首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Mackenzie River, Canada's longest and largest river system, provides the greatest Western Hemisphere discharge to the Arctic Ocean. Recent reports of declining flows have prompted concern because (1) this influences Arctic Ocean salinity, stratification and polar ice; (2) a major tributary, the Peace River, has large hydroelectric projects, and further dams are proposed; and (3) the system includes the extensive and biodiverse Peace–Athabasca, Slave and Mackenzie deltas. To assess hydrological trends over the past century that could reflect climate change, we analysed historic patterns of river discharges. We expanded the data series by infilling for short gaps, calculating annual discharges from early summer‐only records (typical r2 > 0.9), coordinating data from sequential hydrometric gauges (requiring r2 > 0.8) and advancing the data to 2013. For trend detection, Pearson correlation provided similar outcomes to non‐parametric Kendall's τ and Spearman's ρ tests. There was no overall pattern for annual flows of the most southerly Athabasca River (1913–2013), while the adjacent, regulated Peace River displayed increasing flows (1916–2013, p < 0.05). These rivers combine to form the Slave River, which did not display an overall trend (1917–2013). The more northerly, free‐flowing Liard River is the largest tributary and displayed increasing annual flows (1944–2013, p < 0.01, ~3.5% per decade) because of increasing winter, spring, and summer flows, and annual maximum and minimum flows also increased. Following from the tributary contributions, the Mackenzie River flows gradually increased (Fort Simpson 1939–2013, p < 0.05, ~1.5% per decade), but the interannual patterns for the Liard and other rivers were correlated with the Pacific Decadal Oscillation, complicating the pattern. This conclusion of increasing river flows to the Arctic Ocean contrasts with some prior reports, based on shorter time series. The observed flow increase is consistent with increasing discharges of the large Eurasian Arctic drainages, suggesting a common northern response to climate change. Analyses of historic trends are strengthened with lengthening records, and with the Pacific Decadal Oscillation influence, we recommend century‐long records for northern rivers. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Lengthy records of river discharge are necessary to comprehensively assess the long‐term connection between synoptic climate forcings and nival‐regime systems in British Columbia. A regional multispecies network of tree‐ring width and ring density chronologies was built for west central British Columbia with the intention of dendrohydrologically extending short runoff records in this area. Extended records of July–August mean discharge anomalies for the Skeena and Atnarko Rivers were reconstructed back to ad 1660. Low flow events represented during the late 1600s, early 1700s and late 1800s lie beyond those experienced during the recent instrumental period for these basins. The documentation of extreme events of this magnitude necessitates consideration when planning for future water resources in this region. Supplementary dendroclimatic reconstructions of the winter Pacific North American (PNA) pressure anomaly pattern and records of mean summer temperature and end‐of‐winter snow water equivalent were also constructed. These ancillary climate records provide insight into the long‐term climate drivers of annual discharge dynamics within these nival basins. Correlation and wavelet analyses confirm the persistent relationship of synoptic climate regimes described by the Southern Oscillation Index, NINO 3.4, Pacific Decadal Oscillation and PNA indices on runoff in west central British Columbia. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Dendroclimatological data were used to reconstruct the discharge history of Chilko River, which drains a glacierized watershed in the Coast Mountains of British Columbia. We correlated ring‐width records from Engelmann spruce (ES) (Picea engelmanni) and mountain hemlock (MH) (Tsuga mertensiana) trees to historical hydroclimate data. Over the period of record, spruce and hemlock radial growth correlates significantly with temperature and snow depth, respectively. We found that a multi‐species approach provided a better model fit and reconstructive power. Using these relationships, we developed generalized linear models for mean June, July, and June‐July discharge. The proxy records provide insights into streamflow variability of a typical Coast Mountains river over the past 240 years and confirm the long‐term influence of the Pacific Decadal Oscillation (PDO) on hydroclimatic regimes in the region. A relationship also exists between the reconstructed June‐July discharge record and the North Pacific (NP) Index, suggesting that winter atmospheric patterns over the North Pacific influence the hydrology of coastal British Columbia. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
To predict future river flows, empirical trend projection (ETP) analyses and extends historic trends, while hydroclimatic modelling (HCM) incorporates regional downscaling from global circulation model (GCM) outputs. We applied both approaches to the extensively allocated Oldman River Basin that drains the North American Rocky Mountains and provides an international focus for water sharing. For ETP, we analysed monthly discharges from 1912 to 2008 with non‐parametric regression, and extrapolated changes to 2055. For modelling, we refined the physical models MTCLIM and SNOPAC to provide water inputs into RIVRQ (river discharge), a model that assesses the streamflow regime as involving dynamic peaks superimposed on stable baseflow. After parameterization with 1960–1989 data, we assessed climate forecasts from six GCMs: CGCM1‐A, HadCM3, NCAR‐CCM3, ECHAM4 and 5 and GCM2. Modelling reasonably reconstructed monthly hydrographs (R2 about 0·7), and averaging over three decades closely reconstructed the monthly pattern (R2 = 0·94). When applied to the GCM forecasts, the model predicted that summer flows would decline considerably, while winter and early spring flows would increase, producing a slight decline in the annual discharge (?3%, 2005–2055). The ETP predicted similarly decreased summer flows but slight change in winter flows and greater annual flow reduction (?9%). The partial convergence of the seasonal flow projections increases confidence in a composite analysis and we thus predict further declines in summer (about ? 15%) and annual flows (about ? 5%). This composite projection indicates a more modest change than had been anticipated based on earlier GCM analyses or trend projections that considered only three or four decades. For other river basins, we recommend the utilization of ETP based on the longest available streamflow records, and HCM with multiple GCMs. The degree of correspondence from these two independent approaches would provide a basis for assessing the confidence in projections for future river flows and surface water supplies. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Summer streamflow droughts are becoming more severe in many watersheds on Vancouver Island, British Columbia, as a result of climate warming. Small coastal basins that are the primary water source for most communities and essential to Pacific salmon populations have been particularly affected. Because the most extreme naturally occurring droughts are rarely captured within short instrumental records water managers likely underestimate, and are unprepared for, worst‐case scenario low flows. To provide a long‐term perspective on recent droughts on Vancouver Island, we developed a 477‐year long dendrohydrological reconstruction of summer streamflow for Tsable River based on a network of annual tree‐ring width data. A novel aspect of our study is the use of conifer trees that are energy limited by spring snowmelt timing. Explaining 63% of the instrumental streamflow variability, to our knowledge the reconstruction is the longest of its kind in British Columbia. We demonstrate that targeting the summer streamflow component derived from snowmelt is powerful for determining drought‐season discharge in hybrid runoff regimes, and we suggest that this approach may be applied to small watersheds in temperate environments that are not usually conducive to dendrohydrology. Our findings suggest that since 1520, 21 droughts occurred that were more extreme than recent ‘severe’ events like those in 2003 and 2009. Recent droughts are therefore not anomalous relative to the ~400‐year pre‐instrumental record and should be anticipated within water management strategies. In coming decades, worst‐case scenario natural droughts compounded by land use change and climate change could result in droughts more severe than any since 1520. The influence of the Pacific Decadal Oscillation on instrumental and modelled Tsable River summer streamflow is likely linked to the enhanced role of snowmelt in determining summer discharge during cool phases. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Rivers display temporal dependence in suspended sediment–water discharge relationships. Although most work has focused on multi‐decadal trends, river sediment behavior often displays sub‐decadal scale fluctuations that have received little attention. The objectives of this study were to identify inter‐annual to decadal scale fluctuations in the suspended sediment–discharge relationship of a dry‐summer subtropical river, infer the mechanisms behind these fluctuations, and examine the role of El Niño Southern Oscillation climate cycles. The Salinas River (California) is a moderate sized (11 000 km2), coastal dry‐summer subtropical catchment with a mean discharge (Qmean) of 11.6 m3 s?1. This watershed is located at the northern most extent of the Pacific coastal North America region that experiences increased storm frequency during El Niño years. Event to inter‐annual scale suspended sediment behavior in this system was known to be influenced by antecedent hydrologic conditions, whereby previous hydrologic activity regulates the suspended sediment concentration–water discharge relationship. Fine and sand suspended sediment in the lower Salinas River exhibited persistent, decadal scale periods of positive and negative discharge corrected concentrations. The decadal scale variability in suspended sediment behavior was influenced by inter‐annual to decadal scale fluctuations in hydrologic characteristics, including: elapsed time since small (~0.1 × Qmean), and moderate (~10 × Qmean) threshold discharge values, the number of preceding days that low/no flow occurred, and annual water yield. El Niño climatic activity was found to have little effect on decadal‐scale fluctuations in the fine suspended sediment–discharge relationship due to low or no effect on the frequency of moderate to low discharge magnitudes, annual precipitation, and water yield. However, sand concentrations generally increased in El Niño years due to the increased frequency of moderate to high magnitude discharge events, which generally increase sand supply. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
There is increasing interest in the magnitude of the flow of freshwater to the Arctic Ocean due to its impacts on the biogeophysical and socio‐economic systems in the north and its influence on global climate. This study examines freshwater flow based on a dataset of 72 rivers that either directly or indirectly contribute flow to the Arctic Ocean or reflect the hydrologic regime of areas contributing flow to the Arctic Ocean. Annual streamflow for the 72 rivers is categorized as to the nature and location of the contribution to the Arctic Ocean, and composite series of annual flows are determined for each category for the period 1975 to 2015. A trend analysis is then conducted for the annual discharge series assembled for each category. The results reveal a general increase in freshwater flow to the Arctic Ocean with this increase being more prominent from the Eurasian rivers than from the North American rivers. A comparison with trends obtained from an earlier study ending in 2000 indicates similar trend response from the Eurasian rivers, but dramatic differences from some of the North American rivers. A total annual discharge increase of 8.7 km3/y/y is found, with an annual discharge increase of 5.8 km3/y/y observed for the rivers directly flowing to the Arctic Ocean. The influence of annual or seasonal climate oscillation indices on annual discharge series is also assessed. Several river categories are found to have significant correlations with the Arctic Oscillation, the North Atlantic Oscillation, or the Pacific Decadal Oscillation. However, no significant association with climate indices is found for the river categories leading to the largest freshwater contribution to the Arctic Ocean.  相似文献   

8.
The South Saskatchewan River Basin of southern Alberta drains the transboundary central Rocky Mountains region and provides the focus for irrigation agriculture in Canada. Following extensive development, two tributaries, the Oldman and Bow rivers, were closed for further water allocations, whereas the Red Deer River (RDR) remains open. The RDR basin is at the northern limit of the North American Great Plains and may be suitable for agricultural expansion with a warming climate. To consider irrigation development and ecological impacts, it is important to understand the regional hydrologic consequences of climate change. To analyse historic trends that could extend into the future, we developed century‐long discharge records for the RDR, by coordinating data across hydrometric gauges, estimating annual flows from seasonal records, and undertaking flow naturalization to compensate for river regulation. Analyses indicated some coordination with the Pacific decadal oscillation and slight decline in summer and annual flows from 1912 to 2016 (?0.13%/year, Sen's slope). Another forecasting approach involved regional downscaling from the global circulation models, CGCMI‐A, ECHAM4, HadCM3, and NCAR‐CCM3. These projected slight flow decreases from the mountain headwaters versus increases from the foothills and boreal regions, resulting in a slight increase in overall river flows (+0.1%/year). Prior projections from these and other global circulation models ranged from slight decrease to slight increase, and the average projection of ?0.05%/year approached the empirical trend. Assessments of other rivers draining the central and northern Rocky Mountains revealed a geographic transition in flow patterns over the past century. Flows from the rivers in Southern Alberta declined (around ?0.15%/year), in contrast to increasing flows in north‐eastern British Columbia and the Yukon. The RDR watershed approaches this transition, and this study thus revealed regional differentiation in the hydrological consequences from climate change.  相似文献   

9.
This study addresses a need to document changes in streamflow and base flow (groundwater discharge to streams) in Hawai‘i during the past century. Statistically significant long‐term (1913–2008) downward trends were detected (using the nonparametric Mann–Kendall test) in low‐streamflow and base‐flow records. These long‐term downward trends are likely related to a statistically significant downward shift around 1943 detected (using the nonparametric Pettitt test) in index records of streamflow and base flow. The downward shift corresponds to a decrease of 22% in median streamflow and a decrease of 23% in median base flow between the periods 1913–1943 and 1943–2008. The shift coincides with other local and regional factors, including a change from a positive to a negative phase in the Pacific Decadal Oscillation, shifts in the direction of the trade winds over Hawai‘i, and a reforestation programme. The detected shift and long‐term trends reflect region‐wide changes in climatic and land‐cover factors. A weak pattern of downward trends in base flows during the period 1943–2008 may indicate a continued decrease in base flows after the 1943 shift. Downward trends were detected more commonly in base‐flow records than in high‐streamflow, peak‐flow, and rainfall records. The decrease in base flow is likely related to a decrease in groundwater storage and recharge and therefore is a valuable indicator of decreasing water availability and watershed vulnerability to hydrologic changes. Whether the downward trends will continue is largely uncertain given the uncertainty in climate‐change projections and watershed responses to changes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Long‐term changes and variability in river flows in the tropical Upper Suriname River Basin in Suriname (2–6°N, 54–58°W) are analysed, including the relation to sea surface temperatures (SSTs) in the tropical Atlantic and Pacific Ocean. To analyse variability, lag correlation and statistical properties of the data series are used. Long‐term changes are analysed using parametric and non‐parametric statistical techniques. The analyses are performed for the period 1952–1985. The results show that both river discharge series at Semoisie and Pokigron are non‐stationary and have a negative trend. The negative rainfall trend in the centre of Suriname may be responsible for the negative trend in the annual river discharges in the basin. The highest correlation (Pearson's coefficient c) is obtained when the Tropical North Atlantic (TNA) SSTs lags the monthly discharges at Pokigron by 3–4 months (c = 0·7) and when the Tropical South Atlantic (TSA) SSTs lags the discharges by 4 months (c = ? 0·7). It also follows that the high (low) monthly flows, from April–August (September–March) are associated with increasing (decreasing) SSTs in the TNA and with decreasing (increasing) SSTs in the TSA. The results also reveal that years with low (high) discharges are more related to warmer (colder) SSTs during the year in the TNA region and a southward displacement of the Inter‐Tropical Convergence Zone (ITCZ). However, the Pacific El Niño (La Niña) events may also be responsible for low (high) flow years in this basin. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
Long hydroclimate records are essential elements for the assessment and management of changing freshwater resources. These records are especially important in transboundary watersheds where international cooperation is required in the joint planning and management process of shared basins. Dendrochronological techniques were used to develop a multicentury record of April 1 snow water equivalent (SWE) for the Stikine River basin in northern British Columbia, Canada, from moisture‐sensitive white spruce (Picea glauca) tree rings. Explaining 43% of the instrumental SWE variability, to our knowledge, this research represents the first attempt to develop long‐term snowpack reconstructions in northern British Columbia. The results indicated that 15 extreme low April 1 SWE events occurred from 1789 to the beginning of the instrumental record in 1974. The reconstruction record also shows that the occurrence of hydrological extremes in the Stikine River basin is characterized by persistent below‐average periods in SWE consistent with phase shifts of the Pacific Decadal Oscillation (PDO). Spectral analyses indicate a very distinct in‐phase (positive) relationship between the multidecadal frequencies of variability (~40 years) extracted from the SWE tree‐ring reconstruction and other reconstructed winter and spring PDO indices. Comparison of the reconstructed SWE record with other tree‐ring‐derived PDO proxy records shows coherence at multidecadal frequencies of variability. The research has significant implications for regional watershed management by highlighting the hydrological response of the Stikine River basin to prior climate changes.  相似文献   

12.
The warming of the Earth's atmosphere system is likely to change temperature and precipitation, which may affect the climate, hydrology and water resources at the river basins over the world. The importance of temperature change becomes even greater in snow or glacier dominated basins where it controls the snowmelt processes during the late‐winter, spring and summer months. In this study hydrologic responses of streamflow in the Pyanj and Vaksh River basins to climate change are analysed with a watershed hydrology model, based on the downscaled atmospheric data as input, in order to assess the regional climate change impact for the snowfed and glacierfed river basins in the Republic of Tajikistan. As a result of this analysis, it was found that the annual mean river discharge is increasing in the future at snow and glacier dominated areas due to the air temperature increase and the consequent increase in snow/ice melt rates until about 2060. Then the annual mean flow discharge starts to decrease from about 2080 onward because the small glaciers start to disappear in the glacier areas. It was also found that there is a gradual change in the hydrologic flow regime throughout a year, with the high flows occuring earlier in the hydrologic year, due to the warmer climate in the future. Furthermore, significant increases in annual maximum daily flows, including the 100‐year return period flows, at the Pyanj and Vaksh River basins toward the end of the 21st century can be inferred from flood frequency analysis results. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
It is a common practice to employ hydrologic models for assessing present and future states of watersheds and assess the degree of alterations for a range of hydrologic indicators. Previous studies indicate that the hydrologic model may not be able to replicate some of the indicators of interest, which raises questions on the reliability of model simulated changes. Hence, we initiated a study to evaluate the replicability of the streamflow changes by employing the widely used variable infiltration capacity hydrologic model for sub‐basins and mainstem of the Fraser River Basin, Canada. Given that the hydrologic regime of the region is known to be influenced by teleconnections to the Pacific Decadal Oscillation (PDO) and El Niño–Southern Oscillation (ENSO), we used hydrologic responses to the PDO and ENSO states as analogues for evaluating the model's ability to simulate climate‐induced changes. The results revealed that the qualitative patterns of response, such as lower flows for the warm PDO state compared to the cool state, and progressively higher flows for the warm, neutral and cool ENSO states, were generally well reproduced for most hydrologic indicators. Additionally, while the directions of change between the different PDO and ENSO states were mostly well replicated, the magnitude of change for some of the indicators showed considerable differences. Hence, replicability of both magnitude and direction of change need to be carefully examined before using the simulated indicators for assessing future hydrologic changes, and a reliable replication increases the confidence of projected changes. Copyright © 2016 Her Majesty the Queen in Right of Canada. Hydrological Processes. © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Understanding flow pathways and mechanisms that generate streamflow is important to understanding agrochemical contamination in surface waters in agricultural watersheds. Two environmental tracers, δ18O and electrical conductivity (EC), were monitored in tile drainage (draining 12 ha) and stream water (draining nested catchments of 6‐5700 ha) from 2000 to 2008 in the semi‐arid agricultural Missouri Flat Creek (MFC) watershed, near Pullman Washington, USA. Tile drainage and streamflow generated in the watershed were found to have baseline δ18O value of ?14·7‰ (VSMOW) year round. Winter precipitation accounted for 67% of total annual precipitation and was found to dominate streamflow, tile drainage, and groundwater recharge. ‘Old’ and ‘new’ water partitioning in streamflow were not identifiable using δ18O, but seasonal shifts of nitrate‐corrected EC suggest that deep soil pathways primarily generated summer streamflow (mean EC 250 µS/cm) while shallow soil pathways dominated streamflow generation during winter (EC declining as low as 100 µS/cm). Using summer isotopic and EC excursions from tile drainage in larger catchment (4700‐5700 ha) stream waters, summer in‐stream evaporation fractions were estimated to be from 20% to 40%, with the greatest evaporation occurring from August to October. Seasonal watershed and environmental tracer dynamics in the MFC watershed appeared to be similar to those at larger watershed scales in the Palouse River basin. A 0·9‰ enrichment, in shallow groundwater drained to streams (tile drainage and soil seepage), of δ18O values from 2000 to 2008 may be evidence of altered precipitation conditions due to the Pacific Decadal Oscillation (PDO) in the Inland Northwest. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
A refined specific‐gauge approach was developed to quantify changes over time in hydrological response on 3260 km of the Mississippi River system using long‐term data observed at 67 hydrologic measurement stations. Of these stations, 49 were unrated (stage‐only) stations, for which over 2 000 000 ‘synthetic discharges’ were generated based on measured discharge values at nearby rated stations. The addition of these synthetic discharges nearly tripled the number of stations in the study area for which specific‐gauge analysis could be performed. In order to maintain spatial homogeneity across such a broad study area, discharges were normalized to multiples of mean daily flow (MDF). Specific‐gauge analysis calculates stage changes over time for invariant discharge conditions. Two discharges were analysed: low‐flow and flood conditions at each station. In order to avoid the large errors associated with extrapolation of annual rating curves, a new ‘enhanced interpolation’ technique was developed that calculates continuous specific‐stage time series, even for rare discharges. Thus enhanced, specific‐gauge analysis is a useful reconnaissance tool for detecting geomorphic and hydrologic trends over time. Results show that on the Middle Mississippi River and Lower Missouri River, flood stages increased at all stations in spite of widespread incision of the river bed. On the Lower Mississippi River, both low‐flow and flood stages decreased, mainly the result of artificial meander cutoffs in the late 1920s and 1930s, except downstream of Natchez, MS, where net aggradation was observed. On the Upper Mississippi River, the specific‐gauge trends were dominated by emplacement of navigational dams and impoundment of slackwater pools. On all four river reaches, these results document hydrologic responses to the different engineering toolkits used on the different portions of the Mississippi River system during the past 75–150 years. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
Groundwater discharges in the western Canadian oil sands region impact river water quality. Mapping groundwater discharges to rivers in the oil sands region is important to target water quality monitoring efforts and to ensure injected wastewater and steam remain sequestered rather than eventually resurfacing. Saline springs composed of Pleistocene‐aged glacial meltwater exist in the region, but their spatial distribution has not been mapped comprehensively. Here we show that formation waters discharge into 3 major rivers as they flow through the Athabasca Oil Sands Region adjacent to many active oil sands projects. These discharges increase river chloride concentrations from river headwaters to downstream reaches by factors of ~23 in the Christina River, ~4 in the Clearwater River, and ~5 in the Athabasca River. Our survey provides further evidence for the substantial impact of formation water discharges on river water quality, even though they comprise less than ~2% of total streamflow. Geochemical evidence supporting formation water discharges as the leading control on river salinity include increases in river chloride concentrations, Na/(Na + Ca) ratios, Cl/(Cl + SO4) ratios and decreases in 87Sr/86Sr ratios; each mixing trend is consistent with saline groundwater discharges sourced from Cretaceous or Devonian aquifers. These regional subsurface‐to‐surface connections signify that injected wastewater or steam may potentially resurface in the future, emphasizing the critical importance of mapping groundwater flow paths to understand present‐day streamflow quality and to predict the potential for injected fluids to resurface.  相似文献   

17.
The Manso Glacier (~41°S, 72°W), in the northern Patagonian Andes of Argentina, is a regenerated glacier that, like many other glaciers in the region and elsewhere, has been showing a significant retreat. Glacial melt water feeds the Manso Superior River, which, before crossing the Andes to reach a Pacific outfall, flows through the Mascardi (a deep, oligotrophic and monomictic lake) and significantly smaller Hess and Steffen lakes. Harmonic analysis of Mascardi's lake level series suggests that the El Niño‐Southern Oscillation signal has been strong during the 1985–1995 decade but has grown weaker during the initial decade of the 21st century. Hydrological trend analyses applied in data recorded in the uppermost reaches show a monthly and annual decreasing trend in the Manso Superior River discharge series and Mascardi's lake level, which are connected with both, decreasing melt water discharge and (austral) wintertime atmospheric precipitation. Downstream, the decreasing signal initially looses statistical significance and then, when flowing through Steffen Lake, reverses the lake level trend that becomes significantly positive. This suggests that, on its way to the Pacific Ocean, the Manso River receives abundant Andean snow melt water and atmospheric precipitation, which are sufficient to obliterate the negative trend recorded in the uppermost reaches. The reason for this local phenomenon is that the Manso is an antecedent river (aka superposed stream), and hence, the valley crossing the Andes allows the incursion of Pacific humidity that modifies the hydrological regime several hundred kilometres inland. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
In conjunction with available climate data, surface runoff is investigated at 12 gauges in the Quesnel watershed of British Columbia to develop its long‐term (1926–2004) hydroclimatology. At Quesnel itself, annual mean values of air temperature, precipitation and runoff are 4·6 °C, 517 and 648 mm, respectively. Climate data reveal increases in precipitation, no significant trend in mean annual air temperature, but an increasing trend in mean minimum temperatures that is greatest in winter. There is some evidence of decreases in winter snow depth. On the water year scale (October–September), a strong positive correlation is found between discharge and precipitation (r = 0·70, p < 0·01) and a weak negative correlation is found between precipitation and temperature (r = ? 0·36, p < 0·01). Long‐term trends using the Mann‐Kendall test indicate increasing annual discharge amounts that vary from 8 to 14% (12% for the Quesnel River, p = 0·03), and also a tendency toward an earlier spring freshet. River runoff increases at a rate of 1·26 mm yr?1 m?1 of elevation from west to east along the strong elevation gradient in the basin. Discharge, temperature and precipitation are correlated with the large‐scale climate indices of the Pacific Decadal Oscillation (PDO) and El‐Niño Southern Oscillation (ENSO). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
The catchments in the Loess Plateau, in China's middle reaches of the Yellow River Basin, experienced unprecedented land use changes in the last 50 years as a result of large‐scale soil conservation measure to control soil erosion. The climate of the region also exhibited some levels of change with decreased precipitation and increased temperature. This study combined the time‐trend analysis method with a sensitivity‐based approach and found that annual streamflow in the Loess Plateau decreased significantly since the 1950s and surface runoff trends appear to dominate the streamflow trends in most of the catchments. Annual baseflow exhibited mostly downward trends, but significant upward trends were also observed in 3 out of 38 gauging stations. Mean annual streamflow during 1979?2010 decreased by up to 65% across the catchments compared with the period of 1957?1978, indicating significant changes in the hydrological regime of the Loess Plateau. It is estimated that 70% of the streamflow reduction can be attributed to land use change, while the remaining 30% is associated with climate variability. Land use change because of the soil conservation measures and reduction in precipitation are the key drivers for the observed streamflow trends. These findings are consistent with results of previous studies for the region and appear to be reasonable given the accelerated level of the soil conservation measures implemented since the late 1970s. Changes in sea surface temperature in the Pacific Ocean, as indicated by variations in El Niño–Southern Oscillation and phase shifts of the Pacific Decadal Oscillation, appear to have also affected the annual streamflow trends. The framework described in this study shows promising results for quantifying the effects of land use change and climate variability on mean annual streamflow of catchments within the Loess Plateau. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Extreme wet and dry years (± 1 standard deviation, respectively), as well as the top 95 percentile (P95) of daily precipitation events, derived from tropical cyclone (TC) and nontropical cyclone (NTC) rainfall, were analyzed in coastal river basins in Southern Oaxaca, Mexico (Río Verde, Río Tehuantepec, and the Southern Coast). The study is based on daily precipitation records from 47 quality-controlled stations for the 1961 to 1990 period and TC data for the Eastern Tropical Pacific (EPAC). The aim of this study was to evaluate extreme (dry and wet) trends in the annual contribution of daily P95 precipitation events and to determine the relationship of summer precipitation with El Niño Southern Oscillation (ENSO) and the Pacifical Decadal Oscillation (PDO). A regionalization based on a rotated principal component analysis (PCA) was used to produce four precipitation regions in the coastal river basins. A significant negative correlation (significance at the 95% level) was only found with ONI in rainfall Region 3, nearest to the Gulf of Tehuantepec. Wet years, mainly linked to TC-derived P95 precipitation events, were associated with SST anomalies (≥?0.6°C) similar to weak La Niña and Neutral cool conditions, while dry years were associated with SST positive anomalies similar to Neutral warm conditions (≤?0.5°C). The largest contribution of extreme P95 precipitation derived from TCs to the annual precipitation was observed in Region 3. A significant upward trend in the contribution of TC-derived precipitation to the annual precipitation was found only in Region 1, low Río Verde.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号