首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 0 毫秒
1.
The European Union's Water Framework Directive (WFD) requires that all Member States within the European Union determine reference conditions for aquatic ecosystems to provide a baseline against which to measure the effects of past and present activities. Reference conditions are subsequently used to classify the ecological status of European waters. The decisions regarding environmental status will be important future elements in the management of European coastal waters. We have developed a number of classification scenarios for total nitrogen (TN) in the overlying waters of the southern part of Roskilde Fjord, Denmark, taking as our basis a palaeoecological reconstruction of fluctuations in TN between 1850 and 1995. We present a provisional classification scheme for the ecological status of Roskilde Fjord, sensu the WFD. Decision(s) regarding the deviation from reference conditions will give a wide range of apparent ecological status from good, through moderate and poor, to bad depending upon the definition of an acceptable deviation from reference conditions. The determination of an acceptable deviation will ultimately be a political decision, and will result in a wide range in the protection of coastal waters in Europe. There is still, however, an urgent need for a sound scientific documentation of the various scenarios for the implementation of the WFD.  相似文献   

2.
The European Water Framework Directive (WFD) establishes a framework for the protection and improvement of estuarine (transitional) and coastal waters, attempting to achieve good water status by 2015; this includes, within the assessment, biological and chemical elements. The European Commission has proposed a list of priority dangerous substances (including metals such as Cd, Hg, Ni and Pb), with the corresponding list of environmental quality standards (EQS), to assess chemical status, but only for waters. In this contribution, a long-term (1995–2007) dataset of transitional and coastal water and sediment trace elements concentrations, from the Basque Country (northern Spain), has been used to investigate the response of these systems to water treatment programmes. Moreover, the approach proposed in the WFD, for assessing water chemical status (the ‘one out, all out’ approach), is compared with the integration of water and sediment data, into a unique assessment. For this exercise, background levels are used as reference conditions, identifying the boundary between high and good chemical status. EQS are used as the boundary between good and moderate chemical status. This contribution reveals that the first approach can lead to misclassification, with the second approach representing the pattern shown by the long-term data trends. Finally, the management implications, using each approach are discussed.  相似文献   

3.
Inverted microscopy is widespread employed for the analysis of phytoplankton composition within water quality monitoring networks. However, the analysis at the lowest taxonomical level is not always required for ecological status assessment. In addition, inverted microscopy can underestimate the small phytoplankton, and not always distinguish photoautotrophic from heterotrophic cells. In this study, as alternative tools, epifluorescence microscopy and High Performance Liquid Chromatography (HPLC) were employed to characterize phytoplankton communities within waters of different trophic condition. Epifluorescence microscopy confirmed its effectiveness to count the small phytoplankton. Furthermore, significant correlations between nutrients of anthropogenic origin and nanoplankton abundances were found. However, this technique resulted very time-consuming. HPLC together with the CHEMTAX program was more appropriate than inverted microscopy, in terms of cost-effectiveness. Also, the main variability patterns observed in the phytoplankton community structure by HPLC coincided with previous findings in the study area. Nevertheless, a rapid screening at the inverted microscope is recommended.  相似文献   

4.
The trophic status classification of coastal waters at the European scale requires the availability of harmonised indicators and procedures. The composite trophic status index (TRIX) provides useful metrics for the assessment of the trophic status of coastal waters. It was originally developed for Italian coastal waters and then applied in many European seas (Adriatic, Tyrrhenian, Baltic, Black and Northern seas). The TRIX index does not fulfil the classification procedure suggested by the WFD for two reasons: (a) it is based on an absolute trophic scale without any normalization to type-specific reference conditions; (b) it makes an ex ante aggregation of biological (Chl-a) and physico-chemical (oxygen, nutrients) quality elements, instead of an ex post integration of separate evaluations of biological and subsequent chemical quality elements. A revisitation of the TRIX index in the light of the European Water Framework Directive (WFD, 2000/60/EC) and new TRIX derived tools are presented in this paper. A number of Italian coastal sites were grouped into different types based on a thorough analysis of their hydro-morphological conditions, and type-specific reference sites were selected. Unscaled TRIX values (UNTRIX) for reference and impacted sites have been calculated and two alternative UNTRIX-based classification procedures are discussed. The proposed procedures, to be validated on a broader scale, provide users with simple tools that give an integrated view of nutrient enrichment and its effects on algal biomass (Chl-a) and on oxygen levels. This trophic evaluation along with phytoplankton indicator species and algal blooms contribute to the comprehensive assessment of phytoplankton, one of the biological quality elements in coastal waters.  相似文献   

5.
Increasing recognition of the deleterious environmental effects of excessive fine sediment delivery to watercourses means that reliable sediment source assessment represents a fundamental component of catchment planning targeting the protection of freshwater resources and their ecological integrity. Sediment tracing or fingerprinting approaches have been increasingly used to provide catchment scale sediment source information, but there is a need to continue refining existing procedures especially with respect to uncertainty analysis during mass balance modelling. Consequently, an updated Monte Carlo numerical modelling framework was devised and tested, incorporating both conventional and robust statistics coupled with random and Latin Hypercube Sampling (LHS) together with local and genetic algorithm (GA) optimisation. A sediment sourcing study undertaken in the River Axe catchment, southwest England, suggested that the use of robust statistics and LHS with GA optimisation generated the best performance with respect to predicting measured bed sediment geochemistry in six out of eight model applications. On this basis, the catchment‐wide average median sediment source contributions were predicted to be 38 ± 1% (pasture topsoils), 3 ± 1% (cultivated topsoils), 37 ± 1% (damaged road verges) and 22 ± 1% (channel banks/subsurface sources). Using modelling frameworks which provide users with flexibility to compare local and global optimisation during uncertainty analysis is recommended for future sediment tracing studies. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
A new multimetric MMI_PL index, which is based on the macroinvertebrate composition and combines six single key metrics, has already been implemented in Poland according to the requirements of the EU Water Framework Directive. The objectives of our survey were to assess the biological water quality using the new multimetric MMI_PL index in both reference and human-impacted streams, to analyze whether the values of the new multimetric index properly reflect the ecological status of the water in upland and mountain streams as well as to determine which environmental factors influence the distribution of benthic macroinvertebrates and the values of the metrics. The study was carried out from 2007 to 2010 in three Ecoregions that were established by the EU WFD. A total of 60 sampling sites: 36 reference sites that were situated in the headwaters of mountain streams at mid- and high-altitudes and 24, human-impacted sampling sites were selected. The benthic macroinvertebrate surveys were supported by both a hydromorphological and macrophyte assessment according to the River Habitat Survey (RHS) and to the Macrophyte Methods for Rivers. Canonical correspondence analysis (CCA) showed that the values of the Habitat Quality Assessment (HQA) index, conductivity, pH and altitude were the parameters most associated (statistically significant) with the distribution of benthic macroinvertebrate taxa and the values of the metrics in both the reference and human-impacted (impaired) sections of the streams in Ecoregions 9, 10 and 14. The new MMI_PL index was useful for biological water quality assessment and was also important for separating both the reference and impaired sections of streams. The MMI_PL index and some key metrics performed contrary to what was expected in relation to the reference high-altitude siliceous streams (the High Tatra Mts., Ecoregion 10). Low values of multimetric index and key metrics did not properly reflect their high ecological status and pristine character as reflected by the hydromorphological (RHS) and macrophyte surveys or the physical and chemical parameters of the water.  相似文献   

7.
This scientific briefing announces the availability of a new multi‐element high‐frequency water quality data set that is openly accessible to the research community. The data set comprises up to 2 years of 7‐hourly water quality data for two streams and one rainfall site in the Upper Severn catchment at Plynlimon in Mid‐Wales. The measurements cover 50 analytes ranging from H+ to U and spanning six orders of magnitude in concentration, including major, minor and trace elements as well as nutrients, and they complement decades of weekly measurements of the same analytes at the Upper Severn. Together, the weekly and 7‐hourly time series provide a unique data set for studying both long‐term trends and short‐term dynamics. The data show complex behaviour over a wide range of timescales, challenging our understanding of catchment processes and informing future modelling efforts. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
The internal riverine processes acting upon phosphorus and dissolved silicon were investigated along a 55 km stretch of the River Swale during four monitoring campaigns. Samples of river water were taken at 3 h intervals at sites on the main river and the three major tributaries. Samples were analysed for soluble reactive phosphorus, total dissolved phosphorus, total phosphorus, dissolved silicon and suspended solid concentration. Mass‐balances for each determinand were calculated by comparing the total load entering the river with the total load measured at the downstream site. The difference, i.e. the residual load, showed that there was a large retention of phosphorus and silicon within the system during the March 1998 flood event, but the other three campaigns produced net‐exports. Cumulative residual loads were calculated for each determinand at 6 h intervals throughout each campaign. This incremental approach showed that the mass‐balance residuals followed relatively consistent patterns under various river discharges. During stable low‐flow, there was a retention of particulate phosphorus within the system and also a retention of total dissolved phosphorus and soluble reactive phosphorus, most likely caused by the sorption of soluble phosphorus by bed‐sediments. In times of high river‐discharge, there was a mobilization and export of stored bed‐sediment phosphorus. During overbank flooding, there was a large retention (58% of total input) of particulate phosphorus within the system, due to the mass deposition of phosphorus‐rich sediment onto the floodplain. Soluble phosphorus was also retained within the system by sequestration from the water column by the high concentration of suspended solids. The dissolved silicon mass‐balance residuals had a less consistent pattern in relation to river discharge. There was a large retention of dissolved silicon during overbank flooding, possibly due to sorption onto floodplain soil, and net‐exports during periods of both stable low‐flow and rising limbs of hydrographs, due to release of dissolved silicon from pore‐waters. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
A study of Rostherne Mere (Cheshire, UK) was undertaken to reveal relationships among various ecosystem components and assess the progress in lake recovery following sewage diversion. An intensive monitoring programme included measurements of dissolved oxygen, T, pH, electric conductivity, K, Mg, Ca, Si, N and P species, Secchi depth, suspended solids, chlorophyll‐a, phyto‐ and zooplankton counts. Recorded changes and the results of correlation analysis broadly confirmed to the classic limnoecological theory and allowed detailed interpretation of the dynamics observed. The Si level was used to estimate the amount of diatom detritus produced in spring. Chemical profiles were used to estimate the amount of nutrients accumulated in the hypolimnion during the stratified period. These estimates were compared with simulations made using the model of exponential decay, which showed a good performance in the case of Si but considerable underestimation in the case of P. The differences between the values simulated by the model and estimates based on field observations resulted from the additional P release from the sediments. This release could have been stimulated by a combination of factors, including the development of anoxic layers on the sediment–water interface and Si‐induced desorption from Fe, Al and Mn oxides. Internal P loading during the stratified period was thus estimated at about 4–9 g/m2, suggesting that rapid changes in the lake's trophic status are at present unlikely. Certain aspects of this work (including interpretation of interrelationships between ecosystem components, estimation of the decomposition constant, analysis of factors controlling nutrient accumulation in the hypolimnion, and a low‐cost method to estimate internal P release) may be useful for studies of other aquatic systems and have, therefore, general limnological applicability. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
The water quality of rivers in the eastern part of the Humber Basin, north-eastern England is described from a baseflow survey (11–13 August 2006) of a wide range of water quality determinants, and long-term nutrient records of the Environment Agency of England and Wales (EA). The baseflow survey shows that the rivers are oversaturated with respect to dissolved CO2 and calcite. They are sodium, potassium, lithium, boron, chloride, sulphate and fluoride bearing from a combination of atmospheric, within-catchment, agricultural and sewage effluent sources. Nitrate concentrations are uniform for rivers draining permeable bedrock but decrease for clay drainage areas. Soluble reactive phosphorus (SRP) concentrations are variable across the catchments reflecting the importance and variability of point sources and within-river processing. The EA data show annual oscillations for both NO3 and SRP concentrations. Average NO3 concentrations vary between 3.3 and 18.8 mgN/l and concentrations are low during the summer months. Average SRP concentrations vary between 23 and 1959 μg/l. Highest SRP concentrations generally occur when there is effluent input from sewage treatment works and agricultural point sources (e.g. overflow from slurry tanks, farmyard washings). Despite many of the rivers being nutrient rich, they are generally of good biological quality when point source inputs are not important.  相似文献   

11.
Bruno Ambroise 《水文研究》2016,30(20):3560-3577
In the small Ringelbach research catchment, where studies on the water cycle components in a granitic mountainous environment have been conducted since 1976, the water‐saturated areas that are hydraulically connected to the outlet play a major role in the streamflow generation, as it is here that complex interactions between atmosphere, surface and ground waters take place. During baseflow recession periods, which may last several months between two groundwater recharge events, the atmospheric inputs of water and energy on these contributing areas only explain the streamflow fluctuations observed around the master recession curve, which defines the groundwater contribution: fluctuating above it in the case of precipitation input on these areas, below it in the case of evaporation output from these areas. Streamflow may therefore largely deviate from the master recession curve in the case of long, hot, dry spells. Detailed mapping has shown that their variable extent is well related to baseflow by a loglinear curve. On the other hand, a synthetic master recession curve, well fitted by a second‐order hyperbolic function, has been obtained from numerous pure recession periods. Both based on these two curves, a simple procedure and a simple model have been used to (i) validate the hypothesis that the connected saturated areas are the only permanent variable contributing areas and (ii) simulate the daily streamflow volumes over long baseflow recession periods by a water balance of the aquifer below these areas only. The storm runoff ratio for small to moderate rainfall events is indeed corresponding to the catchment saturated fraction at that time. The volume of daily streamflow oscillations is indeed corresponding to the evaporation at the potential rate from the saturated areas only. In both cases, streamflow naturally tends towards the master recession curve after the end of any atmospheric perturbation. Introducing these findings into TOPMODEL led to significantly improved simulation results during baseflow recession periods. The master recession curve may therefore be considered as a dynamic equilibrium curve. Together with the relationship between saturated extent and baseflow, it provides the main characteristics necessary to understand and model the interactions at this complex interface and the resulting daily streamflow variations during baseflow recession periods in this type of catchment. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号