首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of large floods on river morphology are variable and poorly understood. In this study, we apply multi‐temporal datasets collected with small unmanned aircraft systems (UASs) to analyze three‐dimensional morphodynamic changes associated with an extreme flood event that occurred from 19 to 23 June 2013 on the Elbow River, Alberta. We documented reach‐scale spatial patterns of erosion and deposition using high‐resolution (4–5 cm/pixel) orthoimagery and digital elevation models (DEMs) produced from photogrammetry. Significant bank erosion and channel widening occurred, with an average elevation change of ?0.24 m. The channel pattern was reorganized and overall elevation variation increased as the channel adjusted to full mobilization of most of the bed surface sediments. To test the extent to which geomorphic changes can be predicted from initial conditions, we compared shear stresses from a two‐dimensional hydrodynamic model of peak discharge to critical shear stresses for bed surface sediment sizes. We found no relation between modeled normalized shear stresses and patterns of scour and fill, confirming the complex nature of sediment mobilization and flux in high‐magnitude events. However, comparing modeled peak flows through the pre‐ and post‐flood topography showed that the flood resulted in an adjustment that contributes to overall stability, with lower percentages of bed area below thresholds for full mobility in the post‐flood geomorphic configuration. Overall, this work highlights the potential of UAS‐based remote sensing for measuring three‐dimensional changes in fluvial settings and provides a detailed analysis of potential relationships between flood forces and geomorphic change. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
This paper investigates the impact of a 1000‐year flood in August 2002 on floodplains and valley morphology of an Austrian mixed alluvial bed rock river. Discharges with a recurrence interval between 500 and 2000 years caused distinctive overbank scouring and material deposition in the floodplains. After the 1000‐year flood, those morphologically affected areas were at random intervals documented over the whole longitudinal profile. In addition to overbank erosion in curved sections (cut‐offs), the river bed locally widened, floodplain stripping occurred and local overbank scours were documented along straight parts of the river. A hydrodynamic‐numerical model, combined with field measurements, was used to analyse the cause of these erosional landforms. Based on the modelled hydraulic conditions for a one‐year flood (30–78 ms–1) and the catastrophic 2002 event (700–800 ms–1), the numerical results allowed a cause‐effect study with 19 parameters. Deterministic and statistical analysis (ANOVA, discriminant analysis) showed that the morphodynamic effects of the 2002 flood were influenced by the variability of valley morphology of the Kamp River, which led partially to supercritical flow during flood constriction. These processes were in some cases also anthropogenically influenced. Lateral constriction and expansion of the valley geometry over short distances led to scouring and aggradation within the inundated areas during the event. These morphological features were therefore responsible for the elongated scour holes in the floodplains. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Recent research modelling floodplain inundation processes has concentrated on issues surrounding the level of physical, topographical, and numerical solver complexity needed to represent floodplain flows adequately. However, during flooding episodes the channel typically still conveys the bulk of the flow. Despite this, the effect of channel physical processes and topographic complexity on model results has been largely unexplored. To address this, the impact of channel cross‐section geometry, channel long‐profile variability and the representation of hydraulic structures on floodplain inundation are explored using a coupled dynamic 1D‐2D hydraulic model (ESTRY‐TUFLOW) of the Carlisle floods of January 2005. These simulations are compared with those from a simplified 1D‐2D model, LISFLOOD‐FP. In this case, the simpler model is sufficient to simulate the far‐field peak flood elevations. However, comparison of channel dynamics suggests that the full shallow water approximation used by ESTRY‐TUFLOW gives a more robust performance when models calibrated on maximum floodplain water elevations are used to predict channel water levels. Examination of the response of ESTRY‐TUFLOW to variations in channel geometric complexity shows that downstream variations in the channel long profile are more important than cross‐section variability for obtaining a dataset‐independent calibration. The results show, in general, that as model physical complexity is increased, calibrated parameters become less ‘effective’, and as a consequence, the values of performance measures reduce less rapidly away from the optimum value. This means that often more physically complex models are less likely to yield different optimum parameter values when calibrated on different datasets resulting in a more robust numerical model. Lastly, the inclusion of bridge structures can simulate substantial local backwatering effects, but the variability in observed water and wrack marks is such that it is not possible to discern the effect of the bridges at this site in the post‐event observational dataset. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Previously we have detailed an application of the generalized likelihood uncertainty estimation (GLUE) procedure to estimate spatially distributed uncertainty in models conditioned against binary pattern data contained in flood inundation maps. This method was applied to two sites where a single consistent synoptic image of inundation extent was available to test the simulation performance of the method. In this paper, we extend this to examine the predictive performance of the method for a reach of the River Severn, west‐central England. Uniquely for this reach, consistent inundation images of two major floods have been acquired from spaceborne synthetic aperture radars, as well as a high‐resolution digital elevation model derived using laser altimetry. These data thus allow rigorous split sample testing of the previous GLUE application. To achieve this, Monte Carlo analyses of parameter uncertainty within the GLUE framework are conducted for a typical hydraulic model applied to each flood event. The best 10% of parameter sets identified in each analysis are then used to map uncertainty in flood extent predictions using the method previously proposed for both an independent validation data set and a design flood. Finally, methods for combining the likelihood information derived from each Monte Carlo ensemble are examined to determine whether this has the potential to reduce uncertainty in spatially distributed measures of flood risk for a design flood. The results show that for this reach and these events, the method previously established is able to produce sharply defined flood risk maps that compare well with observed inundation extent. More generally, we show that even single, poor‐quality inundation extent images are useful in constraining hydraulic model calibrations and that values of effective friction parameters are broadly stationary between the two events simulated, most probably reflecting their similar hydraulics. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
This paper uses numerical simulation of flood inundation based on a coupled one‐dimensional–two‐dimensional treatment to explore the impacts upon flood extent of both long‐term climate changes, predicted to the 2050s and 2080s, and short‐term river channel changes in response to sediment delivery, for a temperate upland gravel‐bed river. Results show that 16 months of measured in‐channel sedimentation in an upland gravel‐bed river cause about half of the increase in inundation extent that was simulated to arise from climate change. Consideration of the joint impacts of climate change and sedimentation emphasized the non‐linear nature of system response, and the possibly severe and synergistic effects that come from combined direct effects of climate change and sediment delivery. Such effects are likely to be exacerbated further as a result of the impacts of climate change upon coarse sediment delivery. In generic terms, these processes are commonly overlooked in flood risk mapping exercises and are likely to be important in any river system where there are high rates of sediment delivery and long‐term transfer of sediment to floodplain storage (i.e. alluviation involving active channel aggradation and migration). Similarly, attempts to reduce channel migration through river bank stabilization are likely to exacerbate this process as without bank erosion, channel capacity cannot be maintained. Finally, many flood risk mapping studies rely upon calibration based upon combining contemporary bed surveys with historical flood outlines, and this will lead to underestimation of the magnitude and frequency of floodplain inundation in an aggrading system for a flood of a given magnitude. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
The 1999 jökulhlaup at Sólheimajökull was the first major flood to be routed through the proglacial system in over 600 years. This study reconstructed the flood using hydrodynamic, sediment transport and morphodynamic numerical modelling informed by field surveys, aerial photograph and digital elevation model analysis. Total modelled sediment transport was 469 800 m3 (+/‐ 20%). Maximum erosion of 8.2 m occurred along the ice margin. Modelled net landscape change was –86 400 m3 (+/‐ 40%) resulting from –275 400 m3 (+/‐ 20%) proglacial erosion and 194 400 m3 (+/‐ 20%) proglacial deposition. Peak erosion rate and peak deposition rate were 650 m3 s‐1 (+/‐ 20%) and 595 m3 s‐1 (+/‐ 20%), respectively, and coincided with peak discharge of water at 1.5 h after flood initiation. The pattern of bed elevation change during the rising limb suggested widespread activation of the bed, whereas more organisation, perhaps primitive bedform development, occurred during the falling limb. Contrary to simplistic conceptual models, deposition occurred on the rising stage and erosion occurred on the falling limb. Comparison of the morphodynamic results with a hydrodynamic simulation illustrated effects of sediment transport and bed elevation change on flow conveyance. The morphodynamic model advanced flood arrival and peak discharge timings by 100% and 19%, respectively. However, peak flow depth and peak flow velocity were not significantly affected. We suggest that morphodynamic processes not only increase flow mass and momentum but that they also introduce a feedback process whereby flood conveyance becomes more efficient via erosion of minor bed protrusions and deposition that infills or subdues minor bed hollows. A major implication of this study is that reconstructions of outburst floods that ignore sediment transport, such as those used in interpretation of long‐term hydrological record and flood risk assessments, may need considerable refinement. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
In this study, an approach is presented for handling hydraulic uncertainties in the prediction of floodplain. Different factors affect river flood characteristics. Furthermore, the high changeability of flooding conditions leads to high variability of the inundation. River morphology is one of the most effective factors in river flood characteristics. This factor is influenced by sedimentation and erosion in the river cross sections, which affects the discharge variation. The depth and the width of the river cross section lead to an increase or decrease in the river flow path. This results in changes in the extent of the floodplain based on the generated rainfall. The inundated region boundaries are determined by utilizing the mean first‐order second‐moment analysis. The proposed method is applied to the Kajoo River in the south‐eastern part of Iran. Determination of floodplain uncertainty is a damage‐reduction policy in this region. Also, it is useful to prepare the necessary activities for overcoming the flood hazards. Climate change is the second effective factor on the floodplain uncertainties. Climate change affects the magnitude, extent and depth of inundation and it may intensify the flood problem. Therefore, the future rainfall pattern of the study area under climate change is simulated to evaluate its impacts on the river flow characteristic. Subsequently, a hydraulic routing model is used to determine floodplain. Finally, the copula function is used to estimate the joint probability of the changes in the inundation area due to changes in river morphology and the rainfall changes due to impacts of climate change. Results show that the uncertainties of the extent of floodplain are affected by climate change and river morphology, leading to noticeable changes in the magnitude and frequency of floods. Evaluating these impacts and estimating corresponding river discharges will help in the study of river dynamics, and will also contribute towards devising effective mitigation and management strategies. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Flood inundation models have been recognized to be a valuable tool to reproduce flow dynamics in a given area and support decision‐making processes on flood management measures. In many cases, in the simulation of flood events, only the main river channel and the associated structures are represented within the model. However, during flood events involving lowland areas, the minor drainage network – and the associated hydraulic structures – may have an important role in conveying flow and determining which areas will be flooded. The objective of this study is to investigate whether – and to what extent – small hydraulic structures in drainage networks have an influence in flooding on lowland areas. The case study for this research is the 1990 flood event which occurred in the lowland plain of the Reno River, in Northern Italy. The study area is mainly used for agricultural purposes and has a drainage system with several small bridges and culverts. The influence of the minor hydraulic structures on flood dynamics was analyzed through a combined use of one‐dimensional (1D) and two‐dimensional (2D) hydraulic models. First, a number of detailed and simplified approaches to represent hydraulic structures in the computational grids were analyzed by means of the HECRAS 1D model. Second, these approaches were implemented and tested in several 2D simulations of the flood event. The simulated inundation extents and flood levels were then compared with the observed data and with each other. The analysis of results showed that simplified schematizations were sufficient to obtain good model predictions of peak inundation extent and flood levels, at least for the present case study. Moreover, the influence of the structures on the peak flood inundation extent and flood levels was found to be limited, whereas it showed to be more significant during the drainage phase of the flood. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Advances in remote sensing have enabled hydraulic models to run at fine scale resolutions, producing precise flood inundation predictions. However, running models at finer resolutions increase their computational expense, reducing the feasibility of running the multiple model realizations required to undertake uncertainty analysis. Furthermore, it is possible that precision gained by running fine scale models is smoothed out when treating models probabilistically. The aim of this paper is to determine the level of spatial complexity that is required when making probabilistic flood inundation predictions. The Imera basin, Sicily is used as a case study to assess how changing the spatial resolution of the hydraulic model LISFLOOD‐FP impacts on the skill of conditional probabilistic flood inundation maps given model parameter and boundary condition uncertainties. We find that model performance deteriorates at resolutions coarser than 50 m. This is predominantly caused by changes in flow pathways at coarser resolutions which lead to non‐stationarity in the optimum model parameters at different spatial resolutions. However, although it is still possible to produce probabilistic flood maps that contain a coherent outline of the flood extent at coarser resolutions, the reliability of these maps deteriorates at resolutions coarser than 100 m. Additionally, although the rejection of non‐behavioural models reduces the uncertainty in probabilistic flood maps the reliability of these maps is also reduced. Models with resolutions finer than 50 m offer little gain in performance yet are more than an order of magnitude computationally expensive which can become infeasible when undertaking probabilistic analysis. Furthermore, we show that using deterministic, high‐resolution flood maps can lead to a spurious precision that would be misleading and not representative of the overall uncertainties that are inherent in making inundation predictions. Copyright © 2015 The Authors Hydrological Processes Published by John Wiley & Sons Ltd.  相似文献   

10.
The peak of river floods usually decreases in the downstream direction unless it is compensated by freshwater inflow from tributaries. In the Yellow River (China) the opposite is regularly observed, where the peak discharge of river floods increases in the downstream direction (at a rate far exceeding the contribution from tributaries). This flood peak discharge increase is probably related to rapid morphological changes, to a modified bed friction, or to a combination of both. Yet the relative role of these processes is still poorly understood. This paper aims to analyze the relative contribution of bed erosion and friction change to the peak discharge increase, based on available data and a recently developed numerical model. Using this high-resolution, fully coupled morphodynamic model of non-capacity sediment transport, two hyperconcentrated floods characterized by downstream peak discharge increase are numerically reproduced and analyzed in detail. The results reveal that although erosion effects may contribute to the downstream discharge increase (especially in case of extreme erosion), for most cases the increase must be mainly due to a reduction in bed friction during peak discharge conditions. Additionally, based on the concept of channel storage reduction, the effects of decreasing bed friction and (very strong) bed erosion can be integrated in explaining the peak discharge increase.  相似文献   

11.
More frequent extreme flood events are likely to occur in many areas in the twenty‐first century due to climate change. The impacts of these changes on sediment transport are examined at the event scale using a 1D morphodynamic model (SEDROUT4‐M) for three tributaries of the Saint‐Lawrence River (Québec, Canada) using daily discharge series generated with a hydrological model (HSAMI) from three global climate models (GCMs). For all tributaries, larger flood events occur in all future scenarios, leading to increases in bed‐material transport rates, number of transport events and number of days in the year where sediment transport occurs. The effective and half‐load discharges increase under all GCM simulations. Differences in flood timing within the tributaries, with a shift of peak annual discharge from the spring towards the winter, compared to the hydrograph of the Saint‐Lawrence River, generate higher sediment transport rates because of increased water surface slope and stream power. Previous research had shown that channel erosion is expected under all GCMs' discharge scenarios. This study shows that, despite lower bed elevations, flood risk is likely to increase as a result of higher flood magnitude, even with falling base level in the Saint‐Lawrence River. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
For most of the year, a dry‐bed desert wash is void of water flow. Intensive rain events, however, could trigger significant flash floods that bring about highly complicated hydrodynamics and morphodynamics processes within a desert stream. We present a fully coupled three‐phase flow model of air, water, and sediment to simulate numerically the propagation of a flash flood in a field‐scale fluvial desert stream, the so‐called Tex Wash located in the Mojave Desert, California, United States. The turbulent flow of the flash flood is computed using the three‐dimensional unsteady Reynolds‐averaged Navier–Stokes equations closed with the shear stress transport k ? ω model. The free surface of the flash flood at the interface of air and water phases is computed with the level‐set method, which enables instantaneous tracking of the water surface as the flash flood propagates over the dry bed of the desert stream. The evolution of the desert fluvial stream's morphology, due to the action of the propagating flash flood on the mobile bed, is calculated using a Eulerian morphodynamics model based on the curvilinear immersed boundary method. The capabilities of the proposed numerical framework are demonstrated by applying it to simulate a flash flood event in a 0.65‐km ‐long reach of the Tex Wash, the intricate channel morphology of which is obtained using light imaging detection and ranging technology. The simulated region of the stream includes a number of bridge foundations. The simulation results of the model for the flash flood event revealed the formation of a highly complex flow field and scour patterns within the stream. Moreover, our simulation results showed that most scour processes take place during the steady phase of the flash flood, that is, after the flash flood fills the stream. The transient phase of the flash flood is rather short and contributes to a very limited amount of erosion within the desert stream.  相似文献   

13.
Hyperconcentrated floods, with sediment concentrations higher than 200 kg/m3, occur frequently in the Yellow River and its tributaries on the Loess Plateau. This paper studies the fluvial hydraulics of hyperconcentrated floods by statistical analysis and comparison with low sediment concentration floods. The fluvial process induced by hyperconcentrated floods is extremely rapid. The river morphology may be altered more at a faster rate by one hyperconcentrated flood than by low sediment concentration floods over a decade. The vertical sediment concentration distribution in hyperconcentrated floods is homogeneous. The Darcy–Weisbach coefficient of hyperconcentrated floods varies with the Reynolds number in the same way as normal open channel flows but a representative viscosity is used to replace the viscosity, η. If the concentration is not extremely high and the Reynolds number is larger than 2000, the flow is turbulent and the Darcy–Weisbach coefficient for the hyperconcentrated floods is almost the same as low sediment concentration floods. Serious channel erosion, which is referred to as ‘ripping up the bottom’ in Chinese, occurs in narrow‐deep channels during hyperconcentrated floods. However, in wide‐shallow channels, hyperconcentrated floods may result in serious sedimentation. Moreover, a hyperconcentrated flood may cause the channel to become narrower and deeper, thus, reducing the flood stage by more than 1 m if the flood event lasts longer than one day. The fluvial process during hyperconcentrated floods also changes the propagation of flood waves. Successive waves may catch up with and overlap the first wave, thus, increasing the peak discharge of the flood wave during flood propagation along the river course. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Flood risk assessment is customarily performed using a design flood. Observed past flows are used to derive a flood frequency curve which forms the basis for a construction of a design flood. The simulation of a distributed model with the 1‐in‐T year design flood as an input gives information on the possible inundation areas, which are used to derive flood risk maps. The procedure is usually performed in a deterministic fashion, and its extension to take into account the design flood‐and flow routing model uncertainties is computer time consuming. In this study we propose a different approach to flood risk assessment which consists of the direct simulation of a distributed flow routing model for an observed series of annual maximum flows and the derivation of maps of probability of inundation of the desired return period directly from the obtained simulations of water levels at the model cross sections through an application of the Flood Level Frequency Analysis. The hydraulic model and water level quantile uncertainties are jointly taken into account in the flood risk uncertainty evaluation using the Generalized Likelihood Uncertainty Estimation (GLUE) approach. An additional advantage of the proposed approach lies in smaller uncertainty of inundation predictions for long return periods compared to the standard approach. The approach is illustrated using a design flood level and a steady‐state solution of a hydraulic model to derive maps of inundation probabilities. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Casuarina cunninghamiana Miq. is an important rheophytic tree in New South Wales, Australia because it is fast growing and can tolerate flood disturbance. Widden Brook is an active sand‐bed stream that has widened substantially since initial European settlement in the early 1800s and is characterized by high flood variability and multi‐decadal periods of alternating high and low flood frequency, called flood‐ and drought‐dominated regimes. Channel contraction by bench formation is currently occurring. Conversion of coarse‐grained point bars to benches is an important process of channel contraction. When point bars grow to a height where suspended sediment is first deposited to thicknesses of at least 50 mm by sub‐bankfull floods, rapid establishment of C. cunninghamiana occurs. As the trees grow they partially block bankside flows, thereby locally reducing flow velocity and inducing further deposition on the benches. Such synergistic relationships between bar height and inundation, fine‐grained sediment deposition, tree establishment and the development of a bankside low current velocity zone are fundamental for bench development. Size‐class frequency data demonstrate that C. cunninghamiana on the benches consists of pure even‐aged stands with most trees clustering near the average diameter. Two benches have similar size class frequency distributions but a third has significantly smaller trees. Recruitment on benches is episodic, may occur in areas open to grazing and is dependent on favourable conditions that allow tree survival. These favourable conditions include high seed availability, low levels of competition, deposition of fine sediments and adequate moisture for tree growth. Although C. cunninghamiana germinates on bars, seedlings are eliminated by prolonged inundation or flood scour and do not reach maturity. Recurring catastrophic floods or a sequence of large floods in rapid succession episodically destroy benches by substantial channel widening and initiate a new phase of bar and bench development. A conceptual model of the conversion of point bars to benches by thick mud deposition and C. cunninghamiana recruitment has been developed for sand‐bed streams draining similar sandstone catchments. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Channel bars and banks strongly affect the morphology of both braided and meandering rivers. Accordingly, bar formation and bank erosion processes have been greatly explored. There is, however, a lack of investigations addressing the interactions between bed and bank morphodynamics, especially over short timescales. One major implication of this gap is that the processes leading to the repeated accretion of mid‐channel bars and associated widenings remain unsolved. In a restored section of the Drau River, a gravel‐bed river in Austria, mid‐channel bars have developed in a widening channel. During mean flow conditions, the bars divert the flow towards the banks. One channel section exhibited both an actively retreating bank and an expanding mid‐channel bar, and was selected to investigate the morphodynamic processes involved in bar accretion and channel widening at the intra‐event timescale. We repeatedly surveyed riverbed and riverbank topography, monitored riverbank hydrology and mounted a time‐lapse camera for continuous observation of riverbank erosion processes during four flow events. The mid‐channel bar was shown to accrete when it was submerged during flood events, which at the subsequent flow diversion during lower discharges narrowed the branch along the bank and increased the water surface elevation upstream from the riffle, which constituted the inlet into the branch. These changes of bed topography accelerated the flow along the bank and triggered bank failures up to 20 days after the flood events. Four analysed flow events exhibited a total bar expansion from initially 126 m2 to 295 m2, while bank retreat was 6 m at the apex of the branch. The results revealed the forcing role of bar accretion in channel widening and highlighted the importance of intra‐event scale bed morphodynamics for bank erosion, which were summarized in a conceptual model of the observed bar–bank interactions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
ABSTRACT

This study assessed the utility of EUDEM, a recently released digital elevation model, to support flood inundation modelling. To this end, a comparison with other topographic data sources was performed (i.e. LIDAR, light detection and ranging; SRTM, Shuttle Radar Topographic Mission) on a 98-km reach of the River Po, between Cremona and Borgoforte (Italy). This comparison was implemented using different model structures while explicitly accounting for uncertainty in model parameters and upstream boundary conditions. This approach facilitated a comprehensive assessment of the uncertainty associated with hydraulic modelling of floods. For this test site, our results showed that the flood inundation models built on coarse resolutions data (EUDEM and SRTM) and simple one-dimensional model structure performed well during model evaluation.
Editor Z.W. Kundzewicz; Associate editor S. Weijs  相似文献   

18.
The Mekong Delta is one of the largest and most intensively used estuaries in the world. Each year it witnesses widespread flooding which is both the basis of the livelihood for more than 17 million people but also the major hazard. Therefore, a thorough understanding of the hydrologic and hydraulic features is urgently required for various planning purposes. While the general causes and characteristics of the annual floods are understood, the inundation dynamics in the floodplains in Vietnam which are highly controlled by dikes and other control structures have not been investigated in depth. Especially, quantitative analyses are lacking, mainly due to scarce data about the inundation processes in the floodplains. Therefore, a comprehensive monitoring scheme for channel and floodplain inundation was established in a study area in the Plain of Reeds in the northeastern part of the Vietnamese Delta. This in situ data collection was complemented by a series of high‐resolution inundation maps derived from the TerraSAR‐X satellite for the flood seasons 2008 and 2009. Hence, the inundation dynamics in the channels and floodplains, and the interaction between channels and floodplains, could be quantified for the first time. The study identifies the strong human interference which is governed by flood protection levels, cropping patterns and communal water management. In addition, we examine the tidal influence on the inundation in various parts of the Delta, since it is expected that climate change‐induced sea level rise will increase the tidal contribution to floodplain inundation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
The capability of a simple kinematic‐storage model (KSM) is analysed to be used as a tool for a Decision Support System for the evaluation of probability inundation maps in near real time in poorly gauged areas. KSM simulates the floodplain as a storage and assumes no exchange of momentum with the channel. For the in‐bank flow, the storage is modified through a coefficient for taking the variations of channel cross sections into account. The generalized likelihood uncertainty estimation approach is used for addressing the probability flood maps along with their associated uncertainties. The model is tested on two river reaches along the Tiber River in Central Italy where observed inundation maps are available for two recent flood events. Despite the inherent uncertainties present in the input data and in the model structure, the results show that the model reproduces reasonably well, in terms of both precision and accuracy, the observed inundated areas. Tests were performed at different digital elevation model resolutions, showing a small effect of the geometry on the maximum performance obtained. The very low computational times, the parsimony of the model and its low sensitivity to the quality of the geometry representation of the channel and the floodplain makes KSM very appealing for flood forecasting and early warning system applications in poorly gauged and inaccessible areas. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Flood risk management is an essential responsibility of state governments and local councils to ensure the protection of people residing on floodplains. Globally, floodplains are under increasing pressure from growing populations. Typically, the engineering‐type solutions that are used to predict local flood magnitude and frequency based on limited gauging data are inadequate, especially in settings which experience high hydrological variability. This study highlights the importance of incorporating geomorphological understanding into flood risk management in southeast Queensland (SEQ), an area badly affected by extreme flood events in 2011 and 2013. The major aim of this study is to outline the hydrological and sedimentological characteristics of various ‘inundation surfaces’ that are typical of catchments in the sub‐tropics. It identifies four major inundation surfaces; within‐channel bench [Q ~ 2.33 yr average recurrence interval (ARI)]; genetic floodplain (Q = 20 yr ARI); hydraulic floodplain (20 yr < Q ≤ 200 yr ARI) and terrace (Q > 1000 yr ARI). These surfaces are considered typical of inundation areas within, and adjacent to, the large macrochannels common to this region and others of similar hydrological variability. An additional area within genetic floodplains was identified where flood surfaces coalesce and produce an abrupt reduction in channel capacity. This is referred to here as a Spill‐out Zone (SOZ). The associated vulnerability and risk of these surfaces is reviewed and recommendations made based on incorporating this geomorphological understanding into flood risk assessments. These recommendations recognize the importance to manage for risks associated with flow inundation and sediment erosion, delivery and deposition. The increasing availability of high resolution topographic data opens up the possibility of more rapid and spatially extensive assessments of key geomorphic processes which can readily be used to predict flood risk. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号