首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, uncertainty in model input data (precipitation) and parameters is propagated through a physically based, spatially distributed hydrological model based on the MIKE SHE code. Precipitation uncertainty is accounted for using an ensemble of daily rainfall fields that incorporate four different sources of uncertainty, whereas parameter uncertainty is considered using Latin hypercube sampling. Model predictive uncertainty is assessed for multiple simulated hydrological variables (discharge, groundwater head, evapotranspiration, and soil moisture). Utilizing an extensive set of observational data, effective observational uncertainties for each hydrological variable are assessed. Considering not only model predictive uncertainty but also effective observational uncertainty leads to a notable increase in the number of instances, for which model simulation and observations are in good agreement (e.g., 47% vs. 91% for discharge and 0% vs. 98% for soil moisture). Effective observational uncertainty is in several cases larger than model predictive uncertainty. We conclude that the use of precipitation uncertainty with a realistic spatio‐temporal correlation structure, analyses of multiple variables with different spatial support, and the consideration of observational uncertainty are crucial for adequately evaluating the performance of physically based, spatially distributed hydrological models.  相似文献   

2.
The hydrological behaviour of the cultivated Féfé catchment (17·8 ha) on the tropical volcanic island of Guadeloupe was studied to identify flow paths, to quantify water fluxes, and finally, to build a lumped model to simulate discharge and piezometer levels. The approach combined two steps, an experimental step and a modelling step, which covered two time scales, the annual and the storm event scale. The hydrological measurements were conducted over 2 years. The Féfé catchment is characterized by heavy rainfall (4229 mm year?1) on permeable Andosols; the results showed that underground flow paths involved two overlapping aquifers, and that the annual water balance in 2003 was shared among outflows of the deep aquifer (42%), evapotranspiration (31%), and streamflow (27%). On the event scale, the surface runoff coefficient ranges between 6·2% and 24·4% depending on antecedent dry or wet moisture conditions. Hortonian overland flow predominated over subsurface and saturation overland flow processes. Recharge of the shallow aquifer is mainly governed by a constant infiltration capacity of the Andosols with depth in the vadose zone. Outflows of this shallow aquifer were the baseflow of the main stream and the recharge of the deep aquifer. Volcanic deposits at Féfé promoted the underground flow path, and cultivated areas seemed to explain the high stormflow values relative to other tropical small catchments under rain forest. A conceptual lumped model integrating runoff, infiltration, evapotranspiration, and fluctuations of the two overlapping aquifers was developed. The model has six parameters and was calibrated and validated on the hydrograph at the outlet and on the two piezometers of the shallow and the deep aquifers. The results show fair to good agreement between measured and simulated variables, and consequently, the model was consistent with the main hydrological processes observed from experimental results in wet conditions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
The riparian zone is in intimate contact with the river and, as such, is a critical zone for understanding hydrological problems. This paper presents a general modelling methodology for the assessment of riparian hydrological processes. It is applicable to a wide range of riparian spaces and incorporates current expertise in numerical methods. A core part of the modelling methodology is the random walk particle method (RWPM). We develop an RWPM as part of the ESTEL2D subsurface flow model, test it against analytical solutions and apply it to the simulation of parcels of water as they move through the riparian zone. The modelling methodology provides a new opportunity to assess fundamental hydrological process issues such as the proportioning of pre‐event and event water storm runoff, and reversals of flow in floodplains. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
The paper presents the development of a lumped conceptual rainfall‐runoff model [Transformation of rainfall to runoff, Variability across timescales and Model parsimonization (TVM)] and a series of tests on various levels of model structure at different time resolutions. It is applied to the Bradford catchment in the United Kingdom. The TVM model is developed with a flexible structure through various relationships in each module that can be modified depending on the study catchments. Adopting the downward approach, parsimonious models are developed to examine at what level of complexity the model is able to capture runoff variability. The approach aims to compromise between parsimonious and complex alternatives in model development. This study shows that model structure requires data at different aggregation levels of timescales depending on its complexity. It reveals that the absence of the infiltration excess strongly affected all models. The analysis shows that the time resolution of hourly downwards must be used for the study catchment. The investigation of model complexity indicates that the combination of the most complicated model structure and timescale of quarter‐hourly is adequate to capture the catchment runoff characteristics. The downward approach in the TVM model helps to gain a deeper understanding of water balance and runoff process in the study catchment. The approach could be applicable to other catchments to obtain parsimonious models. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
The extensive afforestation of the Mediterranean rim of Europe in recent decades has increased the number of wildfire disturbances on hydrological and sediment processes, but the impacts on headwater catchments is still poorly understood, especially when compared with the previous agricultural landscape. This work monitored an agroforestry catchment in the north-western Iberian Peninsula, with plantation forests mixed with traditional agriculture using soil conservation practices, for one year before the fire and for three years afterwards, during which period the burnt area was ploughed and reforested. During this period, continuous data was collected for meteorology, streamflow and sediment concentration at the outlet, erosion features were mapped and measured after major rainfall events, and channel sediment dynamics were monitored downstream from the agricultural and the burnt forest area. Data from 202 rainfall events with over 10 mm was analysed in detail. Results show that the fire led to a notable impact on sediment processes during the first two post-fire years, but not on streamflow processes; this despite the small size of the burnt area (10% of the catchment) and the occurrence of a severe drought in the first year after the fire. During this period, soil loss at the burnt forest slopes was much larger than that at most traditionally managed fields, and, ultimately, led to sediment exhaustion. At the catchment scale, storm characteristics were the dominant factor behind streamflow and sediment yield both before and after the fire. However, the data indicated a shift from detachment-limited sediment yield before the fire, to transport-limited sediment yield afterwards, with important increases in streamflow sediment concentration. This indicates that even small fires can temporarily change sediment processes in agroforestry catchments, with potential negative consequences for downstream water quality.  相似文献   

6.
The main objective of this study was to use an uncertainty version of a widely used monthly time step, semi-distributed model (the Pitman model) to explore the equifinalities in the way in which the main hydrological processes are simulated and any identifiable linkages with uncertainties in the available observational data. The study area is the Zambezi River basin and 17 gauged sub-basins have been included in the analyses. Unfortunately, it is not generally possible to quantify some of the observational uncertainties in such a data scarce area and mostly we are limited to identifying where these data are clearly deficient (i.e., erroneous or non-representative). The overall conclusion is that the equifinalities in the model are hugely dominant in terms of the uncertainties in the relative occurrence of different runoff generating processes, although water use uncertainties in the semi-arid parts of the basin can contribute to these uncertainties. The identification of landscape features that suggest the occurrence of saturation excess surface runoff provides some information to constrain the model. Improved independent estimates of groundwater recharge is also identified as a key source of observational data that would help a great deal in constraining the model parameter space and therefore reducing some of the model equifinality.  相似文献   

7.
8.
This paper provides the results of hydrological modelling in a mesoscale glaciated alpine catchment of the Himalayan region. In the context of global climate change, the hydrological regime of an alpine mountain is likely to be affected, which might produce serious implications for downstream water availability. The main objective of this study was to understand the hydrological system dynamics of a glaciated catchment, the Dudh Kosi River basin, in Nepal, using the J2000 hydrological model and thereby understand how the rise in air temperature will affect the hydrological processes. The model is able to reproduce the overall hydrological dynamics quite well with an efficiency result of Nash–Sutcliffe (0.85), logarithm Nash–Sutcliffe (0.93) and coefficient of determination (0.85) for the study period. The average contribution from glacier areas to total streamflow is estimated to be 17%, and snowmelt (other than from glacier areas) accounts for another 17%. This indicates the significance of the snow and glacier runoff in the Himalayan region. The hypothetical rise in temperature scenarios at a rate of +2 and +4 °C indicated that the snowmelt process might be largely affected. An increase in snowmelt volume is noted during the premonsoon period, whereas the contribution during the monsoon season is significantly decreased. This occurs mainly because the rise in temperature will shift the snowline up to areas of higher altitude and thereby reduce the snow storage capacity of the basin. This indicates that the region is particularly vulnerable to global climate change and the associated risk of decreasing water availability to downstream areas. Under the assumed warming scenarios, it is likely that in the future, the river might shift from a ‘melt‐dominated river’ to a ‘rain‐dominated river’. The J2000 model should be considered a promising tool to better understand the hydrological dynamics in alpine mountain catchments of the Himalayan region. This understanding will be quite useful for further analysis of ‘what‐if scenarios’ in the context of global climate and land‐use changes and ultimately for sustainable Integrated Water Resources Management in the Himalayan region. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Abstract

The actual evapotranspiration and runoff trends of five major basins in China from 1956 to 2000 are investigated by combining the Budyko hypothesis and a stochastic soil moisture model. Based on the equations of Choudhury and Porporato, the actual evapotranspiration trends and the runoff trends are attributed to changes in precipitation, potential evapotranspiration, rainfall depth and water storage capacity which depends on the soil water holding capacity and the root depth. It was found that the rainfall depth increased significantly in China during the past 50 years, especially in southern basins. Contributions from changes in the water storage capacity were significant in basins where land surface characteristics have changed substantially due to human activities. It was also observed that the actual evapotranspiration trends are more sensitive to precipitation trends in water-limited basins, but more sensitive to potential evapotranspiration trends in energy-limited basins.
Editor D. Koutsoyiannis; Associate editor A. Porporato  相似文献   

10.
Tropical alpine grasslands, locally known as páramos, are the water towers of the northern Andes. They are an essential water source for drinking water, irrigation schemes and hydropower plants. But despite their high socio‐economic relevance, their hydrological processes are very poorly understood. Since environmental change, ranging from small scale land‐use changes to global climate change, is expected to have a strong impact on the hydrological behaviour, a better understanding and hydrological prediction are urgently needed. In this paper, we apply a set of nine hydrological models of different complexity to a small, well monitored upland catchment in the Ecuadorian Andes. The models represent different hypotheses on the hydrological functioning of the páramo ecosystem at catchment scale. Interpretation of the results of the model prediction and uncertainty analysis of the model parameters reveals important insights in the evapotranspiration, surface runoff generation and base flow in the páramo. However, problems with boundary conditions, particularly spatial variability of precipitation, pose serious constraints on the differentiation between model representations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
How much data is needed for calibration of a hydrological catchment model? In this paper we address this question by evaluating the information contained in different subsets of discharge and groundwater time series for multi‐objective calibration of a conceptual hydrological model within the framework of an uncertainty analysis. The study site was a 5·6‐km2 catchment within the Forsmark research site in central Sweden along the Baltic coast. Daily time series data were available for discharge and several groundwater wells within the catchment for a continuous 1065‐day period. The hydrological model was a site‐specific modification of the conceptual HBV model. The uncertainty analyses were based on a selective Monte Carlo procedure. Thirteen subsets of the complete time series data were investigated with the idea that these represent realistic intermittent sampling strategies. Data subsets included split‐samples and various combinations of weekly, monthly, and quarterly fixed interval subsets, as well as a 53‐day ‘informed observer’ subset that utilized once per month samples except during March and April—the months containing large and often dominant snow melt events—when sampling was once per week. Several of these subsets, including that of the informed observer, provided very similar constraints on model calibration and parameter identification as the full data record, in terms of credibility bands on simulated time series, posterior parameter distributions, and performance indices calculated to the full dataset. This result suggests that hydrological sampling designs can, at least in some cases, be optimized. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Abstract

A modelling experiment is used to examine different land-use scenarios ranging from extreme deforestation (31% forest cover) to pristine (95% forest cover) conditions and related Payment for Ecosystem Services (PES) schemes to assess whether a change in streamflow dynamics, discharge extremes and mean annual water balance of a 73.4-km2 tropical headwater catchment in Costa Rica could be detected. A semi-distributed, conceptual rainfall–runoff model was adapted to conceptualize the empirically-based, dominant hydrological processes of the study area and was multi-criteria calibrated using different objective functions and empirical constraints on model simulations in a Monte Carlo framework to account for parameter uncertainty. The results suggest that land-use change had relatively little effect on the overall mean annual water yield (<3%). However, streamflow dynamics proved to be sensitive in terms of frequency, timing and magnitude of discharge extremes. For low flows and peak discharges of return periods greater than one year, land use had a minor influence on the runoff response. Below these thresholds (<1-year return period), forest cover potentially decreased runoff peaks and low flows by as much as 10%, and non-forest cover increased runoff peaks and low flows by up to 15%. The study demonstrated the potential for using hydrological modelling to help identify the impact of protection and reforestation efforts on ecosystem services.

Editor Z.W. Kundzewicz

Citation Birkel, C., Soulsby, C., and Tetzlaff, D., 2012. Modelling the impacts of land-cover change on streamflow dynamics of a tropical rainforest headwater catchment. Hydrological Sciences Journal, 57 (8), 1543–1561.  相似文献   

13.
The purpose of this paper is to identify simple connections between observations of hydrological processes at the hillslope scale and observations of the response of watersheds following rainfall, with a view to building a parsimonious model of catchment processes. The focus is on the well‐studied Panola Mountain Research Watershed (PMRW), Georgia, USA. Recession analysis of discharge Q shows that while the relationship between dQ/dt and Q is approximately consistent with a linear reservoir for the hillslope, there is a deviation from linearity that becomes progressively larger with increasing spatial scale. To account for these scale differences conceptual models of streamflow recession are defined at both the hillslope scale and the watershed scale, and an assessment made as to whether models at the hillslope scale can be aggregated to be consistent with models at the watershed scale. Results from this study show that a model with parallel linear reservoirs provides the most plausible explanation (of those tested) for both the linear hillslope response to rainfall and non‐linear recession behaviour observed at the watershed outlet. In this model each linear reservoir is associated with a landscape type. The parallel reservoir model is consistent with both geochemical analyses of hydrological flow paths and water balance estimates of bedrock recharge. Overall, this study demonstrates that standard approaches of using recession analysis to identify the functional form of storage–discharge relationships identify model structures that are inconsistent with field evidence, and that recession analysis at multiple spatial scales can provide useful insights into catchment behaviour. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
《水文科学杂志》2013,58(3):629-639
Abstract

The lower Araguás catchment, central Pyrenees, is characterized by extensive badlands (25% of the total catchment), whereas the upper catchment is covered by dense plantation forest. The catchment (45 ha) has been monitored since October 2005 with the aim of studying its hydrological response. The 44 floods recorded over this period were analysed to identify the factors that control the rainfall—runoff relationship. The first relevant feature of the catchment was its responsiveness. The catchment reacted to all rainfall events, but the irregular nature of the hydrological response was the most characteristic feature of the response. No single variable could explain the response of the Araguás catchment. It was found that stormflow coefficients mainly depend on the combination of rainfall volume and antecedent baseflow. A significant correlation was observed between maximum rainfall intensity and peak flow values. The shapes of the different hydrographs are very similar, regardless of the peak flow magnitude; they show a short time lag, relatively narrow peak flow, and steep recession limb. This indicates a large contribution by overland flow, resulting mainly from the generation of infiltration excess runoff in badland areas.  相似文献   

15.
Realistic projections of the future climate and how this translates to water availability is crucial for sustainable water resource management. However, data availability constrains the capacity to simulate streamflow and corresponding hydrological processes. Developing more robust hydrological models and methods that can circumvent the need for large amounts of hydro-climatic data is crucial to support water-related decisions, particularly in developing countries. In this study, we use natural isotope tracers in addition to hydro-climate data within a newly developed version of the spatially-distributed J2000iso as an isotope-enabled rainfall-runoff model simulating both water and stable isotope (δ2H) fluxes. We pilot the model for the humid tropical San Carlos catchment (2500 km2) in northeastern Costa Rica, which has limited time series, but spatially distributed data. The added benefit of simulating stable isotopes was assessed by comparing different amounts of observation data using three model calibration strategies (i) three streamflow gauges, (ii) three gauges with stream isotopes and (iii) isotopes only. The J2000iso achieved a streamflow Kling–Gupta efficiency (KGE) of 0.55–0.70 across all the models and gauges, but differences in hydrological process simulations emerged when including stable water isotopes in the rainfall-runoff calibration. Hydrological process simulation varied between the standard J2000 rainfall-runoff model with a high simulated surface runoff proportion of 37% as opposed to the isotope version with 84%–89% simulated baseflow or interflow. The model solutions that used only isotope data for calibration exhibited differences in simulated interflow, baseflow and model performance but captured bulk water balances with a reasonable match between the simulated and observed hydrographs. We conclude that J2000iso has shown the potential to support water balance modelling for ungauged catchments using stable isotope, satellite and global reanalysis data sets.  相似文献   

16.
Physically based models are useful frameworks for testing intervention strategies designed to reduce elevated sediment loads in agricultural catchments. Evaluating the success of these strategies depends on model accuracy, generally established by a calibration and evaluation process. In this contribution, the physically based SHETRAN model was assessed in two similar U.K. agricultural catchments. The model was calibrated on the Blackwater catchment (18 km2) and evaluated in the adjacent Kit Brook catchment (22 km2) using 4 years of 15 min discharge and suspended sediment flux data. Model sensitivity to changes in single and multiple combinations of parameters and sensitivity to changes in digital elevation model resolution were assessed. Model flow performance was reasonably accurate with a Nash–Sutcliffe efficiency coefficient of 0.78 in Blackwater and 0.60 in Kit Brook. In terms of event prediction, the mean of the absolute percentage of difference (μAbsdiff) between measured and simulated flow volume (Qv), peak discharge (Qp), sediment yield (Sy), and peak sediment flux (Sp) showed larger values in Kit Brook (48% [Qv], 66% [Qp], 298% [Sy], and 438% [Sp]) compared with the Blackwater catchment (30% [Qv], 41% [Qp], 106% [Sy], and 86% [Sp]). Results indicate that SHETRAN can produce reasonable flow prediction but performs less well in estimation of sediment flux, despite reasonably similar hydrosedimentary behaviour between catchments. The sensitivity index showed flow volume sensitive to saturated hydraulic conductivity and peak discharge to the Strickler coefficient; sediment yield was sensitive to the overland flow erodibility coefficient and peak sediment flux to raindrop/leaf soil erodibility coefficient. The multiparameter sensitivity analysis showed that different combinations of parameters produced similar model responses. Model sensitivity to grid resolution presented similar flow volumes for different digital elevation model resolutions, whereas event peak and duration (for both flow and sediment flux) were highly sensitive to changes in grid size.  相似文献   

17.
Output generated by hydrologic simulation models is traditionally calibrated and validated using split‐samples of observed time series of total water flow, measured at the drainage outlet of the river basin. Although this approach might yield an optimal set of model parameters, capable of reproducing the total flow, it has been observed that the flow components making up the total flow are often poorly reproduced. Previous research suggests that notwithstanding the underlying physical processes are often poorly mimicked through calibration of a set of parameters hydrologic models most of the time acceptably estimates the total flow. The objective of this study was to calibrate and validate a computer‐based hydrologic model with respect to the total and slow flow. The quick flow component used in this study was taken as the difference between the total and slow flow. Model calibrations were pursued on the basis of comparing the simulated output with the observed total and slow flow using qualitative (graphical) assessments and quantitative (statistical) indicators. The study was conducted using the Soil and Water Assessment Tool (SWAT) model and a 10‐year historical record (1986–1995) of the daily flow components of the Grote Nete River basin (Belgium). The data of the period 1986–1989 were used for model calibration and data of the period 1990–1995 for model validation. The predicted daily average total flow matched the observed values with a Nash–Sutcliff coefficient of 0·67 during calibration and 0·66 during validation. The Nash–Sutcliff coefficient for slow flow was 0·72 during calibration and 0·61 during validation. Analysis of high and low flows indicated that the model is unbiased. A sensitivity analysis revealed that for the modelling of the daily total flow, accurate estimation of all 10 calibration parameters in the SWAT model is justified, while for the slow flow processes only 4 out of the set of 10 parameters were identified as most sensitive. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
Abstract

In this study, transferability options of the Hydrologiska Byråns Vattenbalansavdelning (HBV) hydrological model parameter (MP) spaces were investigated to estimate ungauged catchment runoff. Three approaches were applied in the study: MP space transfer from single, neighbouring and all potential donor catchments. The model performance was evaluated by a jackknife procedure, where one catchment at a time was treated as if ungauged, and behavioural MP sets from candidate donor catchments were used to estimate the “ungauged” runoff. The results showed that ungauged catchment runoff estimation could not be guaranteed by transferring MP sets from a single physiographically nearest donor catchment. Integrating MP sets typically from one to six donor catchments supplemented the lack of effective MP sets and improved the model performance at the ungauged catchments. In addition, the analysis results revealed that the model performance converged to an average performance when the MP sets of all potential donor catchments were integrated.  相似文献   

19.
Assessing catchment runoff response remains a key research frontier because of limitations in current observational techniques to fully characterize water source areas and transit times in diverse geographical environments. Here, we report a study that combines empirical data with modelling to identify dominant runoff processes in a sparsely monitored humid tropical catchment. The analysis integrated isotope tracers into conceptual rainfall–runoff models of varying complexity (from 5 to 11 calibrated parameters) that are able to simulate discharge and tracer concentrations and track the evolving age of stream water exiting the catchment. The model structures can be seen as competing hypotheses of catchment functioning and were simultaneously calibrated against uncertain streamflow gaugings and a 2‐year daily isotope rainfall–runoff record. Comparison of the models was facilitated using global parameter sensitivity analysis and the resulting effect on calibration. We show that a variety of tested model structures reproduced water and tracer dynamics in stream, but the simpler models failed to adequately reproduce both. The resulting water age distributions of the tested models varied significantly with little similarity between the stream water age and stored water age distributions. The sensitivity analysis revealed that only some of the more complex models (from eight parameters) could be better constrained to infer more plausible water age distributions and catchment storage estimates. These models indicated that the age of water stored in the catchment is generally older compared with the age of water fluxes, with evapotranspiration age being younger compared with streamflow. However, the water age distributions followed a similar temporal behaviour dominated by climatic seasonality. Stream water ages increased during the dry season (greater than 1 year) and decreased with increased streamflow (a few weeks old) during the wet season. We further show that the ratios of the streamwater age to stored water age distribution and the water age distribution of actual evapotranspiration to the stored water age distribution from constrained models could potentially serve as useful hydrological indicators of catchment functioning. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Measurements of 18O concentrations in precipitation, soil solution, spring and runoff are used to determine water transit time in the small granitic Strengbach catchment (0·8 km2; 883–1146 m above sea level) located in the Vosges Mountains of northeastern France. Water transit times were calculated by applying the exponential, exponential piston and dispersion models of the FlowPC program to isotopic input (rainfall) and output (spring and stream water) data sets during the period 1989–95. The input function of the model was modified compared with the former version of the model and estimated by a deterministic approach based on a simplified hydrological balance. The fit between observed and calculated output data showed marked improvements compared with results obtained using the initial version of the model. An exponential piston version of the model applied to spring water indicates a 38·5 month mean transit time, which suggests that the volume in the aquifer, expressed in water depth, is 2·4 m. A considerable thickness (>45 m) of fractured bedrock may be involved for such a volume of water to be stored in the aquifer. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号