首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Despite the significant influence of temperature upon alpine stream benthic communities, thermal regimes of the water column and hyporheic zone of these mountain streams have received limited attention. This paper reports upon a detailed spatio‐temporal study of water column and streambed temperatures undertaken within the Taillon–Gabiétous catchment, French Pyrénées, that aims: (1) to characterize the nature and dynamics of alpine stream water column and streambed thermal patterns; (2) to investigate stream thermal variability under a range of hydroclimatological conditions; and (3) to consider the implications of (1) and (2) for alpine stream benthic communities. The catchment contains four highly dynamic hydrological sources and pathways: (1) two cirque glaciers (Taillon and Gabiétous); (2) seasonal snowpacks; (3) a karst groundwater system; and (4) hillslope aquifers. Water column temperatures were monitored continuously at four sites located along the Taillon glacial stream and at three groundwater springs (two karstic and one hillslope) over the 2002 summer melt season. An eighth site (Tourettes) was established on a predominantly groundwater‐fed stream with limited meltwater input. Bed temperatures (0·05, 0·20 and 0·40 m depth) and river discharge were measured at three sites: (1) the Taillon stream; (2) the Tourettes stream; and (3) below the confluence of (1) and (2). Air temperatures, incoming short‐wave radiation and precipitation were recorded to characterize atmospheric conditions. Glacial stream water column temperatures increased downstream, although groundwater tributaries punctuated longitudinal patterns. Karstic groundwater streams were cooler and more thermally stable than the glacial stream (except at the glacier snout). Hillslope groundwater stream temperatures were most variable and, on average, the warmest of all sites. Streambed temperatures in the glacial stream were coldest and most variable whilst the warmest and least variable streambed temperatures were recorded in an adjacent groundwater tributary. Temperature variability was strongly related to: (1) dynamic water source and pathway contributions; (2) proximity to source; and (3) prevailing hydroclimatological conditions. The high thermal heterogeneity within this catchment may sustain relatively diverse benthic communities, including some endemic Pyrénéan macroinvertebrate taxa. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
We measured stream temperature continuously during the 2011 summer run‐off season (May through October) in nine watersheds of Southeast Alaska that provide spawning habitat for Pacific salmon. The nine watersheds have glacier coverage ranging from 0% to 63%. Our goal was to determine how air temperature and watershed land cover, particularly glacier coverage, influence stream temperature across the seasonal glacial meltwater hydrograph. Multiple linear regression models identified mean watershed elevation (related to glacier extent) and watershed lake coverage (%) as the strongest landscape controls on mean monthly stream temperature, with the weakest (May) and strongest (July) models explaining 86% and 97% of the temperature variability, respectively. Mean weekly stream temperature was significantly correlated with mean weekly air temperature in seven streams; however, the relationships were weak to non‐significant in the streams influenced by glacial run‐off. Streams with >30% glacier coverage showed decreasing stream temperatures with rising summer air temperatures, whereas those with <30% glacier coverage exhibited summertime warming. Glaciers also had a cooling effect on monthly mean stream temperature during the summer (July through September) equivalent to a decrease of 1.1 °C for each 10% increase in glacier coverage. The maximum weekly average temperature (an index of thermal suitability for salmon) in the six glacial streams was substantially below the lower threshold for optimum salmon growth. This finding suggests that although glaciers are important for moderating summer stream temperatures, future reductions in glacier run‐off may actually improve the thermal suitability of some glacially dominated streams in Southeast Alaska for salmon. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
In this study, summer rainfall contributions to streamflow were quantified in the sub‐arctic, 30% glacierized Tarfala (21.7 km2) catchment in northern Sweden for two non‐consecutive summer sampling seasons (2004 and 2011). We used two‐component hydrograph separation along with isotope ratios (δ18O and δD) of rainwater and daily streamwater samplings to estimate relative fraction and uncertainties (because of laboratory instrumentation, temporal variability and spatial gradients) of source water contributions. We hypothesized that the glacier influence on how rainfall becomes runoff is temporally variable and largely dependent on a combination of the timing of decreasing snow cover on glaciers and the relative moisture storage condition within the catchment. The results indicate that the majority of storm runoff was dominated by pre‐event water. However, the average event water contribution during storm events differed slightly between both years with 11% reached in 2004 and 22% in 2011. Event water contributions to runoff generally increased over 2011 the sampling season in both the main stream of Tarfala catchment and in the two pro‐glacial streams that drain Storglaciären (the largest glacier in Tarfala catchment covering 2.9 km2). We credit both the inter‐annual and intra‐annual differences in event water contributions to large rainfall events late in the summer melt season, low glacier snow cover and elevated soil moisture due to large antecedent precipitation. Together amplification of these two mechanisms under a warming climate might influence the timing and magnitude of floods, the sediment budget and nutrient cycling in glacierized catchments. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
5.
The spatial and temporal characterization of geochemical tracers over Alpine glacierized catchments is particularly difficult, but fundamental to quantify groundwater, glacier melt, and rain water contribution to stream runoff. In this study, we analysed the spatial and temporal variability of δ2H and electrical conductivity (EC) in various water sources during three ablation seasons in an 8.4‐km2 glacierized catchment in the Italian Alps, in relation to snow cover and hydro‐meteorological conditions. Variations in the daily streamflow range due to melt‐induced runoff events were controlled by maximum daily air temperature and snow covered area in the catchment. Maximum daily streamflow decreased with increasing snow cover, and a threshold relation was found between maximum daily temperature and daily streamflow range. During melt‐induced runoff events, stream water EC decreased due to the contribution of glacier melt water to stream runoff. In this catchment, EC could be used to distinguish the contribution of subglacial flow (identified as an end member, enriched in EC) from glacier melt water to stream runoff, whereas spring water in the study area could not be considered as an end member. The isotopic composition of snow, glacier ice, and melt water was not significantly correlated with the sampling point elevation, and the spatial variability was more likely affected by postdepositional processes. The high spatial and temporal variability in the tracer signature of the end members (subglacial flow, rain water, glacier melt water, and residual winter snow), together with small daily variability in stream water δ2H dynamics, are problematic for the quantification of the contribution of the identified end members to stream runoff, and call for further research, possibly integrated with other natural or artificial tracers.  相似文献   

6.
The influence of riparian woodland on stream temperature, micro‐climate and energy exchange was investigated over seven calendar years. Continuous data were collected from two reaches of the Girnock Burn (a tributary of the Aberdeenshire Dee, Scotland) with contrasting land use characteristics: (1) semi‐natural riparian forest and (2) open moorland. In the moorland reach, wind speed and energy fluxes (especially net radiation, latent heat and sensible heat) varied considerably between years because of variable riparian micro‐climate coupled strongly to prevailing meteorological conditions. In the forested reach, riparian vegetation sheltered the stream from meteorological conditions that produced a moderated micro‐climate and thus energy exchange conditions, which were relatively stable between years. Net energy gains (losses) in spring and summer (autumn and winter) were typically greater in the moorland than the forest. However, when particularly high latent heat loss or low net radiation gain occurred in the moorland, net energy gain (loss) was less than that in the forest during the spring and summer (autumn and winter) months. Spring and summer water temperature was typically cooler in the forest and characterised by less inter‐annual variability due to reduced, more inter‐annually stable energy gain in the forested reach. The effect of riparian vegetation on autumn and winter water temperature dynamics was less clear because of the confounding effects of reach‐scale inflows of thermally stable groundwater in the moorland reach, which strongly influenced the local heat budget. These findings provide new insights as to the hydrometeorological conditions under which semi‐natural riparian forest may be effective in mitigating river thermal variability, notably peaks, under present and future climates. © 2014 The Authors. Hydrological Processes published by John Wiley & Sons Ltd.  相似文献   

7.
We analysed contributions to run‐off using hourly stream water samples from seven individual melt‐induced run‐off events (plus one rainfall event) during 2011, 2012 and 2013 in two nested glacierized catchments in the Eastern Italian Alps. Electrical conductivity and stable isotopes of water were used for mixing analysis and two‐component and three‐component hydrograph separation. High‐elevation snowmelt, glacier melt and autumn groundwater were identified as major end‐members. Discharge and tracers in the stream followed the diurnal variations of air temperature but markedly reacted to rainfall inputs. Hysteresis patterns between discharge and electrical conductivity during the melt‐induced run‐off events revealed contrasting loop directions at the two monitored stream sections. Snowmelt contribution to run‐off was highest in June and July (up to 33%), whereas the maximum contribution of glacier melt was reached in August (up to 65%). The maximum groundwater and rainfall contributions were 62% and 11%, respectively. Run‐off events were generally characterized by decreasing snowmelt and increasing glacier melt fractions from the beginning to the end of the summer 2012, while run‐off events in 2013 showed less variable snowmelt and lower glacier melt contributions than in 2012. The results provided essential insights into the complex dynamics of melt‐induced run‐off events and may be of further use in the context of water resource management in alpine catchments. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Digital elevation models of the surface and bed of Midtdalsbreen, Norway are used to calculate subglacial hydraulic potential and infer drainage system structure for a series of subglacial water pressure assumptions ranging from atmospheric to ice overburden. A distributed degree‐day model is used to calculate the spatial distribution of melt on the glacier surface throughout a typical summer, which is accumulated along the various drainage system structures to calculate water fluxes beneath the glacier and exiting the portals for the different water pressure assumptions. In addition, 78 dye‐tracing tests were performed from 33 injection sites and numerous measurements of water discharge were made on the main proglacial streams over several summer melt seasons. Comparison of the calculated drainage system structures and water fluxes with dye tracing results and measured proglacial stream discharges suggests that the temporally and spatially averaged steady‐state water pressures beneath the glacier are ~70% of ice overburden. Analysis of the dye return curves, together with the calculated subglacial water fluxes shows that the main drainage network on the eastern half of the glacier consists of a hydraulically efficient system of broad, low channels (average width/height ratio ≈ 75). The smaller drainage network on the west consists of a hydraulically inefficient distributed system, dominated by channels that are exceptionally broad and very low (average width/height ratio ≈ 350). The even smaller central drainage network also consists of a hydraulically inefficient distributed system, dominated by channels that are very broad and exceptionally low (average width/height ratio ≈ 450). The channels beneath the western and central glacier must be so broad and low that they can essentially be thought of as a linked cavity system. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Human‐accelerated climate change is quickly leading to glacier‐free mountains, with consequences for the ecology and hydrology of alpine river systems. Water origin (i.e., glacier, snowmelt, precipitation, and groundwater) is a key control on multiple facets of alpine stream ecosystems, because it drives the physico‐chemical template of the habitat in which ecological communities reside and interact and ecosystem processes occur. Accordingly, distinct alpine stream types and associated communities have been identified. However, unlike streams fed by glaciers (i.e., kryal), groundwater (i.e., krenal), and snowmelt/precipitation (i.e., rhithral), those fed by rock glaciers are still poorly documented. We characterized the physical and chemical features of these streams and investigated the influence of rock glaciers on the habitat template of alpine river networks. We analysed two subcatchments in a deglaciating area of the Central European Alps, where rock glacier‐fed, groundwater‐fed, and glacier‐fed streams are all present. We monitored the spatial, seasonal, and diel variability of physical conditions (i.e., water temperature, turbidity, channel stability, and discharge) and chemical variables (electrical conductivity, major ions, and trace element concentrations) during the snowmelt, glacier ablation, and flow recession periods of two consecutive years. We observed distinct physical and chemical conditions and seasonal responses for the different stream types. Rock glacial streams were characterized by very low and constant water temperatures, stable channels, clear waters, and high concentrations of ions and trace elements that increased as summer progressed. Furthermore, one rock glacier strongly influenced the habitat template of downstream waters due to high solute export, especially in late summer under increased permafrost thaw. Given their unique set of environmental conditions, we suggest that streams fed by thawing rock glaciers are distinct river habitats that differ from those normally classified for alpine streams. Rock glaciers may become increasingly important in shaping the hydroecology of alpine river systems under continued deglaciation.  相似文献   

10.
Potential changes in glacier area, mass balance and runoff in the Yarkant River Basin (YRB) and Beida River Basin (BRB) are projected for the period from 2011 to 2050 employing the modified monthly degree‐day model forced by climate change projection. Future monthly air temperature and precipitation were derived from the simple average of 17, 16 and 17 General Circulation Model (GCM) projections following the A1B, A2 and B1 scenarios, respectively. These data were downscaled to each station employing the Delta method, which computes differences between current and future GCM simulations and adds these changes to observed time series. Model parameters calibrated with observations or results published in the literature between 1961 and 2006 were kept unchanged. Annual glacier runoff in YRB is projected to increase until 2050, and the total runoff over glacier area in 1970 is projected to increase by about 13%–35% during 2011–2050 relative to the average during 1961–2006. Annual glacier runoff and the total runoff over glacier area in 1970 in BRB is projected to increase initially and then to reach a tipping point during 2011–2030. There are prominent increases in summer, but only small increase in May and October of glacier runoff in YRB, and significant increases during late spring and early summer and significant decreases in July and late summer of glacier runoff in BRB. This study highlights the great differences among basins in their response to future climate warming. The specific runoff from areas exposed after glacier retreat relative to 1970 is projected to general increasing, which must be considered when evaluating the potential change of glacier runoff. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
The thermal regimes of alpine streams remain understudied and have important implications for cold‐water fish habitat, which is expected to decline due to climatic warming. Previous research has focused on the effects of distributed energy fluxes and meltwater from snowpacks and glaciers on the temperature of mountain streams. This study presents the effects of the groundwater spring discharge from an inactive rock glacier containing little ground ice on the temperature of an alpine stream. Rock glaciers are coarse blocky landforms that are ubiquitous in alpine environments and typically exhibit low groundwater discharge temperatures and resilience to climatic warming. Water temperature data indicate that the rock glacier spring cools the stream by an average of 3 °C during July and August and reduces maximum daily temperatures by an average of 5 °C during the peak temperature period of the first two weeks in August, producing a cold‐water refuge downstream of the spring. The distributed stream surface and streambed energy fluxes are calculated for the reach along the toe of the rock glacier, and solar radiation dominates the distributed stream energy budget. The lateral advective heat flux generated by the rock glacier spring is compared to the distributed energy fluxes over the study reach, and the spring advective heat flux is the dominant control on stream temperature at the reach scale. This study highlights the potential for coarse blocky landforms to generate climatically resilient cold‐water refuges in alpine streams.  相似文献   

12.
Glaciers are major agents of erosion that increase sediment load to the downstream fluvial system. The Castle Creek Glacier, British Columbia, Canada, has retreated ~1.0 km in the past 70 years. Suspended sediment concentration (SSC) and streamflow (Q) were monitored independently at five sites within its pro‐glacial zone over a 60 day period from July to September 2011, representing part of the ablation season. Meteorological data were collected from two automatic weather stations proximal to the glacier. The time‐series were divided into hydrologic days and the shape and magnitude of the SSC response to hydro‐meteorological conditions (‘cold and wet’, ‘hot and dry’, ‘warm and damp’, and ‘storm’) were categorized using principal component analysis (PCA) and cluster analysis (CA). Suspended sediment load (SSL) was computed and summarized for the categories. The distribution of monitoring sites and results of the multivariate statistical analyses describe the temporal and spatial variability of suspended sediment flux and the relative importance of glacial and para‐glacial sediment sources in the pro‐glacial zone. During the 2011 study period, ~ 60% of the total SSL was derived from the glacial stream and sediment deposits proximal to the terminus of the glacier; during ‘storm’ events, that contribution dropped to ~40% as the contribution from diffuse and point sources of sediment throughout the pro‐glacial zone and within the meltwater channels increased. While ‘storm’ events accounted for just 3% of the study period, SSL was ~600% higher than the average over the monitoring period, and ~20% of the total SSL was generated in that time. Determining how hydro‐meteorological conditions and sediment sources control sediment fluxes will assist attempts to predict how pro‐glacial zones respond to future climate changes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Sediment yield can be a sensitive indicator of catchment dynamics and environmental change. For a glacierized catchment in the High Arctic, we compiled and analyzed diverse sediment transfer data, spanning a wide range of temporal scales, to quantify catchment yields and explore landscape response to past and ongoing hydroclimatic variability. The dataset integrates rates of lake sedimentation from correlated varve records and repeated annual and seasonal sediment traps, augmented by multi‐year lake and fluvial monitoring. Consistent spatial patterns of deposition enabled reconstruction of catchment yields from varve‐ and trap‐based fluxes. We used hydroclimatic data and multivariate modeling to examine annual controls of sediment delivery over almost a century, and to examine shorter‐term controls of sediment transfer during peak glacier melt. Particle‐size analyses, especially for annual sediment traps, were used to further infer sediment transfer mechanisms and timing. Through the Medieval Warm Period and Little Ice Age, there were no apparent multi‐century trends in lake sedimentation rates, which were over three times greater than those during the mid‐Holocene when glaciers were diminished. Twentieth‐century sedimentation rates were greater than those of previous millennia, with a mid‐century step increase in mean yield from 240 to 425 Mg km?2 yr?1. Annual yields through the twentieth century showed significant positive relations with spring/summer temperature, rainfall, and peak discharge conditions. This finding is significant for the future of sediment transfer at Linnévatnet, and perhaps more broadly in the Arctic, where continued increases in temperature and rainfall are projected. For 2004–2010, annual yields ranged from 294 to 1330 Mg km?2 yr?1. Sediment trap volumes and particle‐size variations indicate that recent annual yields were largely dominated by spring to early summer transfer of relatively coarse‐grained sediment. Fluvial monitoring showed daily to hourly sediment transfer to be related to current and prior discharge, diurnal hysteresis, air temperature, and precipitation. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
River water temperature is an important water quality parameter that also influences most aquatic life. Physical processes influencing water temperature in rivers are highly complex. This is especially true for the estimation of river heat exchange processes that are highly dependent on good estimates of radiation fluxes. Furthermore, very few studies were found within the stream temperature dynamic literature where the different radiation components have been measured and compared at the stream level (at microclimate conditions). Therefore, this study presents results on hydrometeorological conditions for a small tributary within Catamaran Brook (part of the Miramichi River system, New Brunswick, Canada) with the following specific objectives: (1) to compare between stream microclimate and remote meteorological conditions, (2) to compare measured long‐wave radiation data with those calculated from an analytical model, and (3), to calculate the corresponding river heat fluxes. The most salient findings of this study are (1) solar radiation and wind speed are parameters that are highly site specific within the river environment and play an important role in the estimation of river heat fluxes; (2) the incoming, outgoing, and net long‐wave radiation within the stream environment (under the forest canopy) can be effectively calculated using empirical formula; (3) at the study site more than 80% of the incoming long‐wave radiation was coming from the forest; (4) total energy gains were dominated by solar radiation flux (for all the study periods) followed by the net long‐wave radiation (during some periods) whereas energy losses were coming from both the net long‐wave radiation and evaporation. Conductive heat fluxes have a minor contribution from the overall heat budget (<3·5%); (5) the reflected short‐wave radiation at the water surface was calculated on average as 3·2%, which is consistent with literature values. Results of this study contribute towards a better understanding of river heat fluxes and water temperature models as well as for more effective aquatic resources and fisheries management. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Mountain water resources management often requires hydrological models that need to handle both snow and ice melt. In this study, we compared two different model types for a partly glacierized watershed in central Switzerland: (1) an energy‐balance model primarily designed for snow simulations; and (2) a temperature‐index model developed for glacier simulations. The models were forced with data extrapolated from long‐term measurement records to mimic the typical input data situation for climate change assessments. By using different methods to distribute precipitation, we also assessed how various snow cover patterns influenced the modelled runoff. The energy‐balance model provided accurate discharge estimations during periods dominated by snow melt, but dropped in performance during the glacier ablation season. The glacier melt rates were sensitive to the modelled snow cover patterns and to the parameterization of turbulent heat fluxes. In contrast, the temperature‐index model poorly reproduced snow melt runoff, but provided accurate discharge estimations during the periods dominated by glacier ablation, almost independently of the method used to distribute precipitation. Apparently, the calibration of this model compensated for the inaccurate precipitation input with biased parameters. Our results show that accurate estimates of snow cover patterns are needed either to correctly constrain the melt parameters of the temperature‐index model or to ensure appropriate glacier surface albedos required by the energy‐balance model. Thus, particularly when only distant meteorological stations are available, carefully selected input data and efficient extrapolation methods of meteorological variables improve the reliability of runoff simulations in high alpine watersheds. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
The distribution of groundwater inflows in a stream reach plays a major role in controlling the stream temperature, a vital component shaping the riverine ecosystem. In this study, the Distributed Temperature Sensing (DTS) system was installed in a small Danish lowland stream, Elverdamsåen, to assess the seasonal dynamics of groundwater inflow zones using high spatial (1 m) and temporal (3 minutes) resolution of water temperature measurements. Four simple criteria consisting of 30 min average temperature at 16:00, mean and standard deviation of diurnal temperatures, and the day–night temperature difference were applied to three DTS datasets representing stream temperature responses to the variable meteorological and hydrological conditions prevailing in summer, winter and spring. The standard deviation criterion was useful to identify groundwater discharge zones in summer and spring conditions, while the mean temperature criterion was better for the winter conditions. In total, 20 interactions were identified from the DTS datasets representing summer, 16 in winter and 19 in spring, albeit with only two interactions contributing in all three seasons. Higher baseflow to streamflow ratio, antecedent precipitation and presence of fractured clayey till in the stream reach were deemed as the vital factors causing apparent seasonal variation in the locations of upwelling zones, prompting use of DTS not only in preconceived scenarios of large diurnal temperature change but rather a long‐term deployment covering variable meteorological and hydrological scenarios. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
This paper focuses on the historical range of variability of landslide activity and its relation to climate in the Aconcagua Park, Argentina. Landslide frequency data are obtained through historic compilation, including the review of more than 85 data sources and personal interviews with members of the local community. Based on these records, the study analyzes major landslide triggering mechanisms and evaluates the role of climate. Slope instability in Aconcagua Park appears to be mainly forced by the melting of snow accumulated during the winter season, which in turn promotes soil saturation and landslide occurrence the following spring–summer (December–February). This finding is supported by a strong correlation between landslides and stream flows of Andean rivers. These peaks occur during warmer seasons, fed by snow and ice‐glacier melting. In contrast, the correlation between landslide frequency and precipitation (diary/accumulative/monthly/annual) is less certain; and the relationship of landslide to temperature records (mean annual temperature/mean temperature during November–February period) is weak. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Summer stream water quality was monitored before and following the logging of 50% of the boreal forest within three small watersheds (<50 ha) nested in the ‘Ruisseau des Eaux‐Volées’ Experimental Watershed, Montmorency Forest (Québec, Canada). Logging was conducted in winter, on snow cover according to recommended best management practices (BMPs) to minimize soil disturbance and protect advance growth. A 20‐m forest buffer was maintained along perennial streams. In watershed 7·2, cut‐blocks were located near the stream network and logging was partially allowed within the riparian buffer zone. In watersheds 7·5 and 7·7, logging occurred farther away from the stream network. Observations were also made for watershed 7·3 that collected the runoff from watersheds 7·2 and 7·5, and watershed 7·6, the uproad portion of watershed 7·7. The control watershed 0·2 was contiguous to the impacted watersheds and remained undisturbed. Following clearcutting, changes in summer daily maximum and minimum stream temperatures remained within ± 1 °C while changes in diurnal variation did not decrease by more than 0·5 °C. Concentrations of NO3? greatly increased by up to 6000% and concentrations of K+ increased by up to 300% during the second summer after logging. Smaller increases were observed for Fetotal (up to 71%), specific conductance (up to 26%), and Mg2+ (up to 19%). Post‐logging pH decreased slightly by no more than 7% while PO43? concentration remained relatively constant. Suspended sediment concentrations appeared to increase during post‐logging, but there was not enough pre‐logging data to statistically confirm this result. Logging of moderate intensity and respecting established BMPs may account for the limited changes of water quality parameters and the low exceedances of the criteria for the protection of aquatic life. The proximity of the cutover to the stream network and logging within the riparian zone did not appear to affect water quality. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
This study compared summer stream temperature between two years in the Star Creek catchment, Alberta, a headwater basin on the eastern slopes of the Canadian Rocky Mountains. Star Creek is a subsurface water dominated stream, which represents important habitat for native salmonid species. Hydrometeorological data from May to September of 2010 and 2011 accompanied by stream energy budget calculations were used to describe the drivers of stream temperature in this small forested stream. Mean, maximum, and minimum weekly stream temperatures were lower from May to August and higher in September 2011 compared to 2010. Weekly range in stream temperature was also different between years with a higher range in 2010. Inter‐annual stream temperature variation was attributed discharge differences between years, shown to be primarily governed by catchment‐scale moisture conditions. This study demonstrates that both meteorological and hydrological processes must be considered in order to understand stream temperature response to changing environmental conditions in mountainous regions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Water temperature dynamics in High Arctic river basins   总被引:2,自引:0,他引:2  
Despite the high sensitivity of polar regions to climate change and the strong influence of temperature upon ecosystem processes, contemporary understanding of water temperature dynamics in Arctic river systems is limited. This research gap was addressed by exploring high‐resolution water column thermal regimes for glacier‐fed and non‐glacial rivers at eight sites across Svalbard during the 2010 melt season. Mean water column temperatures in glacier‐fed rivers (0.3–3.2 °C) were lowest and least variable near the glacier terminus but increased downstream (0.7–2.3 °C km–1). Non‐glacial rivers, where discharge was sourced primarily from snowmelt runoff, were warmer (mean: 2.9–5.7 °C) and more variable, indicating increased water residence times in shallow alluvial zones and increased potential for atmospheric influence. Mean summer water temperature and the magnitude of daily thermal variation were similar to those of some Alaskan Arctic rivers but low at all sites when compared with alpine glacierized environments at lower latitudes. Thermal regimes were correlated strongly (p < 0.01) with incoming short‐wave radiation, air temperature, and river discharge. Principal drivers of thermal variability were inferred to be (i) water source (i.e. glacier melt, snowmelt, groundwater); (ii) exposure time to the atmosphere; (iii) prevailing meteorological conditions; (iv) river discharge; (v) runoff interaction with permafrost and buried ice; and (vi) basin‐specific geomorphological features (e.g. channel morphology). These results provide insight into the potential changes in high‐latitude river systems in the context of projected warming in polar regions. We hypothesize that warmer and more variable temperature regimes may prevail in the future as the proportion of bulk discharge sourced from glacial meltwater declines and rivers undergo a progressive shift towards snow water and groundwater sources. Importantly, such changes could have implications for aquatic species diversity and abundance and influence rates of ecosystem functioning in high‐latitude river systems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号