proglacial deposition. Peak erosion rate and peak deposition rate were 650 m3 s‐1 (+/‐ 20%) and 595 m3 s‐1 (+/‐ 20%), respectively, and coincided with peak discharge of water at 1.5 h after flood initiation. The pattern of bed elevation change during the rising limb suggested widespread activation of the bed, whereas more organisation, perhaps primitive bedform development, occurred during the falling limb. Contrary to simplistic conceptual models, deposition occurred on the rising stage and erosion occurred on the falling limb. Comparison of the morphodynamic results with a hydrodynamic simulation illustrated effects of sediment transport and bed elevation change on flow conveyance. The morphodynamic model advanced flood arrival and peak discharge timings by 100% and 19%, respectively. However, peak flow depth and peak flow velocity were not significantly affected. We suggest that morphodynamic processes not only increase flow mass and momentum but that they also introduce a feedback process whereby flood conveyance becomes more efficient via erosion of minor bed protrusions and deposition that infills or subdues minor bed hollows. A major implication of this study is that reconstructions of outburst floods that ignore sediment transport, such as those used in interpretation of long‐term hydrological record and flood risk assessments, may need considerable refinement. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Studies of the effects of hydrodynamic model dimensionality on simulated flow properties and derived quantities such as aquatic habitat quality are limited. It is important to close this knowledge gap especially now that entire river networks can be mapped at the microhabitat scale due to the advent of point‐cloud techniques. This study compares flow properties, such as depth and velocity, and aquatic habitat quality predicted from pseudo‐2D and fully 2D hydrodynamic modeling. The models are supported by high‐resolution, point‐cloud derived bathymetries, from which close‐spaced cross‐sections were extracted for the 1D modeling, of three morphologically and hydraulically different river systems. These systems range from small low‐gradient meandering pool–riffle to large steep confined plane‐bed rivers. We test the effects of 1D and 2D models on predicted hydraulic variables at cross‐sections and over the full bathymetry to quantify the differences due to model dimensionality and those from interpolation. Results show that streambed features, whose size is smaller than cross‐sectional spacing, chiefly determine the different results of 1D and 2D modeling whereas flow discharge, stream size, morphological complexity and model grid sizes have secondary effects on flow properties and habitat quality for a given species and life stage predicted from 1D and 2D modeling. In general, the differences in hydraulic variables are larger in the bathymetric than in the cross‐sectional analysis, which suggests that some errors are introduced from interpolation of spatially disaggregated simulated variables with a 1D model, instead of model dimensionality 1D or 2D. Flow property differences are larger for velocity than for water surface elevation and depth. Differences in weighted usable area (WUA) derived from 1D and 2D modeling are relatively small for low‐gradient meandering pool–riffle systems, but the differences in the spatial distribution of microhabitats can be considerable although clusters of same habitat quality are spatially comparable. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号