首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hong Xie  Xuan Zhu 《水文研究》2013,27(25):3685-3693
Evapotranspiration is an important component of the water and energy balance. It is dependent on climate. Precipitation, solar radiation, temperature, humidity, and wind all contribute to the rate of evapotranspiration. In this study, the temporal trends of reference evapotranspiration (ETref) and four main ETref drivers, namely, mean air temperature (Ta), wind speed (u2), net radiation (Rn) and actual vapour pressure (ea) from 1970 to 2009, were calculated based on 75 meteorological stations on the Tibetan Plateau. The results showed that the ETref on the Tibetan Plateau decreased on average by 0.6909 mm a‐1a‐1 from 1970 to 2009. Ta and ea showed an increasing trend, whereas u2 and Rn exhibited a decreasing trend. To explore the underlying causes of the ETref variation, an attribution analysis was performed to quantify the contribution of Ta, u2, Rn and ea, which showed that the changes in u2, Rn and ea produced the negative effect, whereas Ta produced the positive effect on ETref rates. The changes in u2 were found to produce the largest decrease (?0.7 mm) in ETref, followed by ea (?0.4 mm) and Rn (?0.1 mm). Although the significant increase in Ta had a large positive effect (0.51 mm) on ETref rates, changes in the other three variables each reduced ETref rates, resulting in an overall negative trend in ETref. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Negative trends of measured pan evaporation are widely reported. Studies of the factors that underlie this reduction in pan evaporation have not reached a consensus about the controlling factors. Most studies employ statistical analysis (correlation analysis or stepwise regression) to identify the controlling climatic variables; in contrast, few studies have employed physical‐based theories. In addition, observations of pan evaporation and related climatic variables are reported to be influenced by anthropogenic activities. Consequently, the observed trends of climatic variables in a nature reserve would be useful for understanding regional climate change. The present study site is located in Ailaoshan National Nature Reserve, SW China, which is free of anthropogenic activity. In this study, we firstly applied the adjusted PenPan model to estimate the pan evaporation. Then, using this physical‐based model, we identified a positive trend in pan evaporation, with a much larger increase in the dry season than in the wet season. The model results indicate that the change in the aerodynamic component is larger than that in the radiative component. In contrast to the reduction in wind speed and sunshine hours that has been reported in previous studies at various sites, we found that wind speed and sunshine hours have increased in recent decades, thereby explaining the increase of the pan evaporation rate. Wind speed made the greatest contribution to the change in pan evaporation, followed by sunshine duration. This study indicates that the potential evaporation has increased at this site despite the widely reported reduction in measured pan evaporation. During the dry season, the availability of water for agriculture and agroforestry could be threatened. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Climatic variations over Eastern Asia, including the Tibetan Plateau, were analysed using meteorological data for 32 points in the period 1971 to 2000. Changes in heat and water balances were examined using potential evaporation EP, and a wetness index WI, as suggested by Kondo and Xu ( 1997a,b ). Climate zones, including the humid, semi‐humid, semi‐arid and arid climate types, in Eastern Asia identified by the wetness index matched the vegetation distribution. Average monthly temperatures increased over the 30 years, with the sharpest increase in February. In general, temperature increases were larger in the north than in the south. Air temperature increased by more than 0·05 K yr−1 in northern China. The data showed that diurnal temperature ranges have decreased in recent years. From the Tibetan Plateau, through central China, to southern northeast China, there has been an increase in potential evaporation and pan evaporation, which may be related to both higher temperatures and a lack of surface water. Increasing long‐wave radiation flux is apparent in every month and in the interannual trends. This is in contrast to the solar radiation flux. On the other hand, trends for relative humidity and cloud cover were negative, but positive for water vapour pressure. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
We simulate accumulative Coulomb failure stress change in a layered Maxwell viscoelastic media in the north-eastern Qinghai-Xizang(Tibetan)Plateau since 1920.Lithospheric stress/strain evolution is assumed to be drivenby dislocations of large earthquakes(M≥7.0)and secular tectonic loading.The earthquake rupture parameters suchas the fault rupture length,width,and slip are either adopted from field investigations or estimated from their sta-tistic relationships with the earthquake magnitudes and seismic moments.Our study shows that among 20 largeearthquakes(M≥7.0)investigated,17 occurred in areas where the Coulomb failure stress change is positive,with atriggering rate of 85%.This study provides essential data for the intermediate to long-term likelihood estimation oflarge earthquakes in the northeastern Tibetan Plateau.  相似文献   

5.
Using the automatic weather station data obtained from the Tibetan Plateau (TP), the normalized dif- ference vegetation index and the monthly precipitation data of China and by the methods of correlation and composite analysis, preliminary analytical results are achieved concerning the relationships be- tween TP NDVI change and its surface heat source and precipitation of China. The results of our re- search may lead to the following conclusions: (1) A positive correlation relationship exists between TP NDVI change and its surface heat source, including the sensible heat and the latent heat. As to the correlation of the former, it is more remarkable in western TP than in eastern TP, and as to the correla- tion of the latter, however it turns out contrary. (2) With the improvement of TP vegetation, its surface heat source of every season is also mainly reinforced, especially in summer. As to the contribution of the sensible heat and the latent heat to the increment of the TP surface heat source intensity, the for- mer is comparatively more significant than the latter in winter and spring, while in summer and autumn, the two have almost the same importance. (3) The correlation coefficient between summer NDVI over TP and the corresponding period precipitation of China displays a belt distribution of " ? " from south to north China. (4) Anomalous surface heating field over TP derived from vegetation change is probably an important factor to affect summer precipitation of China.  相似文献   

6.
西藏著名圣湖之一的当惹雍错,是藏北高原腹地内陆封闭大湖,对湖泊面积变化的长时间序列研究较少,本文通过高分辨率陆地资源卫星Landsat TM/ETM+数据源,利用遥感和地理信息系统软件,通过人工目视解译方法对1977-2014年当惹雍错湖泊面积变化进行系统分析,并结合流域临近气象站资料,流域冰川等辅助数据对其湖泊面积变化原因进行综合分析.结果表明,1977-2014年当惹雍错湖泊平均面积为835.75 km~2,1977-2014年湖泊面积总体呈上升趋势,1970s湖泊平均面积为829.15 km~2,1980s和1990s湖泊平均面积分别为827.50和826.42 km~2,2000年之后湖泊面积明显增加,2000s湖泊平均面积与1970s相比,增幅为8.04 km~2.当惹雍错湖泊空间变化特点是,位于最大河流入口处达尔果藏布的湖泊东南部扩大明显,湖泊西南部小湖1于2014年9月开始明显扩大并与当惹雍错有相连趋势;流域冰川融水是当惹雍错主要补给源,近40 a当惹雍错湖泊面积变化是在气温升高的背景下,冰川、降水量和蒸发量三者共同变化作用的结果.  相似文献   

7.
The Tibetan Plateau has experienced a number of processes of uplift and planation alternately since about 45 Ma B. P. when it began to raise. A differential equation model for describing the Plateau altitude variation with time is formulated on the basis of previous field studies and a theoretical hypothesis: if palaeomagnetic polarity is positive, the convective activity in the earth is strong; orogenic movement is violent; and the raising velocity of the Plateau is high andvice versa. The analytical solution of the equation is obtained. The altitude variation from the beginning of the Plateau uplift to present is computed through using the geomagnetic polarity reversals timing series and interstellar atomic hydrogen concentration data. A comparison between the model results and the field studies indicates that the former is quite similar to the latter. The model results are able to basically reproduce the alternating processes of uplift and planation of the plate geological history. In the present model, the influences of the denudation and the geomagnetic polarity and interstellar atomic hydrogen concentration on the raising velocity of the Plateau altitude are mainly considered. Project supported by the National Climbing Project “A Study on the Uplift, Evolution and Ecosystem of the Tibetan Plateau” and the CAS’ (Chincse Academy of Sciences) Foundations for Returned Scholars.  相似文献   

8.
Chenghai Wang  Yipeng Guo 《水文研究》2012,26(10):1509-1516
In this article, the trends and variability of precipitation and precipitable water (PW) over the Qinghai‐Xizang (Tibet) Plateau (QXP) (1970–2009) were analysed by using ERA‐40 (The European Center for Medium‐Range Weather Forecasts (ECMWF) 40 years Re‐analysis) and NCEP (The National Centers for Environmental Prediction)/NCAR reanalyses data and the ground observed precipitation data from 60 sites. The results showed that the precipitation over the QXP had an overall increasing trend; however, a slight decreasing trend was observed over the southeast. This decreasing precipitation trend might be related to the South Asia monsoon degradation. Since 1970, a decreasing PW trend has occurred over the QXP in which the southeast is the most significant region. Because of the rising temperatures in the QXP, a remarkable PW conversion rate (PWCR) increase of 0.87% per decade has occurred over the past 40 years. Because of its steep terrain, the PWCR in the middle eastern region of the QXP increased faster than that of the other regions. The mean PWCR in the wet southern region of the QXP was higher than that of the dry northern region, which was higher in the winter than that in the summer. Although much precipitation occurred in the summer, in the wet regions, the PWCR was higher in the winter than in the summer. The PWCR peak in the wet and dry regions occurred during the precipitation‐short and precipitation‐sufficient seasons, respectively. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
The effects of climate change have a substantial influence on the extremely vulnerable hydrologic environment of the Tibetan Plateau. The estimation of alpine inland lake water storage variations is essential to modeling the alpine hydrologic process and evaluating water resources. Due to a lack of historical hydrologic observations in this remote and inaccessible region, such estimations also fill a gap in studies on the continuous inter‐annual and seasonal changes in the inland lake water budget. Using Lake Siling Co as a case study, we derived a time‐series of lake surface extents from MODIS imagery, and scarce lake water level data from the satellite altimetry of two sensors (ICESat/GLAS and ENVISAT RA‐2) between 2001 and 2011. Then, based on the fact that the rise in lake water levels is tightly dependent on the expansion of the lake extent, we established an empirical model to simulate a continuous lake water level dataset corresponding to the lake area data during the lake's unfreezing period. Consequently, from three dimensions, the lake surface area, water level and water storage variations consistently revealed that Lake Siling Co exhibited a dramatic trend to expand, particularly from 2001 to 2006. Based on the statistical model and lake area measurements from Landsat images since 1972, the extrapolated lake water level and water storage indicate that the lake has maintained a continual expansion process and that the cumulative water storage variations during 1999–2011 account for 66.84% of the total lake water budget (26.87 km3) from 1972 to 2011. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
River runoff in the Arctic and the Tibetan Plateau(TP) change significantly in recent decades. However, the mechanisms of the physical processes of permafrost river runoff change remain uncertain across large scale. This study investigated the mainstreams and tributaries of main Arctic and TP rivers dominated by permafrost and assessed the linkage between hydrological regime change and permafrost. The results show that the effects of permafrost on river runoff are highly dependent on the permafrost coverage of a watershed. For the past decades, the majority of the Arctic and TP basins showed increased discharge, while all of the studied basins showed increased baseflow, with faster increasing speed than total discharge.Both total discharge and baseflow annual change rate(ΔQ and ΔBF) increased with permafrost coverage, indicating the increments of streamflow are enhanced with high permafrost coverage. Meanwhile, the annual change of precipitation showed weak connection with total discharge and baseflow change. The high permafrost coverage basins showed high annual maximum/minimum discharge ratio(Qmax/Qmin), while the Qmax/Qminchanged slightly in low permafrost cover basins. Our results highlight the importance of permafrost coverage on streamflow regime change for permafrost basins across the northern hemisphere. Due to these linkage between permafrost extent and runoff regime change and the increasing changes of permafrost, more attention should be paid to the change of hydrological processes in permafrost-underlain basins.  相似文献   

11.
The streamflow on the Tibetan Plateau (TP) plays an important role in the water supply of Asia's main river basins. To enhance understanding of hydrologic cycle under the pronounced warming over the TP, this study comprehensively investigates the streamflow changes at the upstream of six major rivers (Yellow River, Yalong River, Jinsha River, Lancang River, Nu River, and Yarlung Zangbo River) originating from the TP, and then diagnoses their possible causes by analysing the impacts of climate variability and human activities. Results indicate that these six major rivers studied have generally insignificant increasing trends in annual streamflow during the last half century, except for two stations. The significant increase appears at the Tuotuohe station in the headwater area of Jinsha River, while the dramatic decrease occurs at the Yunjinghong station in the downstream of Lancang River. In terms of climate factors, the six river basins show a distinct warming trend, along with a noticeable increase in precipitation over the central and northern regions. Pan evaporation, wind speed, sunshine duration, and relative humidity have been found to gradually decrease in most areas. As for the Tuotuohe station, both warming-induced meltwater and increasing precipitation might jointly contribute to the increasing streamflow. But for the Yunjinghong station, the results simulated by the Variable Infiltration Capacity (VIC) model indicate that human activities, especially for the impoundment processes of Xiaowan and Nuozhadu dams, significantly influenced the streamflow, contributing to approximately 69% of the streamflow reduction during 2009–2013. In the context of accelerated global warming, greater attention should be paid to hydrometeorological changes on the TP to offer further insights for the water resources management of the ‘Asian Water Tower’.  相似文献   

12.
ABSTRACT

The temporal and spatial characteristics of soil moisture over the Tibetan Plateau (TP) were analysed to explore the relative contributions of temperature and precipitation to soil moisture change. Non-significant changes in soil moisture were observed for the TP over the period 1950–2010, while a seasonal cycle was evident, with higher values in summer and smaller values in winter. The soil moisture showed obvious spatial heterogeneity, with higher values in the south than in the north of the TP. The soil moisture fluctuated with time, jointly influenced by precipitation and temperature changes, with precipitation the dominant factor, while temperature regulated the relationship between soil moisture and precipitation. The relative contribution of precipitation to soil moisture changes was over 80%, except for winter in which temperature was the dominant factor, with a relative contribution of more than 70%. Because of the sharp increase in temperature in winter, the uneven spatial distribution of soil moisture over the TP might harm the fragile ecological environment.  相似文献   

13.
黄星  高原 《地震学报》2014,36(6):1141-1151
首先简要介绍了青藏高原目前主流的4种动力学模型, 即俯冲模型、 碰撞模型、 挤出模型和拆沉-板片断离模型. 然后概述了青藏高原及其周地区各向异性的研究进展, 展望各向异性研究的方向, 并着重探讨了各向异性研究中需要重视的几个问题: ① 各向异性的多种来源; ② 各向异性与深部结构的关系; ③ 面波等新方法的应用. 为了更好地定量解释各向异性, 需要了解深部结构与各向异性之间的关系, 发展更加精细的研究手段. 就目前来看, 面波与体波的联合反演可以更好地约束各向异性的分辨率, 而将地球动力学模拟等正演手段与地震波各向异性等反演手段相结合也可能是未来的趋势之一.  相似文献   

14.
李秀美  侯居峙  王明达  徐磊 《湖泊科学》2021,33(4):1276-1288
在全球变化的背景下,厘清湖泊生态系统对气候环境以及人类活动的响应机制对制定社会的适应政策非常重要.目前的研究手段如现场观测和围隔实验等可以很好地揭示湖泊生态系统在有观测记录以来的演替和变化过程,但是不能提供历史时期湖泊生态系统的变化及其对气候环境变化和人类活动的响应.古湖沼学可以为探讨湖泊生态系统的长期变化及其对气候环...  相似文献   

15.
2000年以来青藏高原湖泊面积变化与气候要素的响应关系   总被引:1,自引:0,他引:1  
青藏高原星罗密布的湖泊对气候变化十分敏感,在自然界水循环和水平衡中发挥着重要作用.以MODIS MOD09A1和SRTM DEM为数据源,提取了2000-2016年青藏高原丰水期面积大于50 km2的湖泊边界,从内外流分区、湖泊主要补给来源和湖水矿化度三个方面对2000年以来湖泊面积变化进行分析,并结合青藏高原近36年气象数据,根据气象要素变化趋势分区,初步探讨青藏高原湖泊面积变化与气候要素的关系.结果表明:青藏高原面积大于50 km2的138个湖泊整体扩张趋势显著,总面积增加2340.67 km2,增长率为235.52 km2/a.其中,扩张型湖泊占67.39%,萎缩型湖泊占12.32%,稳定型湖泊占20.29%.内流湖扩张趋势显著,外流湖扩张趋势较明显;以冰雪融水为主要补给来源的湖泊整体扩张趋势明显,以地表径流和河流补给为主要补给源的湖泊也呈扩张趋势;盐湖和咸水湖以扩张为主,淡水湖的扩张、萎缩和稳定三种类型较均衡.在青藏高原气候暖湿化方向发展背景下,湖泊面积变化与气候要素具有显著的区域相关性.气温和降水变化趋势分区结果表明,气温增加、降水增加强趋势的高原Ⅰ区湖泊扩张程度(78.18%)依次大于气温降低、降水量呈增加趋势的Ⅴ区(66.67%),气温、降水量呈增加趋势的Ⅱ区(60.78%),气温呈降低、降水量呈增加强趋势的Ⅳ区(58.83%)和气温呈增加、降水量呈减少趋势的Ⅲ区(50.00%).湖泊面积变化对气候变化响应研究表明,升温引起的冰雪融水补给对Ⅰ区、Ⅱ区和Ⅲ区湖泊面积扩张的影响显著,加之降水量的增加,湖泊扩张速率明显;Ⅳ区和Ⅴ区湖泊面积扩张主要受降水量增加影响显著.整体而言,气温主要影响以冰雪融水为主要补给来源的湖泊,降水量主要影响以降水和地表径流为主要补给来源的湖泊.  相似文献   

16.
Based on the precipitation data obtained through GEWEX Asian Monsoon Experiment–Tibet fieldwork from May to September 1998, this study investigated the features of the summer monsoon precipitation on the northern and southern slopes of the huge Tanggula Mountains in the Qinghai–Xizang (Tibetan) Plateau. The results show that the precipitation on the southern slope is about 50% higher than on the northern slope, whereas the frequency and diurnal pattern of the precipitation are very similar. The mean precipitation intensity on the southern slope is larger than on the northern slope. In most cases, the daily precipitation showed similar variation on both slopes, demonstrating that the precipitation processes might be similar. In the summer monsoon period, the local convective precipitation contributed to the total precipitation on both slopes and such a contribution on the southern slope is larger. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.

本文通过对青藏高原降水季节演变特征的分析,选取日降水量和降水频率两个特征量来定义青藏高原各站点及全区的雨季,揭示了1961—2019年青藏高原雨季开始时间、结束时间、雨季长度和总雨量等的气候和变化特征.分析发现,青藏高原雨季的开始自东向西推进,而结束西早东晚,雨季持续时间自东向西缩短,雨季雨量东多西少.就青藏高原整体而言,雨季开始的平均日期在5月4日,结束的平均日期在10月15日,雨季平均持续163天,雨季雨量平均为413.2 mm.近60年,青藏高原雨季发生了显著变化,表现为开始时间提前、结束时间推迟、雨季延长、雨量增多.青藏高原各站点雨季的变化具有一定的区域性差异,主要表现为:高原雨季的开始整体提前,但是,高原东部边缘雨季开始提前的变化幅度相对较小;高原雨季的结束时间在南部和北部提前而在中部和东部推后;高原大部地区雨季雨量增多,但南部边缘等部分地区雨季雨量有所减少.

  相似文献   

18.
In the last decade, several international joint projects were conducted in the Tibetan Plateau by Chinese, American and French geophysicists and geologists. In the present review, the results from vertical reflections, wide-angle reflections and broadband digital seismic recordings are reviewed and compared. Constraints for the dynamics of continent-continent collision from the lithospheric structures, seismicity, focal mechanism and anisotropy are discussed.The velocities ofPn,Sn, , were accurately determined by using their travel times from local events. They evidenced that the uppermost mantle underneath the Tibetan Plateau was similar to that of the ordinary continental mantle.The reflection profile from INDEPTH-I furnishes convincing evidence that the Indian crust penetrates into the Tibetan lower crust. The results from teleseismic waveform inversion reveal that the Moho discontinuity dips northwards, and an offset of Moho occurs near Bangong suture.The fact that materials within the Tibetan Plateau escape laterally has been proposed by several authors. Recent data and studies provide further convincing evidence that eastward mass transfer does occur, and their paths and natures are investigated.Some authors suggested that the large strike slip faults (Kun Lun, Xianshuihe) in the eastern plateau may be related to the lateral extrusion. However, most of the strike slips are left-lateral, and extrusion could not occur without right-lateral strike slips. Recent observations of the focal mechanisms and geological structure indicate that the earthquakes in the Yanshiping-Changdu belt are left-lateral strike slip. It is the southeast zone of the left-lateral slip faults in the eastern Tibetan plateau. Geological and seismological evidence show that the Bencuo-Jiali belt is the only large right-lateral fault in the eastern plateau. It was proposed that the present eastward extrusion occurs between the Yangshiping-Changdu left-lateral strike slip and the Bencuo-Jiali right-lateral strike slip. The other left-lateral strike slips north of the Yangshiping-Changdu belt are considered to be the fossils of the ancient flow paths.  相似文献   

19.
To investigate the tidal effects on intra-continental earthquake initiation in the Tibetan Plateau and its surrounding areas, we selected over 1,500 focal mechanism solutions of inland earthquakes (epicenter locates at least 100 km to the coastlines) from Global Centroid Moment Tensor (GCMT) project and analyzed the p-values of tidal normal and shear stress as well as tidal Coulomb failure stress. For Coulomb failure stress calculation, we used Coulomb 3.40 software. We find that: (1) p-values of tidal stress change suggests a high tidal correlation of earthquake imitations with tidal normal stress change; (2) when tidal normal stress reached the local maximum values of compression and when tidal shear stress were closed to the positive peaks, earthquakes generated more frequently; (3) particular seismogenic environments such as strong continental plate interactions and the existence of fluids or rheologic substance possibly raise the tidal correlations and (4) higher sensitivity of earthquake initiation to earth tide presents along with higher seismicity, suggesting the rate of rain energy accumulation somehow has a dominating effect on the tidal correlation of earthquake initiation.  相似文献   

20.
《水文科学杂志》2013,58(6):1079-1093
Abstract

A time series analysis of 152 VV-polarized Advanced Synthetic Aperture Radar (ASAR) Wide Swath Mode (WSM) images collected over the central part of the Tibetan Plateau is presented for the period from April 2005 to September 2007. The signatures of a grassland and a wetland are studied to identify the impact of three land-surface states on the backscatter (σ°). The considered land-surface states are soil moisture, soil temperature and vegetation biomass represented by Système Pour l'Observation de la Terre (SPOT) Normalized Difference Vegetation Index (NDVI). Comparison of the σ° time series with these land-surface states via a multivariate regression shows that the grassland σ° are well represented by the soil moisture dynamics, while the wetland σ° also has a strong correlation with soil temperature. Further, we found that the contribution of the NDVI to the explanation of the temporal σ° variability is limited for both the grassland and wetland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号