首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Three main reservoirs were identified that contribute to the shallow subsurface flow regime of a valley drained by a fourth‐order stream in Brittany (western France). (i) An upland flow that supplied a wetland area, mainly during the high‐water period. It has high N‐NO3? and average Cl? concentrations. (ii) A deep confined aquifer characterized by low nitrate and low chloride concentrations that supplied the floodplain via flow upwelling. (iii) An unconfined aquifer under the riparian zone with high Cl? and low N‐NO3? concentrations where biological processes removed groundwater nitrate. This aquifer collected the upland flow and supplied a relict channel that controlled drainage from the whole riparian zone. Patterns of N‐NO3? and Cl? concentrations along riparian transects, together with calculated high nitrate removal, indicate that removal occurred mainly at the hillslope–riparian zone interface (i.e. first few metres of wetland), whereas dilution occurred in lower parts of the transects, especially during low‐water periods and at the beginning of recharge periods. Stream flow was modelled as a mixture of water from the three reservoirs. An estimation of these contributions revealed that the deep aquifer contribution to stream flow averaged 37% throughout the study period, while the contribution of the unconfined reservoir below the riparian zone and hillslope flow was more variable (from ca 6 to 85%) relative to rainfall events and the level of the riparian water table. At the entire riparian zone scale, NO3? removal (probably from denitrification) appeared most effective in winter, despite higher estimated upland NO3? fluxes entering the riparian zone during this period. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
Discharge of groundwater into lakes (lacustrine groundwater discharge, LGD) can play a major role in water balances of lakes. Unfortunately, studies often neglect this input path because of methodological difficulties in its determination. Direct measurements of LGD are labor‐consuming and prone to error. The present study uses both spatially variable hydraulic‐head data and meteorological data to estimate groundwater input by LGD and lake water output through infiltration. The study sites are two shallow, groundwater‐fed lakes without any surface inflows or outflows. Horizontally interpolated groundwater heads were combined with lake water levels to obtain vertical hydraulic gradients between the aquifer and the lake, which are separated by a thick layer of lake bed sediment which has a much lower hydraulic conductivity than the underlying aquifer. By fitting the hydraulic gradient to the results of a simple mass balance and considering the process of clogging, we were able to estimate the hydraulic conductivity of the lake bed sediments. We calculated groundwater inputs by LGD and lake water outputs by infiltration on an annual basis. Although our method requires several assumptions, the results are reasonable and provide useful information about the exchange between the aquifer and the lake, which can, for example, be used for the calculation of nutrient mass balances.  相似文献   

3.
The southwestern Adirondack region of New York receives among the highest rates of atmospheric nitrogen (N) deposition in the USA. Atmospheric N deposition to sensitive ecosystems, like the Adirondacks, may increase the acidification of soils through losses of exchangeable nutrient cations, and the acidification of surface waters associated with enhanced mobility of nitrate (NO3?). However, watershed attributes, including surficial terrestrial characteristics, in‐lake processing, and geological settings, have been found to complicate the relationships between atmospheric N deposition and N drainage losses. We studied two lake‐watersheds in the southwestern Adirondacks, Grass Pond and Constable Pond, which are located in close proximity (~26 km) and receive similarly high N deposition, but have contrasting watershed attributes (e.g. wetland area, geological settings). Since the difference in the influence of N deposition was minimal, we were able to examine both within‐ and between‐watershed influences of land cover, the contribution of glacial till groundwater inputs, and in‐lake processes on surface water chemistry with particular emphasis on N solutes and dissolved organic carbon (DOC). Monthly samples at seven inlets and one outlet of each lake were collected from May to October in 1999 and 2000. The concentrations of NO3? were high at the Grass Pond inlets, especially at two inlets, and NO3? was the major N solute at the Grass Pond inlets. The concentrations of likely weathering products (i.e. dissolved Si, Ca2+, Mg2+, Na+) as well as acid neutralizing capacity and pH values, were also particularly high at those two Grass Pond inlets, suggesting a large contribution of groundwater inputs. Dissolved organic N (DON) was the major N solute at the Constable Pond inlets. The higher concentrations of DON and DOC at the Constable Pond inlets were attributed to a large wetland area in the watershed. The DOC/DON ratios were also higher at the Constable Pond inlets, possibly due to a larger proportion of coniferous forest area. Although DON and DOC were strongly related, the stronger relationship of the proportion of wetland area with DOC suggests that additional factors regulate DON. The aggregated representation of watershed physical features (i.e. elevation, watershed area, mean topographic index, hypsometric‐analysis index) was not clearly related to the lake N and DOC chemistry. Despite distinctive differences in inlet N chemistry, NO3? and DON concentrations at the outlets of the two lakes were similar. The lower DOC/DON ratios at the lake outlets and at the inlets having upstream ponds suggest the importance of N processing and organic N sources within the lakes. Although an inverse relationship between NO3? and DOC/DON has been suggested to be indicative of a N deposition gradient, the existence of this relationship for sites that receive similar atmospheric N deposition suggest that the relationship between NO3? and the DOC/DON ratio is derived from environmental and physical factors. Our results suggest that, despite similar wet N deposition at the two watershed sites, N solutes entering lakes were strongly affected by hydrology associated with groundwater contribution and the presence of wetlands, whereas N solutes leaving lakes were strongly influenced by in‐lake processing. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
Lacustrine groundwater discharge (LGD) and the related water residence time are crucial parameters for quantifying lake matter budgets and assessing its vulnerability to contaminant input. Our approach utilizes the stable isotopes of water (δ18O, δ2H) and the radioisotope radon (222Rn) for determining long‐term average and short‐term snapshots in LGD. We conducted isotope balances for the 0.5‐km2 Lake Ammelshainer See (Germany) based on measurements of lake isotope inventories and groundwater composition accompanied by good quality and comprehensive long‐term meteorological and isotopic data (precipitation) from nearby monitoring stations. The results from the steady‐state annual isotope balances that rely on only two sampling campaigns are consistent for both δ18O and δ2H and suggested an overall long‐term average LGD rate that was used to infer the water residence time of the lake. These findings were supported by the good agreement of the simulated LGD‐driven annual cycles of δ18O and δ2H lake inventories with the observed lake isotope inventories. However, radon mass balances revealed lower values that might be the result of seasonal LGD variability. For obtaining further insights into possible seasonal variability of groundwater–lake interaction, stable water isotope and radon mass balances could be conducted more frequently (e.g., monthly) in order to use the derived groundwater discharge rates as input for time‐variant isotope balances.  相似文献   

5.
The temporal variability in nitrogen (N) transport in the Corbeira agroforestry catchment (NW Spain) was analysed from October 2004 to September 2008. Nitrate (NO3–N) and total Kjeldahl nitrogen (TKN) loads and concentrations were determined at various timescales (annual, seasonal and event). The results revealed a strong intra‐annual and inter‐annual variability in N transport influenced by weather patterns and consequently by the hydrological regime. Mean annual export of total N in the catchment was 5.5 kg ha?1 year?1, with NO3–N being the dominant form. Runoff events comprised 10% of the study period but contributed 40 and 61% of the total NO3–N and TKN loads, respectively. The NO3–N and TKN concentrations were higher during runoff events than under baseflow conditions, pointing to diffuse sources of N. The mobilization of TKN during runoff events was attributed to surface runoff, while NO3–N might be related to subsurface and groundwater flow. Runoff events were characterized by high variability in N loads and concentrations. Higher variability was observed in N loads than in N concentrations, indicating that event magnitude plays an important role in N transport in this catchment; event magnitude explained approximately 96% of the NO3–N load. However, a combination of variables related to runoff event intensity (rainfall, discharge increase and kinetic energy) explained only 66% of the TKN load. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
To investigate the origin and behaviour of nitrate in alluvial aquifers adjacent to Nakdong River, Korea, we chose two representative sites (Wolha and Yongdang) having similar land‐use characteristics but different geology. A total of 96 shallow groundwater samples were collected from irrigation and domestic wells tapping alluvial aquifers. About 63% of the samples analysed had nitrate concentrations that exceeded the Korean drinking water limit (44·3 mg l?1 NO3?), and about 35% of the samples had nitrate concentrations that exceeded the Korean groundwater quality standard for agricultural use (88·6 mg l?1 NO3?). Based on nitrogen isotope analysis, two major nitrate sources were identified: synthetic fertilizer (about 4‰ δ15N) applied to farmland, and animal manure and sewage (15–20‰ δ15N) originating from upstream residential areas. Shallow groundwater in the farmland generally had higher nitrate concentrations than those in residential areas, due to the influence of synthetic fertilizer. Nitrate concentrations at both study sites were highest near the water table and then progressively decreased with depth. Nitrate concentrations are also closely related to the geologic characteristics of the aquifer. In Yongdang, denitrification is important in regulating nitrate chemistry because of the availability of organic carbon from a silt layer (about 20 m thick) below a thin, sandy surface aquifer. In Wolha, however, conservative mixing between farmland‐recharged water and water coming from a village is suggested as the dominant process. Mixing ratios estimated based on the nitrate concentrations and the δ15N values indicate that water originating from the village affects the nitrate chemistry of the shallow groundwater underneath the farmland to a large extent. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
Quantifying the effects of anthropogenic processes on groundwater in arid regions can be complicated by thick unsaturated zones with long transit times. Human activities can alter water and nutrient fluxes, but their impact on groundwater is not always clear. This study of basins in the Trans‐Pecos region of Texas links anthropogenic land use and vegetation change with alterations to unsaturated zone fluxes and regional increases in basin groundwater NO3? concentrations. Median increases in groundwater NO3? (by 0.7–0.9 mg‐N/l over periods ranging from 10 to 50+ years) occurred despite low precipitation (220–360 mm/year), high potential evapotranspiration (~1570 mm/year), and thick unsaturated zones (10–150+ m). Recent model simulations indicate net infiltration and groundwater recharge can occur beneath Trans‐Pecos basin floors, and may have increased due to irrigation and vegetation change. These processes were investigated further with chemical and isotopic data from groundwater and unsaturated zone cores. Some unsaturated zone solute profiles indicate flushing of natural salt accumulations has occurred. Results are consistent with human‐influenced flushing of naturally accumulated unsaturated zone nitrogen as an important source of NO3? to the groundwater. Regional mass balance calculations indicate the mass of natural unsaturated zone NO3? (122–910 kg‐N/ha) was sufficient to cause the observed groundwater NO3? increases, especially if augmented locally with the addition of fertilizer N. Groundwater NO3? trends can be explained by small volumes of high NO3? modern recharge mixed with larger volumes of older groundwater in wells. This study illustrates the importance of combining long‐term monitoring and targeted process studies to improve understanding of human impacts on recharge and nutrient cycling in arid regions, which are vulnerable to the effects of climate change and increasing human reliance on dryland ecosystems.  相似文献   

8.
We evaluated sources and pathways of groundwater recharge for a heterogeneous alluvial aquifer beneath an agricultural field, based on multi‐level monitoring of hydrochemistry and environmental isotopes of a riverside groundwater system at Buyeo, Korea. Two distinct groundwater zones were identified with depth: (1) a shallow oxic groundwater zone, characterized by elevated concentrations of NO3? and (2) a deeper (>10–14 m from the ground surface) sub‐oxic groundwater zone with high concentrations of dissolved Fe, silica, and HCO3?, but little nitrate. The change of redox zones occurred at a depth where the aquifer sediments change from an upper sandy stratum to a silty stratum with mud caps. The δ18O and δ2H values of groundwater were also different between the two zones. Hydrochemical and δ18O? δ2H data of oxic groundwater are similar to those of soil water. This illustrates that recharge of oxic groundwater mainly occurs through direct infiltration of rain and irrigation water in the sandy soil area where vegetable cropping with abundant fertilizer use is predominant. Oxic groundwater is therefore severely contaminated by agrochemical pollutants such as nitrate. In contrast, deeper sub‐oxic groundwater contains only small amounts of dissolved oxygen (DO) and NO3?. The 3H contents and elevated silica concentrations in sub‐oxic groundwater indicate a somewhat longer mean residence time of groundwater within this part of the aquifer. Sub‐oxic groundwater was also characterized by higher δ18O and δ2H values and lower d‐excess values, indicating significant evaporation during recharge. We suggest that recharge of sub‐oxic groundwater occurs in the areas of paddy rice fields where standing irrigation and rain water are affected by strong evaporation, and that reducing conditions develop during subsequent sub‐surface infiltration. This study illustrates the existence of two groundwater bodies with different recharge processes within an alluvial aquifer. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
A cross‐sectional model, based on the two dimensional groundwater flow equation of Edelman, was applied at seven transects distributed over four geological cross sections to estimate groundwater heads and recharge from/or groundwater discharge to Lake Nasser. The lake with a length of 500 km and an average width of 12 km was created over the period 1964–1970, the time for constructing the Aswan High Dam (AHD). The model, constrained by regional‐scale groundwater flow and groundwater head data in the vicinity of the lake, was successfully calibrated to timeseries of piezometeric heads collected at the cross sections in the period 1965–2004. Inverse modeling yielded high values for the horizontal hydraulic conductivity in the range of 6.0 to 31.1 m day?1 and storage coefficient between 0.01 and 0.40. The results showed the existence of a strong vertical anisotropy of the aquifer. The calibrated horizontal permeability is systematically higher than the vertical permeability (≈1000:1). The calibrated model was used to explore the recharge from/or groundwater discharge to Lake Nasser at the seven transects for a 40‐year period, i.e. from 1965 to 2004. The analysis for the last 20‐year period, 1985–2004, revealed that recharge from Lake Nasser reduced by 37% compared to the estimates for the first 20‐year period, 1965–1984. In the period 1965–2004, seepage of Lake Nasser to the surrounding was estimated at 1.15 × 109 m3 year?1. This led to a significant rise of the groundwater table. Variance‐based sensitivity and uncertainty analysis on the Edelman results were conducted applying quasi‐Monte Carlo sequences (Latin Hypercube sampling). The maximum standard deviation of the total uncertainty on the groundwater table was 0.88 m at Toshka (west of the lake). The distance from the lake, followed by the storage coefficient and hydraulic conductivity, were identified as the most sensitive parameters. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
To improve quantitative understanding of mixed‐land‐use impacts on nutrient yields, a nested‐scale experimental watershed study design (n = 5) was applied in a 303(d), clean water act impaired urbanizing watershed of the lower Missouri River Basin, USA. From 2010 to 2013, water samples (n = 858 sample days per site) were analysed for total inorganic nitrogen (TIN‐N), nitrite (NO2–N) nitrate (NO3–N), ammonia (NH3–N), and total phosphorus (TP‐P). Annual, seasonal, and monthly flow‐weighted concentrations (FWCs) and nutrient yields were estimated. Mean nutrient concentrations were highest where agricultural land use comprised 58% of the drainage area (NH3 = 0.111 mg/l; NO2 = 0.045 mg/l; NO3 = 0.684 mg/l, TIN = 0.840 mg/l; TP = 0.127 mg/l). Average TP‐P increased by 15% with 20% increased urban land use area. Highly variable annual precipitation was observed during the study with highest nutrient yields during 2010 (record setting wet year) and lowest nutrient yields during 2012 (extreme drought year). Annual TIN‐N and TP‐P yields exceeded 10.3 and 2.04 kg ha?1 yr?1 from the agricultural dominated headwaters. Mean annual NH3–N, NO2–N, NO3–N, TIN‐N, and TP‐P yields were 0.742, 0.400, 4.24, 5.38, and 0.979 kg ha?1 yr?1, respectively near the watershed outlet. Precipitation accounted for the majority of the explained variance in nutrient yields (R2 values from 0.68 to 0.85). Nutrient yields were also dependent on annual precipitation of the preceding year (R2 values from 0.87 to 0.91) thus enforcing the great complexity of variable mixed‐land‐use mediated source‐sink nutrient yield relationships. Study results better inform land managers and best management practices designed to mitigate nutrient pollution issues in mixed‐land‐use freshwater ecosystems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
This paper characterizes a seasonally inundated Danish floodplain wetland in a state close to naturalness and includes an analysis of the major controls on the wetland water and nitrogen balances. The main inputs of water are precipitation and percolation during ponding and unsaturated conditions. Lateral saturated subsurface flow is low. The studied floodplain owes its wetland status to the hydraulic properties of its sediments: the low hydraulic conductivity of a silt–clay deposit on top of the floodplain maintains ponded water during winter, and parts of autumn and spring. A capillary fringe extends to the soil surface, and capillary rise from groundwater during summer maintains near‐saturated conditions in the root zone, and allows a permanently very high evapotranspiration rate. The average for the growing season of 1999 is 3·6 mm day?1 and peak rate is 5·6 mm day?1. In summer, the evapotranspiration is to a large degree supplied by subsurface storage in a confined peat layer underlying the silt–clay. The floodplain sediments are in a very reduced state as indicated by low sulphate concentrations. All nitrate transported into the wetland is thus denitrified. However, owing to modest water exchange with surrounding groundwater and surface water, denitrification is low; 71 kg NO3–N ha?1 during the study period of 1999. Reduction of nitrate diffusing into the sediments during water ponding accounts for 75% of nitrate removal. Biomass production and nitrogen uptake in above‐ground vegetation is high—8·56 t dry matter ha?1 year?1 and 103 kg N ha?1 year?1. Subsurface ammonium concentrations are high, and convective upward transport into the root zone driven by evapotranspiration amounted to 12·8 kg N ha?1year?1. The floodplain wetland sediments have a high nitrogen content, and conditions are very favourable for mineralization. Mineralization thus constitutes 72% of above‐ground plant uptake. The study demonstrates the necessity of identifying controlling factors, and to combine surface flow with vadose and groundwater flow processes in order to fully comprehend the flow and nitrogen dynamics of this type of wetland. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
Monitoring of a well‐defined septic system groundwater plume and groundwater discharging to two urban streams located in southern Ontario, Canada, provided evidence of natural attenuation of background low level (ng/L) perchlorate (ClO4?) under denitrifying conditions in the field. The septic system site at Long Point contains ClO4? from a mix of waste water, atmospheric deposition, and periodic use of fireworks, while the nitrate plume indicates active denitrification. Plume nitrate (NO3?‐N) concentrations of up to 103 mg/L declined with depth and downgradient of the tile bed due to denitrification and anammox activity, and the plume was almost completely denitrified beyond 35 m from the tile bed. The ClO4? natural attenuation occurs at the site only when NO3?‐N concentrations are <0.3 mg/L, after which ClO4? concentrations decline abruptly from 187 ± 202 to 11 ± 15 ng/L. A similar pattern between NO3?‐N and ClO4? was found in groundwater discharging to the two urban streams. These findings suggest that natural attenuation (i.e., biodegradation) of ClO4? may be commonplace in denitrified aquifers with appropriate electron donors present, and thus, should be considered as a remediation option for ClO4? contaminated groundwater.  相似文献   

13.
. Kaste  P. J. Dillon 《水文研究》2003,17(12):2393-2407
In‐lake retention of inorganic nitrogen species (nitrate and ammonium) was estimated from mass balances in five acid‐sensitive lakes in southern Norway and eight in southern Ontario, Canada, to evaluate an empirical in‐lake N retention (RN) model. This model is included in the First‐order Acidity Balance (FAB) model, which currently is used for calculation of critical acid loads and exceedances in many countries. To estimate in‐lake RN, the FAB model uses a recommended mass transfer coefficient (SN) of 5 m year−1, which mainly is derived from NO3 mass balances in Canadian lakes. To date, the in‐lake RN model has not been evaluated for large parts of Europe. At the Norwegian study sites receiving the highest N deposition (>120 meq m−2 year−1) the net in‐lake retention of inorganic N (TIN) exceeded the corresponding terrestrial retention by a factor of 1·1–2·6. Despite differences in N loading and hydrology at the Norwegian and Canadian sites, both the mean mass transfer coefficients for NO3 (SNO3; 6·5 versus 5·6 m year−1) and TIN (STIN; 7·9 versus 7·0 m year−1) were of comparable magnitude. Both mean values and ranges of SNO3 suggest that the default SN value presently recommended for FAB model applications seems valid over a large range in N inputs and areal water loads (qs). However, owing to the relatively few data available for lakes with high qs values (15–150 m year−1), it is recommended that more lakes within this range be included in future studies to obtain a more precise prediction of in‐lake N retention over a wide qs gradient. Also, when considering that the FAB model treats all inorganic N leaching from a catchment as NO3, it seems reasonable to use a default STIN value instead of just SNO3 when estimating in‐lake RN. In that case, the in‐lake RN presently calculated by the FAB model might be slightly underestimated. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
The American cranberry (Vaccinium macrocarpon Ait.) is an important part of the cultural heritage and economy of Southeastern Massachusetts, yet water quality concerns and wetland protection laws challenge its commercial production. Here, we report inputs and outputs of water, nitrogen (N), and phosphorus (P) for a 2.12‐ha cranberry bed over a 2‐year period from 2013 to 2015. Water‐budget analysis indicated that precipitation contributed 40%, floodwater 37%, irrigation 15%, and groundwater 8% of water inputs to the cranberry bed. Minor annual variation in surface water discharge (~90 mm·year?1 or 3%) contrasted with large decreases in net (= outputs ? inputs) nutrient export, from 16.2 to 9.1 kg N·ha?1·year?1 for total (dissolved + suspended particulate) nitrogen (TN) and from 3.34 to 1.47 kg P·ha?1·year?1 for total phosphorus (TP) between Years 1 and 2. Annual variation in net TN and TP export was tied to decreases in spring and summer nutrient export and controlled by the combined effects of fertilizer management, soil biogeochemistry, and hydrology. The relatively high spring TN export in Year 1 was associated with coincident increases in soil temperature and rainfall. A second factor was the timing of fertilizer application, which occurred 1 day prior to a major summer storm (i.e., third largest daily rainfall since 1926) and was responsible for up to 15% and 9% of the Year 1 TN and TP export, respectively. Nutrient budgets, which balanced water and fertilizer inputs with water, fruit, and vegetative outputs, were consistent with the burial of 21.6 kg N·ha?1·year?1 and 7.27 kg P·ha?1·year?1. Field measurements indicated that burial would increase TN and TP in the shallow (0–5 cm) rooting zone by 14% and 6%, respectively, which seemed plausible based on the relatively young age of the bed (4–5 years) and new root growth patterns in Vaccinium plants.  相似文献   

15.
This study explores linkages between the microbial composition and hydrochemical variables of pristine groundwater to identify active redox conditions and processes. Two confined aquifers underlying the city of Qianjiang in the Jianghan Plain in China were selected for this study, having different recharge sources and strong hydrochemical gradients. Typical methods for establishing redox processes according to threshold concentration criteria for geochemical parameters suggest iron or sulphate reduction processes. High‐throughput 16S rRNA sequencing was used to obtain diversity and taxonomic information on microbial communities. Instead of revealing iron‐ and sulphate‐reducing bacteria, salt‐ and alkali‐tolerant bacteria, such as the phylum Firmicutes and the class Gammaproteobacteria, and in particular, the family Bacillaceae, were dominant in the downstream groundwater of the first aquifer that had high ion concentrations caused by the dissolution of calcite and dolomite; meanwhile, the heterotrophic microaerophilic families Comamonadaceae and Rhodocyclaceae prevailed in the upstream groundwater of the first aquifer. Sulphate‐reducing bacteria were extremely abundant in the upstream groundwater of the second aquifer, as the SO42? concentration was especially high. Methanogens and methanotrophs were predominant in the downstream groundwater of the second aquifer even though the concentration of SO42? was much higher than 0.5 mg L?1. The microbial communities, together with the geochemical parameters, indicated that the upstream region of the first aquifer was suboxic, that Fe(III) and Mn(IV) reductions were not the main redox processes in the downstream groundwater of the first aquifer with high Fe and Mn concentrations, and that the redox processes in the upstream and downstream regions of the second confined aquifer were SO42? reduction and methanogenesis, respectively. This study expands understanding of the linkages between microbial communities and hydrogeochemistry in pristine groundwaters and provides more evidence for identifying active redox conditions and processes.  相似文献   

16.
The present study focuses on the nutrient sources and gradients in Paranaguá Bay (Southern Brazil), where nutrient inputs are related to losses from fertilizer loading in Paranaguá harbour and the discharge of untreated waste water. The input of dissolved inorganic nutrients to the bay from the harbour and city, as well as from river and atmospheric deposition, amounted to 642?t?year?1 DIN-N and 92?t?year?1 PO4-P. Harbour losses accounted for 6?% of total DIN-N and 39?% of total PO4-P loads to the bay, whereas sewage inputs from the city were responsible for 21?% and 22?%, respectively. River inputs made up 68?% of DIN-N, mainly in the form of nitrate, and 35?% of PO4-P loads, while atmospheric wet deposition was estimated to be in the order of 5?% of DIN-N and 4?% of PO4-P loads. Local maxima in nutrient levels deriving from highly concentrated sewage discharge were observed in front of the harbour and city of Paranaguá, but the plumes are diluted rapidly due to short residence times. DIN concentrations are negatively correlated with salinity, indicating the importance of freshwater input as a main factor controlling nitrogen distribution. Elevated phosphate levels in the stratified middle section of the bay may result both from harbour emissions and phosphate remobilization from sediments. Generally lower DIN and PO4 concentrations during the warmer rainy season are supposed to be due to intensified assimilation rates especially in the middle section of the bay where dense phytoplankton blooms are observed. The bay as a whole cannot be classified as being seriously eutrophic, albeit eutrophication symptoms prevail in some restricted locations in front of Paranaguá harbour.  相似文献   

17.
A two‐dimensional variable‐density groundwater flow and transport model was developed to provide a conceptual understanding of past and future conditions of nitrate (NO3) transport and estimate groundwater nitrate flux to the Gulf of Mexico. Simulation results show that contaminant discharge to the coast decreases as the extent of saltwater intrusion increases. Other natural and/or artificial surface waters such as navigation channels may serve as major sinks for contaminant loading and act to alter expected transport pathways discharging contaminants to other areas. Concentrations of NO3 in the saturated zone were estimated to range between 30 and 160 mg?L?1 as NO3. Relatively high hydraulic vertical gradients and mixing likely play a significant role in the transport processes, enhancing dilution and contaminant migration to depth. Residence times of NO3 in the deeper aquifers vary from 100 (locally) to about 300 years through the investigated aquifer system. NO3 mass fluxes from the shallow aquifers (0 to 5.7 × 104 mg?m?2?day?1) were primarily directed towards the navigation channel, which intersects and captures a portion of the shallow groundwater flow/discharge. Direct NO3 discharge to the sea (i.e. Gulf of Mexico) from the shallow aquifer was very low (0 to 9.0 × 101 mg · m?2?day?1) compared with discharge from the deeper aquifer system (0 to 8.2 × 103 mg?m?2?day?1). Both model‐calibrated and radiocarbon tracer‐determined contaminant flux estimates reveal similar discharge trends, validating the use of the model for density‐dependent flow conditions. The modelling approach shows promise to evaluate contaminant and nutrient loading for similar coastal regions worldwide. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
We examined the fire‐induced changes in groundwater recharge rate. This aspect is particularly important in the case of large forested areas growing over a coastal aquifer affected by saltwater intrusion. In the Ravenna coastal area (Italy), pine forests grow on coastal dune belts, overlying a sandy unconfined aquifer, which is strongly affected by marine ingression. Three groundwater profiles across the forest and perpendicular to the coastline were monitored for groundwater level, physical, and chemical parameters. The aims were to define groundwater quality, recharge rate, freshwater volume, and highlight change, which occurred after a forest fire with reference to pre‐fire conditions. Analytical solutions based on Darcy Law and the Dupuit Equation were applied to calculate unconfined flow and compare recharge rates among the profiles. The estimated recharge rates increased in the partially and completely burnt areas (219 and 511 mm year?1, respectively) compared with the pristine pine forest area (73 mm year?1). Although pre‐fire conditions were similar in all monitored profiles, a post‐fire decrease in salinity was observed across the burnt forest, along with an increase in infiltration and freshwater lens thickness. This was attributed to decrease canopy interception and evapotranspiration caused by vegetation absence after the fire. This research provided an example of positive forest fire feedback on the quantity and quality of fresh groundwater resources in a lowland coastal aquifer affected by saltwater intrusion, with limited availability of freshwater resources. The fire provided an opportunity to evaluate a new forest management approach and consider the restoration and promotion of native dune herbaceous vegetation.  相似文献   

19.
Alan R. Hill 《水文研究》2012,26(20):3135-3146
The effect of preferential flow in soil pipes on nitrate retention in riparian zones is poorly understood. The characteristics of soil pipes and their influence on patterns of groundwater transport and nitrate dynamics were studied along four transects in a 1‐ to >3‐m deep layer of peat and marl overlying an oxic sand aquifer in a riparian zone in southern Ontario, Canada. The peat‐marl deposit, which consisted of several horizontal layers with large differences in bulk density, contained soil pipes that were generally 0.1 to 0.2 m in diameter and often extended vertically for 1 to >2 m. Springs that produced overland flow across the riparian area occurred at some sites where pipes extended to the peat surface. Concentrations of NO3?–N (20–30 mg L?1) and dissolved oxygen (DO) (4–6 mg L?1) observed in peat pipe systems and surface springs were similar to values in the underlying sand aquifer, indicating that preferential flow transported groundwater with limited nitrate depletion. Low NO3?–N concentrations of <5 mg L?1 and enriched δ15N values indicated that denitrification was restricted to small areas of the peat where pipes were absent. Groundwater DO concentrations declined rapidly to <2 mg L?1 in the peat matrix adjacent to pipes, whereas high NO3?–N concentrations of >15 mg L?1 extended over a larger zone. Low dissolved organic carbon values at these locations suggest that supplies of organic carbon were not sufficient to support high rates of denitrification, despite low DO conditions. These data indicate that it is important to develop a greater understanding of pipes in peat deposits, which function as sites where the transport of large fluxes of water with low biogeochemical reaction rates can limit the nitrate removal capacity of riparian zones. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Solute concentrations and fluxes in rainfall, throughfall and stemflow in two forest types, and stream flow in a 90 ha catchment in southern Chile (39°44′S, 73°10′W) were measured. Bulk precipitation pH was 6·1 and conductivity was low. Cation concentrations in rainfall were low (0·58 mg Ca2+ l?1, 0·13 mg K+ l?1, 0·11 mg Mg2+ l?1 and <0·08 mg NH4–N l?1), except for sodium (1·10 mg l?1). Unexpected high levels of nitrate deposition in rainfall (mean concentration 0·38 mg NO3–N l?1, total flux 6·3 kg NO3–N ha?1) were measured. Concentrations of soluble phosphorous in bulk precipitation and stream flow were below detection limits (<0·09 mg l?1) for all events. Stream‐flow pH was 6·3 and conductivity was 28·3 μs. Stream‐water chemistry was also dominated by sodium (2·70 mg l?1) followed by Ca, Mg and K (1·31, 0·70 and 0·36 mg l?1). The solute budget indicated a net loss of 3·8 kg Na+ ha?1 year?1, 5·4 kg Mg2+ ha?1 year?1, 1·5 kg Ca2+ ha?1 year?1 and 0·9 kg K+ ha?1 year?1, while 4·9 kg NO3–N ha?1 year?1 was retained by the ecosystem. Stream water is not suitable for domestic use owing to high manganese and, especially, iron concentrations. Throughfall and stemflow chemistry at a pine stand (Pinus radiata D. Don) and a native forest site (Siempreverde type), both located within the catchment, were compared. Nitrate fluxes within both forest sites were similar (1·3 kg NO3–N ha?1 year?1 as throughfall). Cation fluxes in net rainfall (throughfall plus stemflow) at the pine stand generally were higher (34·8 kg Na+ ha?1 year?1, 21·5 kg K+ ha?1 year?1, 5·1 kg Mg2+ ha?1 year?1) compared with the secondary native forest site (24·7 kg Na+ ha?1 year?1, 18·9 kg K+ ha?1 year?1 and 4·4 kg Mg2+ ha?1 year?1). However, calcium deposition beneath the native forest stand was higher (15·9 kg Ca2+ ha?1 year?1) compared with the pine stand (12·6 kg Ca2+ ha?1 year?1). Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号