首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Investigations of phosphorus cycling and transport in streams lend insight into potential mechanisms of nutrient sequestration and can help mitigate human impacts. In this study, we examined the relationship between transient storage and phosphorus uptake in a cold‐water stream in western Wisconsin. Hydrological characteristics, nutrient spiralling metrics, macrophyte biomass, and geomorphological properties were quantified in 7 reaches of Spring Coulee Creek using injections of a conservative tracer alone or with added PO43?. Fraction of median travel time due to transient storage (Fmed200) was correlated with macrophyte biomass (r = .794, p = .033), and PO43? uptake velocity was correlated with Fmed200 (r = .756, p = .049). Stepwise linear regression was used to build models for transient storage and uptake velocity. Macrophyte biomass, stream bed slope, and riffle to pool ratio accounted for 99.6% of the variation in transient storage (p < .001). Transient storage, canopy cover, and slope accounted for 98.0% of the variation in uptake velocity (p = .002). This study shows that transient storage, primarily resulting from macrophyte beds, can be a significant factor regulating phosphorus uptake in stream ecosystems.  相似文献   

2.
Surface water–groundwater interaction in the hyporheic zone may enhance biogeochemical cycling in streams, and it has been hypothesized that streams exchanging more water with the hyporheic zone should have more rapid nitrate utilization. We used simultaneous conservative solute and nitrate addition tracer tests to measure transient storage (which includes hyporheic exchange and in‐stream storage) and the rate of nitrate uptake along three reaches within the Red Canyon Creek watershed, Wyoming. We calibrated a one‐dimensional transport model, incorporating transient storage (OTIS‐P), to the conservative solute breakthrough curves and used the results to determine the degree of transient storage in each reach. The nitrate uptake length was quantified from the exponential decrease in nitrate concentration with distance during the tracer tests. Nitrate uptake along the most downstream reach of Red Canyon Creek was rapid (turnover time K?1c = 32 min), compared with nitrate uptake reported in other studies (K?1c = 12 to 551 min), but other sites within the watershed showed little nitrate retention or loss. The uptake length Sw‐NO?3 for the most downstream reach was 500 m and the mass transfer coefficient Vf‐NO?3 was 6·3 m min?1. Results from 15 other nitrate‐addition tracer tests were used to create a regression model relating transient storage and measures of stream flow to nitrate uptake length. The model, which includes specific discharge and transient storage area, explains almost half the variability in nitrate uptake length (adjusted R2 = 0·44) and is most effective for comparing sites with very different stream characteristics. Although large differences in specific discharge and storage zone area explain inter‐site differences in nitrate uptake, other unmeasured variables, such as available organic carbon and microbial community composition, are likely important for predicting differences in nitrate uptake between sites with similar specific discharge rates and storage zone areas, such as when making intra‐site comparisons. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
The understanding of nutrient uptake in streams is impeded by a limited understanding of how geomorphic setting and flow regime interact with biogeochemical processing. This study investigated these interactions as they relate to transient storage and nitrate uptake in small agricultural and urban streams. Sites were selected across a gradient of channel conditions and management modifications and included three 180‐m long geomorphically distinct reaches on each of two streams in north‐central Colorado. The agricultural stream has been subject to historically variable cattle‐grazing practices, and the urban stream exhibits various levels of stabilisation and planform alteration. Reach‐scale geomorphic complexity was characterised using highly detailed surveys of channel morphology, substrate, hydraulics and habitat units. Breakthrough‐curve modelling of conservative bromide (Br?) and nonconservative nitrate (NO3?) tracer injections characterised transient storage and nitrate uptake along each reach. Longitudinal roughness and flow depth were positively associated with transient storage, which was related to nitrate uptake, thus underscoring the importance of geomorphic influences on stream biogeochemical processes. In addition, changes in geomorphic characteristics due to temporal discharge variation led to complex responses in nitrate uptake. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Urbanization negatively impacts water quality in streams by reducing stream-groundwater interactions, which can reduce a stream's capacity to naturally attenuate nitrate. Meadowbrook Creek, a first order urban stream in Syracuse, New York, has an inverse urbanization gradient, with heavily urbanized headwaters that are disconnected from the floodplain and downstream reaches that have intact riparian floodplains and connection to riparian aquifers. This system allows assessment of how stream-groundwater interactions in urban streams impact the net sources and sinks of nitrate at the reach scale. We used continuous (15-min) streamflow measurements and weekly grab samples at three gauging stations positioned longitudinally along the creek to develop continuous nitrate load estimates at the inlet and outlet of two contrasting reaches. Nitrate load estimates were determined using a USGS linear regression model, RLOADEST, and differences between loads at the inlet and outlet of contrasting reaches were used to quantify nitrate sink and source behaviour year-round. We observed a nitrate load of 1.4 × 104 kg NO3 per water year, on average, at the outlet of the urbanized reach while the nitrate load at the outlet of the downstream, connected reach was 1.0 × 104 kg NO3 per water year, on average. We found the more heavily urbanized, hydrologically-disconnected reach was a net source of nitrate regardless of season. In contrast, stream-groundwater exchange caused the hydrologically connected reach to be both a source and sink for nitrate, depending on time of year. Both reaches alter nitrate source and sink behaviour at various spatiotemporal scales. Groundwater connection in the downstream, connected reach reduces annual nitrate loads and provides more opportunities for sources and sinks of nitrate year-round than the hydrologically disconnected stream reach. Mechanisms include groundwater discharge into the stream with variable nitrate concentrations, surface-water groundwater interactions that foster denitrification, and stream load loss to surrounding near-stream aquifers. This study emphasizes how loads are important in understanding how stream-groundwater interactions impact reach scale nitrate export in urban streams.  相似文献   

5.
We use four stream segments along a wood-rich, pool–riffle mountain stream in the Southern Rockies of Colorado, USA to examine how spatial variations in wood load and variations in discharge during and after the snowmelt peak flow influence the magnitude of surface and subsurface transient storage. Segments range in complexity from a single channel with no large wood to an anabranching channel with closely spaced, channel-spanning logjams. Discharges at which transient storage was assessed range from base flow to snowmelt peak flow. To explore these relations, we used 10 geomorphic variables representing channel morphology and bed substrate, four wood-related variables representing wood load and associated backwater storage, and two measures of skewness from instream and bulk electrical conductivity breakthrough curves during tracer tests. Instream curves reflect surface and subsurface transient storage, whereas bulk curves primarily represent subsurface transient storage. Higher values of skewness indicate greater retention, and we used the values here as a metric of increased transient storage. Although limited sample size restricts the power of our results, our findings suggest that stream segments with greater instream large wood loads have more and larger pools, greater storage of fine sediment and particulate organic matter, and higher values of skew from instream conductivity. The results also suggest that the presence of instream wood, rather than changes in channel morphology associated with wood, is the most important driver of transient storage. This implies that river management designed to foster transient storage should focus on retaining instream large wood. We did not find significant correlations between geomorphic or wood-related variables and the skew estimated from bulk conductivity, which may reflect the relatively thin alluvium present in the field area and the prevalence of surface transient storage in this system.  相似文献   

6.
Trevor Klein  Laura Toran 《水文研究》2016,30(17):2948-2957
The hydrologic and biogeochemical processes that control nutrient export in urban streams are not well understood. Attenuation can occur by tributary dilution, groundwater discharge, and biological processing both in the water column and the hyporheic zone. A wastewater treatment plant on Pennypack Creek, an urban stream near Philadelphia, PA, provided high nitrate concentrations for analysis of downstream attenuation processes. Longitudinal sampling for an 8‐km reach revealed decreases in nitrate concentration of 2 mg l?1 at high flow and 4.5 mg l?1 during low flow. During high flow, δ15N‐NO3 increased from 9.5 to 10.5‰ and during low flow increased from 10.1 to 11.1‰. Two reaches were sampled at fine spatial intervals (approximately 200 m) to better identify attenuation processes. Mixing analysis indicated that groundwater discharge and biological processing both control nitrate concentration and isotope signatures. However, fine‐scaled sampling did not reveal spatially discrete zones; instead, these processes were occurring simultaneously. While both processes attenuate nitrate, they have opposite isotope signatures, which may have muted changes in δ15N‐NO3. At high flow, a decrease in Cl/NO3 ratios helped distinguish groundwater discharge occurring along both finely sampled reaches. At low flow, biological processing seemed to be occurring more extensively, but the δ15N‐NO3 signature was not consistent with either a single process or a sequential combination of groundwater dilution and biological nitrate attenuation. The collocation of processes makes it more difficult to assess biological processing hot spots and predict how urbanization and subsequent stream restoration influence nitrate attenuation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Twenty conservative tracer injections were carried out in the same reach of a small woodland stream in order to determine how variation in discharge and leaf accumulation affect stream hydraulic parameters. The injections were made at various discharge rates ranging from 2·6 to 40 l/s. Five of the injections were made during late autumn, when there were large accumulations of leaves in the stream. Estimates of hydraulic parameters were made by fitting a transient storage solute transport model to conservative tracer concentration profiles. Velocity increased almost linearly with increasing discharge, indicating a decline in the Darcy friction factor. Dispersion also increased with increasing discharge, especially for the lower flow injections. The relative size of the storage zone was small (∽0·1). There was no definable relationship between discharge and the relative storage zone size, but the rates of exchange between the storage zone and the main channel increased markedly with increasing discharge. The presence of large accumulations of leaves had a clear effect on the hydraulic characteristics of the stream, producing much higher friction factors, larger storage zone sizes and lower velocity than would have been predicted by discharge alone. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

8.
Various physical and biological properties affect solute transport patterns in streams. We measured hydraulic characteristics of Payne Creek, a low‐gradient upper Coastal Plain stream, using tracer experiments and parameter estimation with OTIS‐P (one‐dimensional transport with inflow and storage with parameter optimization). The primary objective of this study was to estimate the effects of varying discharge, season, and litter accumulation on hydraulic parameters. Channel area A ranged from 0·081 to 0·371 m2 and transient storage area As ranged from 0·027 to 0·111 m2. Dispersion D ranged from 1·5 to 11·1 m2 min−1 and exchange coefficient α ranged from 0·009 to 0·038 min−1. Channel area and dispersion were positively correlated to discharge Q, whereas storage area and exchange coefficient were not. Relative storage size As/A ranged from 0·17 to 0·59, and was higher during fall than other seasons under a similar Q. The fraction of median travel time due to transient storage ranged from 8·8 to 34·5% and was significantly correlated with Q through a negative power function. Both metrics indicated that transient storage was a significant component affecting solute transport in Payne Creek, especially during the fall. Comparison between the measured channel area Ac and A suggested that surface storage was dominant in Payne Creek. During fall, accumulation of leaf litter resulted in larger A and As and lower velocity and D than during other seasons with similar discharge. Seasonal changes in discharge and organic matter accumulation, and dynamic channel morphology affected the magnitude of transient storage and overall hydraulic characteristics of Payne Creek. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
Urban stream features can be used to promote nutrient retention; however, their interactions with different hydrological regimes impact nutrient cycling, decrease their retention capacity, and inhibit stream ecosystem functioning. This study analysed the temporal and spatial dynamics of the uptake of three nutrients (nitrate, ammonium, and phosphorus) in an urban drainage stream during high flows. In particular, we studied variations in net uptake along the right margin (with native vegetation and a roots mat) comparatively to the left margin (a non‐rooted grassy bank). Applying the spiralling approach within each subreach on either side, we determined nutrient subreach (sr) retention metrics: uptake rate coefficients , mass transfer rates , and areal uptake rates . Our results showed nitrate (NO3) and ammonium (NH4) net uptakes on the right side were higher and more frequent along subreaches where the root mat was more abundant ( [μg m?2 s?1] = 22.80 ± 1.13 for NO3 and 10.50 ± 0.81 for NH4), whereas on the left side both nutrients showed patchy and inconsistent net uptake patterns despite the homogeneous grass distribution. Net uptake for filtered reactive phosphorus (FRP) was not observed on either side at any flow rate. The impact of hydrological factors such as discharge, travel time, water depth, and concentration, on uptake metrics was studied. Despite increases in travel time as the flow decreased, there was a reduction in net uptake rates, and , on either side. This was attributed to a reduction in water level with declining flows, which decreased hydrologic connectivity with the stream banks, combined with a decrease in water velocity and a reduction in nutrient concentrations. We concluded the rooted bank acted as an effective retention area by systematically promoting net uptake resulting in a twofold increased dissolved inorganic nitrogen (DIN) retention relative to the non‐rooted side where net uptake was spatially localized and highly dynamic. Overall, this work emphasized the importance of strategically sampling close to biologically active surfaces to more accurately determine areas where gross uptake surpasses release process.  相似文献   

10.
Watershed structure influences the timing, magnitude, and spatial location of water and solute entry to stream networks. In turn, stream reach transport velocities and stream network geometry (travel distances) further influence the timing of export from watersheds. Here, we examine how watershed and stream network organization can affect travel times of water from delivery to the stream network to arrival at the watershed outlet. We analysed watershed structure and network geometry and quantified the relationship between stream discharge and solute velocity across six study watersheds (11.4 to 62.8 km2) located in the Sawtooth Mountains of central Idaho, USA. Based on these analyses, we developed stream network travel time functions for each watershed. We found that watershed structure, stream network geometry, and the variable magnitude of inputs across the network can have a pronounced affect on water travel distances and velocities within a stream network. Accordingly, a sample taken at the watershed outlet is composed of water and solutes sourced from across the watershed that experienced a range of travel times in the stream network. We suggest that understanding and quantifying stream network travel time distributions are valuable for deconvolving signals observed at watershed outlets into their spatial and temporal sources, and separating terrestrial and in‐channel hydrological, biogeochemical, and ecological influences on in‐stream observations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
The stream tracer technique and transient storage models (TSMs) have become common tools in stream solute and hyporheic exchange studies. The expense and logistics associated with water sample collection and analysis often results in limited temporal resolution of stream tracer breakthrough curves (BTCs). Samples are often collected without a priori or real‐time knowledge of BTC information, which can result in poor sample coverage of the critical shoulder (initial rise) and tail (post‐steady state fall) of the BTC. We illustrate the use of specific conductance (SC) measurements as a surrogate for conservative dissolved tracer (Br) samples. The advantages of collecting SC data for use in the TSM are (1) cost, (2) ease of data collection, and (3) well‐defined breakthrough curves, which strengthen TSM parameter optimization. This method is based on developing an ion concentration (IC)–SC relationship from limited discrete tracer solute samples. SC data can be collected on a more frequent basis at no additional analysis cost. TSM simulations can then be run for the conservative tracer data derived from SC breakthrough curves and the IC–SC relationship. This technique was tested in a 120 m reach of stream (2–60 m subreaches) in the Maimai M15 catchment, New Zealand during baseflow recession. Dissolved LiBr was injected for 12·92 h, with Br as the conservative ion of interest. Four TSM simulations using the OTIS model are optimized using UCODE to fit (1) Br data derived from the Br–SC relationship (n = 1307 observations at each of two stream sampling sites), (2) all stream Br data collected (n = 58 in upper reach, n = 60 in lower reach), (3) half of the stream Br data collected, and (4) 20 stream Br samples from each site. No two simulations resulted in the same optimal parameter values. Results suggest that the greater the frequency of observations, the greater the confidence in estimated parameter values. Br–SC simulations resulted in the best overall model fits to the data, with the lowest calculated error variance of 6·37, narrowest 95% parameter estimate confidence intervals, and the highest correlation coefficient of 0·99 942, among the four simulations. This is largely due to the improved representation of the shoulder and tail of the BTC with this method. The IC–SC correlation method is robust in situations in which (1) changes in background SC data can be accounted for, and (2) the data used to define the IC–SC relationship are representative of the range of data collected. This method provides more efficient sample analysis, improved data resolution, and improved model results compared to the alternative stream tracer data gathering methods presented. Additionally, we describe a new parameterization of the cross‐sectional area of the stream during flow recession, as a function of discharge, based on a stream hydraulic geometry relationship. This variant of the OTIS model provides a more realistic representation of stream dynamics during unsteady discharge. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
Hyporheic exchange increases the potential for solute retention in streams by slowing downstream transport and increasing solute contact with the substrate. Hyporheic exchange may be a major mechanism to remove nutrients in semi‐arid watersheds, where livestock have damaged stream riparian zones and contributed nutrients to stream channels. Debris dams, such as beaver dams and anthropogenic log dams, may increase hyporheic interactions by slowing stream water velocity, increasing flow complexity and diverting water to the subsurface. Here, we report the results of chloride tracer injection experiments done to evaluate hyporheic interaction along a 320 m reach of Red Canyon Creek, a second order stream in the semi‐arid Wind River Range of Wyoming. The study site is part of a rangeland watershed managed by The Nature Conservancy of Wyoming, and used as a hydrologic field site by the University of Missouri Branson Geologic Field Station. The creek reach we investigated has debris dams and tight meanders that hypothetically should enhance hyporheic interaction. Breakthrough curves of chloride measured during the field experiment were modelled with OTIS‐P, a one‐dimensional, surface‐water, solute‐transport model from which we extracted the storage exchange rate α and cross‐sectional area of the storage zone As for hyporheic exchange. Along gaining reaches of the stream reach, short‐term hyporheic interactions associated with debris dams were comparable to those associated with severe meanders. In contrast, along the non‐gaining reach, stream water was diverted to the subsurface by debris dams and captured by large‐scale near‐stream flow paths. Overall, hyporheic exchange rates along Red Canyon Creek during snowmelt recession equal or exceed exchange rates observed during baseflow at other streams. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
Models for contaminant transport in streams commonly idealize transient storage as a well mixed but immobile system. These transient storage models capture rapid (near‐stream) hyporheic storage and transport, but do not account for large‐scale, stage‐dependent interaction with the alluvial aquifer. The objective of this research was to document transient storage of phosphorus (P) in coarse gravel alluvium potentially influenced by large‐scale, stage‐dependent preferential flow pathways (PFPs). Long‐term monitoring was performed at floodplain sites adjacent to the Barren Fork Creek and Honey Creek in northeastern Oklahoma. Based on results from subsurface electrical resistivity mapping which was correlated to hydraulic conductivity data, observation wells were installed both in higher hydraulic conductivity and lower hydraulic conductivity subsoils. Water levels in the wells were monitored over time, and water samples were obtained from the observation wells and the stream to document P concentrations at multiple times during high flow events. Contour plots indicating direction of flow were developed using water table elevation data. Contour plots of total P concentrations showed the alluvial aquifer acting as a transient storage zone, with P‐laden stream water heterogeneously entering the aquifer during the passage of a storm pulse, and subsequently re‐entering the stream during baseflow conditions. Some groundwater in the alluvial floodplains had total P concentrations that mirrored the streams' total P concentrations. A detailed analysis of P forms indicated that particulate P (i.e. P attached to particulates greater than 0·45 µm) was a significant portion of the P transport. This research suggests the need for more controlled studies on stage‐dependent transient storage in alluvial systems. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Hydrological models have long been used to study the interactions between land, surface and groundwater systems, and to predict and manage water quantity and quality. The soil and water assessment tool (SWAT), a widely used hydrological model, can simulate various ecohydrological processes on land and subsequently route the water quality constituents through surface and subsurface waters. So far, in-stream solute transport algorithms of the SWAT model have only been minimally revised, even though it has been acknowledged that an improvement of in-stream process representation can contribute to better model performance with respect to water quality. In this study, we aim to incorporate a new and improved solute transport model into the SWAT model framework. The new process-based model was developed using in-stream process equations from two well established models—the One-dimensional Transport with Inflow and Storage model and the Enhanced Stream Water Quality Model. The modified SWAT model (Mir-SWAT) was tested for water quality predictions in a study watershed in Germany. Compared to the standard SWAT model, Mir-SWAT improved dissolved oxygen (DO) predictions by removing extreme low values of DO (<6 mg/L) simulated by SWAT. Phosphate concentration peaks were reduced during high flows and a better match of daily predicted and measured values was attained using the Mir-SWAT model (R2 = 0.17, NSE = −0.65, RSR = 1.29 with SWAT; R2 = 0.28, NSE = −0.04, RSR = 1.02 with Mir-SWAT). In addition, Mir-SWAT performed better than the SWAT model in terms of Chlorophyll-a content particularly during winter months, improving the NSE and RSR for monthly average Chl-a by 74 and 42%, respectively. With the new model improvements, we aim to increase confidence in the stream solute transport component of the model, improve the understanding of nutrient dynamics in the stream, and to extend the applicability of SWAT for reach-scale analysis and management.  相似文献   

15.
Cemeteries are understudied integral components to urban watersheds, which provide ecosystem services but can also export nutrients, trace elements, and other contaminants to nearby water bodies. In this study, we focus on Meadowbrook Creek, an urban headwater stream in Syracuse, New York (USA), which has shown significant nitrate contributions from a local cemetery. We collected biweekly surface water samples over the course of 1 year from 2022 to 2023 for analysis of major and trace elemental concentrations including Na, Ca, Mg, K, F, Cl, sulfate, and nitrate. Here, we aim to assess the impact of various human infrastructures on urban stream water quality with a particular focus on the cemetery and nitrate. A comparison between the new dataset in this study and previously reported water chemistry data in Meadowbrook in 2012 suggests a decade-long impact of road salting and the cemetery on water quality particularly with respect to Na, Cl, and nitrate. Sulfate, Mg, Ca, and K are likely mainly geogenic. Stable nitrogen isotope data, the usage of concrete or steel vaults in the cemetery in the past 50 years, and the lack of correlation between nitrate and fluoride concentrations in stream water argue against burial decay products being a major source of nitrate to the stream. Instead, other nitrate sources that exist in the cemetery such as, fertilizer, decaying plant material, and wastewater, are more viable dominant nitrate sources. In addition, nitrate loading calculations indicate that the groundwater-connected reach, including the cemetery, acts as an annual net sink for nitrate despite the seasonally varying sink-source patterns.  相似文献   

16.
The knowledge on particle deposition in streams is mainly based on investigations in mountain streams. No data exist from low‐gradient sand‐bed streams that largely differ in the morphological and hydraulic factors proposed to affect deposition. To identify physical control on particle deposition in low‐gradient streams, we assessed deposition of very fine and ultra fine organic particulate matter in 18 sand‐bed stream reaches. We added particles derived from lake sediment and assessed the mean transport distance SP and the deposition velocity vdep. Additionally, reach hydraulics were estimated by injections of a conservative solute tracer (NaCl). Among the low‐gradient streams, particle deposition kinetics were variable but similar to deposition in mountain streams. SP was solely related to the flow velocity. This relation was confirmed when comprising published data on deposition of fine organic particles. An association between particle deposition and transient storage factors was insignificant. We found significance of the transient storage to SP only for repeated measures within a single reach, when flow velocity and benthic conditions were nearly constant. Measured vdep/vfall ratios were much larger than unity in most reaches. Evidence from this relation suggests that the vertical transport of very fine and ultra fine organic particulate matter through the water column was caused mainly by vertical mixing. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
Stream‐tracer injections were used to examine the effect of channel morphology and changing stream discharge on hyporheic exchange flows. Direct observations were made from well networks to follow tracer movement through the hyporheic zone. The reach‐integrated influence of hyporheic exchange was evaluated using the transient storage model (TSM) OTIS‐P. Transient storage modelling results were compared with direct observations to evaluate the reliability of the TSM. Results from the tracer injection in the bedrock reach supported the assumption that most transient storage in headwater mountain streams results from hyporheic exchange. Direct observations from the well networks in colluvial reaches showed that subsurface flow paths tended to parallel the valley axis. Cross‐valley gradients were weak except near steps, where vertical and cross‐valley hydraulic gradients indicated a strong potential for stream water to downwell into the hyporheic zone. The TSM parameters showed that both size and residence time of transient storage were greater in reaches with a few large log‐jam‐formed steps than in reaches with more frequent, but smaller steps. Direct observations showed that residence times in the unconstrained stream were longer than in the constrained stream and that little change occurred in the location and extent of the hyporheic zone between low‐ and high‐baseflow discharges in any of the colluvial reaches. The transient storage modelling results did not agree with these observations, suggesting that the TSM was insensitive to long residence‐time exchange flows and was very sensitive to changes in discharge. Disagreements between direct observations and the transient storage modelling results highlight fundamental problems with the TSM that confound comparisons between the transient storage modelling results for tracer injections conducted under differing flow conditions. Overall, the results showed that hyporheic exchange was little affected by stream discharge (at least over the range of baseflow discharges examined in this study). The results did show that channel morphology controlled development of the hyporheic zone in these steep mountain stream channels. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
Stream temperatures in urban watersheds are influenced to a high degree by changes in landscape and climate, which can occur at small temporal and spatial scales. Here, we describe a modelling system that integrates the distributed hydrologic soil vegetation model with the semi‐Lagrangian stream temperature model RBM. It has the capability to simulate spatially distributed hydrology and water temperature over the entire network at high time and space resolutions, as well as to represent riparian shading effects on stream temperatures. We demonstrate the modelling system through application to the Mercer Creek watershed, a small urban catchment near Bellevue, Washington. The results suggest that the model was able to produce realistic streamflow and water temperature predictions that are consistent with observations. We use the modelling construct to characterize impacts of land use change and near‐stream vegetation change on stream temperatures and explore the sensitivity of stream temperature to changes in land use and riparian vegetation. The results suggest that, notwithstanding general warming as a result of climate change over the last century, there have been concurrent increases in low flows as a result of urbanization and deforestation, which more or less offset the effects of a warmer climate on stream temperatures. On the other hand, loss of riparian vegetation plays a more important role in modulating water temperatures, in particular, on annual maximum temperature (around 4 °C), which could be mostly reversed by restoring riparian vegetation in a fairly narrow corridor – a finding that has important implications for management of the riparian corridor. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Considering the rapid expansion of urban populations and the corresponding urbanization of landscapes, a dearth of knowledge exists regarding the role of urban vegetation in modulating urban ecosystem functioning. In response to the need for the development of new approaches to quantify ecohydrological processes along urban-to-rural gradients at alternate scales, this study explores the relationship between individual plant selection choices in landscaping and changes in urban hydrological functioning. This research examines differences in the variation of rainfall interception, leaf hydrophobicity, canopy structure, and water storage, between 13 species in an urban, semi-arid location. The species studied were selected based on resident preferences, and hence this research considers the role that urban residents play, through individual choices, in modifying the ecohydrology of an urban watershed. Rainfall interception, canopy surface storage, leaf hydrophobicity, and water droplet retention were significantly different between species. Results indicate that individual choice in plant selection for landscaping may influence urban hydrology.  相似文献   

20.
Nitrate concentrations in streamwater of agricultural catchments often exhibit interannual variations, which are supposed to result from land‐use changes, as well as seasonal variations mainly explained by the effect of hydrological and biogeochemical cycles. In catchments on impervious bedrock, seasonal variations of nitrate concentrations in streamwater are usually characterized by higher nitrate concentrations in winter than in summer. However, intermediate or inverse cycles with higher concentrations in summer are sometimes observed. An experimental study was carried out to assess the mechanisms that determine the seasonal cycles of streamwater nitrate concentrations in intensive agricultural catchments. Temporal and spatial patterns of groundwater concentrations were investigated in two adjacent catchments located in south‐western Brittany (France), characterized by different seasonal variations of streamwater nitrate concentrations. Wells were drilled across the hillslope at depths ranging from 1·5 to 20 m. Dynamics of the water table were monitored and the groundwater nitrate and chloride concentrations were measured weekly over 2 years. Results highlighted that groundwater was partitioned into downslope domains, where denitrification induced lower nitrate concentrations than into mid‐slope and upslope domains. For one catchment, high subsurface flow with high nitrate concentrations during high water periods and active denitrification during low water periods explained the higher streamwater nitrate concentrations in winter than in summer. For the other catchment, the high contribution of groundwater with high nitrate concentrations smoothed or inverted this trend. Increasing bromide/chloride ratio and nitrate concentrations with depth argued for an effect of past agricultural pressure on this catchment. The relative contribution of flows in time and correlatively the spatial origin of waters, function of the depth and the location on the hillslope, and their chemical characteristics control seasonal cycles of streamwater nitrate concentrations and can influence their interannual trends. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号