首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The Dien Bien Phu fault zone (DBP), orientated NNE to N, is one of the most seismically active zones in Indochina. In NW Vietnam, this zone is 160 km long and 6–10 km wide, cutting sedimentary and metamorphic rocks of the Late Proterozoic, Palaeozoic and Mesozoic age, as well as Palaeozoic and Late Triassic granitoids. Along the DBP relatively small, narrow pull-apart basins occur, the three largest of which (Chan Nua, Lai Chau and Dien Bien Phu) have been studied in detail. All of them are bounded by sinistral and sinistral-normal faults, responsible for offset and deflected drainage, presence of numerous shutter ridges and displaced terraces and alluvial fans. The normal component of motion is testified to by well-preserved triangular facets on fault scarps, highly elevated straths in river watergaps, overhanging tributary valleys, as well as high and uneven river-bed gradients.Our observations indicate a minimum recent sinistral offset ranging from 6–8 to 150 m for Holocene valleys to 1.2–9.75 km for middle–late Pleistocene valleys in different fault segments. The thickness of Quaternary sediments varies from 5–25 m in the Lai Chau area to some 130 m in the Dien Bien Phu Basin. In the Lai Chau Basin, the middle terrace (23 m) alluvia of Nam Na River at Muong Te bridge have been optically stimulated luminescence/single aliquot regenerative dose technique (OSL-SAR) dated at 23–40 to 13 ka. These sediments were normal-faulted by some 11 m after 13 ka, and mantled by vari-coloured slope loams, 8–12 m thick, containing colluvial wedges composed of angular debris. These wedges were probably formed due to at least three palaeoseismic events postdating 6 ka. In the Dien Bien Phu Basin, in turn, alluvium of the upper Holocene terraces has been OSL-SAR dated to 6.5–7 and 1.7–1.0 ka, whereas the younger (sub-recent) terrace sediments give ages of 0.5–0.2 ka.Displaced terraces and alluvial fans allow us to suppose that the sinistral and sinistral-normal faults bounding narrow pull-apart basins in the southern portion of the DBP fault reveal minimum rates of left-lateral strike-slip ranging from 0.6 to 2 mm/year in Holocene and 0.5–3.8 mm/year in Pleistocene times, whereas rates of Holocene uplift tend to attain 1 mm/year north of Lai Chau and 0.4–0.6 mm/year west of Dien Bien Phu. More precise estimations, however, are difficult to obtain due to poor age control of the displaced drainage. Rates of Quaternary strike-slip are comparable with those of the Red River fault; the sense of movement being, however, opposite. Taking into account the presence of two phases of Late Cenozoic strike-slip of contrasting sense of motion, as well as the geometry of the two fault zones, we hypothesize that the Red River and Dien Bien Phu faults are conjugate faults capable of generating relatively strong earthquakes in the future.  相似文献   

2.
About 2000 active faults are known to exist within the land area of Japan. Most of these active faults have deformed the topographic surfaces which were formed in the late Quaternary, including fluvial terraces; and the formative ages of these terraces are estimated mainly by tephrochronology. Fluvial terraces in the eastern Hokuriku region, comprising the Toyama, Tonami, and Kanazawa Plains, northern central Japan, are widely distributed and have been deformed by reverse active faults. The formative age of terraces in this area has not been reported, as volcanic ash deposits are rarely visible within terrace deposits and the overlying loamy soil, and outcrops of fluvial terraces are quite scarce in this area. In the present study, we carried out a drilling survey on these terraces to obtain samples of the overlying loamy soil and upper part of terrace deposits. From these samples, we extracted some well-known widespread volcanic ash, from which we were able to estimate the approximate age of the terraces and the vertical slip rate of the active faults. Late Quaternary fluvial terraces in eastern Hokuriku are divided into 12 levels: Terraces 1 to 12 in descending order. Widespread tephras such as the Kikai-Tozurahara Tephra (K-Tz: 95 ka) are contained in the lowest part of the loamy soil in Terrace 4 and the Daisen-Kurayoshi Pumice (DKP: 55 ka) is present in the lowest part of the loamy soil in Terrace 6. From the ages and the vertical displacements of the fluvial terraces, the late Quaternary average vertical slip rates of active faults in eastern Hokuriku are estimated to be 0.2–0.9 mm/year (Uozu fault), 0.1–0.4 mm/year (Kurehayama fault), 0.1–0.3 mm/year (Takashozu fault), 0.1–0.4 mm/year (Hohrinji fault), and 0.5–0.8 mm/year (Morimoto-Togashi fault). We also estimated the recurrence interval of earthquakes related to active faults from displacement per event and ages of terraces and no significant difference in vertical displacement per single earthquake for different active faults, and recurrence intervals tend to be inversely proportional to vertical displacement rates. This study demonstrates that a combination of drilling of loamy soil and precise cryptotephra analysis of fluvial terraces can be used to estimate the formative age of the terraces and the average slip rate of active faults in areas where volcanic ash deposits are rare.  相似文献   

3.
The Tyrrhenian coastal sector of North Calabria, stretching between Torre S. Nicola and the Lao river, belongs to the inner extensional sector of the Neogene Apennines thrust belt. It is characterised by a stair of Quaternary marine and fluvial terraces representing the geomorphic response to the interaction between the Quaternary sea level fluctuations and the regional trend of tectonic uplift experienced by the margins of the Tyrrhenian back-arc basin. Since the last century, several authors studied the North Calabria coasts, where the flight of terraces preserves significant marine and continental successions, and proposed several paleo-geomorphological and tectonic reconstructions. In this paper we present a new stratigraphic and morphostructural setting of the North Calabria coasts based on both chronostratigraphical constraints obtained from marine deposits and detailed geomorphological analysis. A ten order stair of marine terraces, stepping between 240 and 0 m a.s.l., was recognized and time-constrained by the age of the Fornaci S. Nicola marine succession which was ascribed by integrated paleoecological, biostratigraphical and paleomagentic analyses to the early Middle Pleistocene (MIS 19–15). In particular, the 240, 200 and 160 m a.s.l. high strandlines were ascribed to the Early Pleistocene and the ones between 100 and 15 m a.s.l. to the Middle Pleistocene. The total amount of the vertical motion experienced by the studied area was estimated, and evaluation of the average rates of uplift for the Middle and Late Pleistocene times were also given. Considering the elevation a.s.l. of the oldest terraces, a tectonic uplift of at least 240 m was calculated for the North Calabria coasts since the Early Pleistocene times, 100 m of which gained from the beginning of the Middle Pleistocene. On the other hand, the 8-m high Late Pleistocene strandlines display a negligible vertical displacement affecting the area during the last 130 ka. The entire staircase of terraces preserves a record of slowing down in the rate of uplift, which attained an average value of 0.15 mm/year during the Middle Pleistocene.  相似文献   

4.
In this paper we present the results of an integrated geomorphological, pedological and stratigraphical study carried out along the Ionian coast of northern Calabria (southern Italy). This area is characterised by the occurrence of five orders of alluvial terraces that are striking features of the landscape, where large and steep catchments debouch from the mountain front to the hilly coastal belt.Field investigations indicate that the deposits of all five terraces are suggestive of shallow gravel-bed braided streams.On the basis of the age of the Pleistocene substratum and morphostratigraphic correlation with marine terraces cropping out in the nearby areas, each order has been associated to specific marine oxygen isotope stages.Consequently, we focused on the interplay of allocyclic factors influencing stream aggradation/degradation. Soil features and other climatic proxies suggest that climate didn't play an important role with respect to tectonic and base-level changes in controlling fluvial dynamics.In particular, we recognised that during the middle Pleistocene the study area experienced a period of subaerial landscape modelling, as suggested by the thick and complex alluvial sequence of the highest terrace (T1). The onset of regional uplift marks a change in the geomorphic scenario, with tectonic and eustatically driven changes in base-level working together in causing switches in fluvial aggradational/erosional phases (T2–T5 terraces). Because of the uplift, river dissection occurred during phases of sea level fall, whereas aggradation phases occurred during periods of climate amelioration (sea level rise) just before highstands were attained.As a consequence, the stepped terraces in the study area reflect the interplay between tectonics (uplift) and sea level changes, in which terraces define episodes of relative sea level fall during the late Quaternary.  相似文献   

5.
秦岭北麓断裂带晚第四纪活动的地貌表现   总被引:3,自引:0,他引:3  
侯建  柴宝龙 《地理学报》1995,50(2):138-146
本区地貌特征反映秦岭北麓断裂带的活动特点是:①第四纪以来主要发生垂直运动,其活动性质与程度有差异性、阶段性。第一、二级阶地的形态和年代资料表征秦岭北麓断裂带晚更新世和全新世垂直位错幅度和平均速率。②河流阶地在上升盘出口处高度大,而向上游逐渐减小,反映第四纪以来,秦岭断块山地继续发生由北向南的掀斜运动。③被断层切割的冲洪积扇体的结构和堆积层的产状特征,反映出山麓带多发育铲形断层。  相似文献   

6.
In this paper, we apply current geological knowledge on faulting processes to digital processing of Digital Elevation Models (DEM) in order to pinpoint locations of active faults. The analysis is based on semiautomatic interpretation of 20- and 60-m DEM and their products (slope, shaded relief). In Northern–Eastern Attica, five normal fault segments were recognized on the 20-m DEM. All faults strike WNW–ESE. The faults are from west to east: Thriassion (THFS), Fili (FIFS), Afidnai (AFFS), Avlon (AVFS), and Pendeli (PEFS) and range in length from 10 to 20 km. All of them show geomorphic evidence for recent activity such as prominent range-front escarpments, V-shaped valleys, triangular facets, and tilted footwall areas. However, escarpment morphometry and footwall geometry reveal systematic differences between the “external” segments (PEFS, THFS, and AVFS) and the “internal” segments (AFFS and FIFS), which may be due to mechanical interaction among segments and/or preexisting topography. In addition, transects across all five escarpments show mean scarp slope angles of 22.1°±0.7° for both carbonate and metamorphic bedrock. The slope angle equation for the external segments shows asymptotic behaviour with increasing height. We make an empirical suggestion that slope angle is a function of the long-term fault slip rate which ranges between 0.13 and 0.3 mm/yr. The identified faults may rupture up to magnitude 6.4–6.6 earthquakes. The analysis of the 60-m DEM shows a difference in fault patterns between Western and Northern Attica, which is related to crustal rheology variations.  相似文献   

7.
大连半岛地貌,新构造运动与市区安全性   总被引:4,自引:2,他引:4  
刘国海  韩慕康 《地理学报》1993,48(3):227-234
辽东半岛南端的大连半岛是一个刚性断块。其上无活动性大断裂穿过,老断裂多而规模小,在地貌和新地层上无新活动表现。穿越它们的第四纪河、海阶地均平行分布,无明显的垂直或水平错位。整个半岛第四纪以来作整体断块上升。半岛上的小震稀少零星,属刚性断块地壳应力作用下的微破坏活动。位于其上的大连市是安全的,无发生破坏性大震的危险。  相似文献   

8.
Reconnaissance level geomorphological observations in the northern part of Evia (Euboea) Island, suggest that a major topographic feature, the 17 km long and 15 km wide Nileas depression (NDpr), corresponds to a previously undetected graben structure, bounded by fault zones of ENE–WSW to NE–SW general strike. These fault zones have been active in the Quaternary, since they affect the Neogene deposits of the Limni–Histiaia basin. They strike transverse to the NW–SE active fault zones that bound northern Evia in the specific area and are characterised along most of their length by subtle geomorphic signatures in areas of extensive forest cover and poor exposure.The NDpr was formed during the Early–Middle Quaternary, after the deposition of the Neogene basin fill. During the Middle–Late Quaternary, the NW–SE fault zones that bound northern Evia have been the main active structures, truncating and uplifting the NDpr to a perched position in relation to the northern Gulf of Evia graben and the submarine basin on the Aegean side of the island. The present-day morphology of the NDpr, with an interior (floor) comprised of Middle Pleistocene erosional surfaces extensively dissected by drainages, was shaped by erosion during this uplift. Judging from their geomorphic signatures, the fault zones that bound the NDpr must have been characterised by low or very low rates of activity during the Late Quaternary. Yet, that they may still be accommodating strain today is suggested by moderate earthquakes that have been recorded within the NDpr.The fault zone at the SE flank of the NDpr (Prokopi–Pelion fault zone) may be very important in terms of earthquake segmentation of the active NW–SE Dirfys fault zone that controls the Aegean coast of northern Evia, given that the intersection between the two presents striking morpho-structural similarities with the intersection of two fault zones with the same directions on the mainland (the Atalanti and Hyampolis fault zones), which is known to have acted as a barrier to the propagation of the Atalanti earthquake ruptures in 1894.  相似文献   

9.
The Spiti River that drains through the arid Trans-Himalayan region is studied here. The relict deposits exposed along the river provide an opportunity to understand the interaction between the phases of intense monsoon and surface processes occurring in the cold and semi arid to-arid Trans-Himalayan region. Based on geomorphological observation the valley is broadly divided into the upper and lower Spiti Valley. The braided channel and the relict fluvio-lacustrine deposits rising from the present riverbed characterize the upper valley. The deposits in the lower valley occur on the uplifted bedrock strath and where the channel characteristics are mainly of meandering nature. Conspicuous is the occurrence of significantly thick lacustrine units within the relict sedimentary sequences of Spiti throughout the valley. The broad sedimentary architecture suggests the formation of these palaeolakes due landslide-driven river damming. The Optically Stimulated Luminescence (OSL) dating of quartz derived from the bounding units of the lacustrine deposits suggests that the upper valley preserves the phase of deposition around 14–6 ka and in the lower valley around 50–30 ka. The review of published palaeoclimatic palaeolake chronology of Spiti Valley indicates that the lakes were probably formed during the wetter conditions related to Marine Isotope Stage III and II. The increased precipitation during these phases induced excessive landsliding and formation of dammed lakes along the Spiti River. The older lacustrine phase being preserved on the uplifted bedrock strath in the lower valley indicates late Pleistocene tectonic activity along the Kaurick Chango normal fault.  相似文献   

10.
Quaternary sediments represent the main constituent which covers an ENE–WSW elongated depression some 25 km long and 10 km wide (Al-Ain area). This depression is encountered between two north and south low fault scarps and is located perpendicular to the Al Jaww plain and Jabel Hafit axes.Four main types of Quaternary surface deposits were identified belonging to: flood plain and braided channels; desert plain; aeolian sand; and sabkha. The first type shows many pedogenic and non-pedogenic features of which are dolocrete, calcrete and gypcrete.An ENE–WSW closely-spaced dip-slip, stepping pattern fault set could be traced in dolocretized-calcretized braided channel deposits, on the south margin of this depression, where the relationship between fault geometry, displacement and geomorphology suggest a model of either graben or half-graben. The role of this system in developing the landscape of Al-Ain is well documented near the surface but a comprehensive study to assess its role in the sub-surface is needed.  相似文献   

11.
A succession of depositional sequences, recording middle-late Pleistocene and Holocene glacial–interglacial cycles, documents the impact of short-term tectonic deformation on the western Adriatic margin. The western Adriatic margin is part of the Apennine foreland which was intensely, though variably, deformed during the Meso-Cenozoic evolution of the Adriatic region from a passive margin to a foreland basin. The study area extends offshore Gargano Promontory, an uplifted sector of the Adriatic foreland, and includes three major deformation belts located along or cross-strike to the margin: (1) the NW-SE Gallignani-Pelagosa ridge, (2) the WSW-ENE Tremiti-Pianosa high (both located north of Gargano) and (3) the W-E to NW-SE Gondola fault deformation belt (in the south Adriatic). Long-term deformation along these tectonic lineaments is documented on conventional low-frequency seismic profiles by regional folds and faults affecting Eocene–Miocene units overlain by dominantly draping Plio-Quaternary deposits. At this scale of observation, only north of Gargano Promontory there is some evidence of Plio-Quaternary units thinning against structural highs, thus suggesting that tectonic deformation was protracted through this interval. Based on new high-resolution seismic data, we show that deformation along these pre-existing tectonic structures continued during the Quaternary, affecting middle-late Pleistocene and even Holocene units on the shelf and upper slope north and south of Gargano Promontory. These recent deformations consist of gentle folds and high-angle faults, locally producing topographic relief that affects the stratigraphy and thickness of syn-tectonic deposits. We interpret the small-scale, shallow faults and gentle folds affecting middle-late Pleistocene and Holocene deposits, north and south Gargano Promontory, as the evidence of ongoing foreland deformation along inherited regional fold and fault systems.  相似文献   

12.
Jean-Pierre Larue   《Geomorphology》2008,93(3-4):343-367
The analysis of longitudinal profiles of river channels and terraces in the southern Central Massif border, between the Aude and the Orb, allows the detection of anomalies caused by lithology and/or tectonic distortions. The rivers which have abnormally high slope and non-lithological knickzones indicate the main uplifted zones: the Montagne Noire and the Saint-Chinian ridge. A geomorphological and sedimentological analysis of detrital deposits was carried out as a basis for correlating the different formations, reconstructing the palaeodrainage and finding the main uplift and fluvial incision stages. During the Miocene, uplift remains limited as it is shown by the correlative fine deposits in the Languedocian piedmont. The Messinian incision (5.7–5.3 Ma) does not cross the Saint-Chinian ridge. On the other hand, fluvial incision becomes widespread in the Montagne Noire during the Upper Pliocene (3.4–2 Ma) when coarse deposits overlie either the Pliocene clay in the Orb palaeovalley or the Messinian conglomerates at the Cesse outlet. An Upper Pliocene uplift of the Montagne Noire and of the Saint-Chinian ridge is the cause of this incision and also of the diversion of the Cesse towards the Aude. Where the uplift rate was higher than incision rate, knickzones have developed like in the Avant-Monts south-side. The knickzones of lithological origin maintain a strong vertical stability during all the river incision stages. On the other hand, those of tectonic origin or base level lowering record upstream migration and their rate of retreat is controlled by the river discharge. As incision occurs only during the cold/temperate transition periods during the Quaternary, upward erosion slowly migrates (15 km since the Upper Pliocene, on the Orb) and so does not reach the riverheads.  相似文献   

13.
河流阶地和活动断层是研究区域构造运动的良好证据。分析了敦煌雅丹地貌区的活动断层和河流阶地的特征与性质,并取样测定活动断层形成时间,进而通过区域对比确定研究区晚更新世以来的构造运动特征和性质。研究区晚更新世以来受区域构造运动影响强烈,特别是阿尔金构造系和北山构造系的次级构造对研究区影响明显。距今约10万年以来,研究区共发生过3次明显的间歇性构造抬升活动:Ⅰ期发生于距今约10万年前,强度最弱;Ⅱ期发生于距今约7万年前,最为强烈;Ⅲ期发生在距今4万年前。  相似文献   

14.
The Gohpur–Ganga section is located southwest of Itanagar, India. The study area and its adjacent regions lie between the Main Boundary Thrust (MBT) and the Himalayan Front Fault (HFF) within the Sub-Himalaya of the Eastern Himalaya. The Senkhi stream, draining from the north, passes through the MBT and exhibits local meandering as it approaches the study area. Here, five levels of terraces are observed on the eastern part, whereas only four levels of terraces are observed on the western part. The Senkhi and Dokhoso streams show unpaired terraces consisting of very poorly sorted riverbed materials lacking stratification, indicating tectonic activity during deposition. Crude imbrications are also observed on the terrace deposits. A wind gap from an earlier active channel is observed at latitude 27°04′42.4″ N and longitude 93°35′22.4″ E at the height of about 35 m from the present active channel of Senkhi stream. Linear arrangements of ponds trending northeast–southwest on the western side of the study section may represent the paleochannel of Dokhoso stream meeting the Senkhi stream abruptly through this gap earlier. Major lineament trends are observed along NNE–SSW, NE–SW and ENE–WSW direction. The Gohpur–Ganga section is on Quaternary deposits, resting over the Siwaliks with angular contact. Climatic changes of Pleistocene–Holocene times seem to have affected the sedimentation pattern of this part of the Sub-Himalaya, in association with proximal tectonism associated with active tectonic activities, which uplifted the Quaternary deposits. Older and younger terrace deposits seem to mark the Pleistocene–Holocene boundary in the study area with the older terraces showing a well-oxidized and semi-consolidated nature compared to the unoxidized nature of the younger terraces.  相似文献   

15.
The coastal evolution of the El Abalario area (Huelva, southern Spain) during the Late Pleistocene and Holocene is reinterpreted after a refinement of the available geochronology by means of optically stimulated luminescence (OSL) dating. New data come from the analysis of soft sediment deformation, palaeosols, geomorphological mapping, and published seismic surveys on the onshore and offshore Gulf of Cadiz.The present structure of El Abalario dome resulted from the complex interaction of littoral-catchment processes and sea-level changes upon an emergent coastal plain, conditioned by the upwarping of the underlying Pliocene–Pleistocene prograding deltaic sequence. Upwarping is probably related to escape of over-pressurized fluids, accompanied by dewatering, prior to (?) and during OIS (Oxygen Isotopic Stage) 5. Continued upwarping produced the large NW–SE gravitational fault of Torre del Loro (TLF) in the southwestern flank of the dome, roughly parallel to the present coastline during OIS 5–OIS 4. The resulting escarpment favoured the accumulation of aeolian sand dunes (units U1, U2, and U3) from OIS 5 to early OIS 1. Unit U1 (OIS 5) ends upwards in a supersurface with a thick weathering profile that suggests moist and temperate climatic conditions. Unit U2 accumulated mainly during OIS 4 and OIS 3 with prevailing W/E winds. The supersurface between U2 and U3 records a part of OIS 2, with relative low sea level. Sedimentation of unit U3 took place during the Last Deglaciation (radiocarbon and OSL ages) with prevailing W/SW winds, under a temperate moist climate, that became more arid towards the top (Holocene). A major supersurface with an iron crust-like layer (SsFe) developed during the Holocene Climatic Optimum (OIS 1) under wetter and more temperate conditions than before, fossilizing the TLF. The supersurface is covered by younger aeolian dunes (U4, U5, U6, and U7) transported by W–SW winds since the Late Neolithic–Chalcolithic cultural period (5.0 ky cal BP).  相似文献   

16.
Varnish microlamination (VML) dating is a correlative age determination technique that can be used to date and correlate various geomorphic features in deserts. In this study, we establish a generalized late Quaternary (i.e., 0–300 ka) varnish layering sequence for the drylands of western USA and tentatively correlate it with the SPECMAP oxygen isotope record. We then use this climatically correlated varnish layering sequence as a correlative dating tool to determine surface exposure ages for late Quaternary geomorphic features in the study region. VML dating of alluvial fan deposits in Death Valley of eastern California indicates that, during the mid to late Pleistocene, 5–15 ky long aggradation events occurred during either wet or dry climatic periods and that major climate shifts between glacial and interglacial conditions may be the pacemaker for alteration of major episodes of fan aggradation. During the Holocene interglacial time, however, 0.5–1 ky long brief episodes of fan deposition may be linked to short periods of relatively wet climate. VML dating of alluvial desert pavements in Death Valley and the Mojave Desert reveals that pavements can be developed rapidly (< 10 ky) during the Holocene (and probably late Pleistocene) in the arid lowlands (< 800 m msl) of these regions; but once formed, they may survive for 74–85 ky or even longer without being significantly disturbed by geomorphic processes operative at the pavement surface. Data from this study also support the currently accepted, “being born at the surface” model of desert pavement formation. VML dating of colluvial boulder deposits on the west slope of Yucca Mountain, southern Nevada, yields a minimum age of 46 ka for the emplacement of these deposits on the slope, suggesting that they were probably formed during the early phase of the last glaciation or before. These results, combined with those from our previous studies, demonstrate that VML dating has great potential to yield numerical age estimates for various late Quaternary geomorphic features in the western USA drylands.  相似文献   

17.
The Nysa K odzka river drainage basin in the Sudeten Mts., SW Poland, preserves a complex late Cainozoic succession that includes eight fluvial series or terraces and deposits from two glacial episodes as well as local volcanic rocks, slope deposits and loess. Fluvial sedimentation took place during the Late Pliocene and from the early Middle Pleistocene (Cromerian), with a long erosion phase (gap) during the Early Pleistocene. Fluvial series are dated to the Late Pliocene, Cromerian, Holsteinian, late Saalian/Eemian, Weichselian, and the Holocene. Glacial deposits represent the early Elsterian and early Saalian stages. Almost all these stratigraphic units have been observed in all geomorphic zones of the river: the mountainous K odzko Basin, the Bardo Mts. (Bardo gorge) and in the mountain foreland. The main phase of tectonic uplift and strong erosion was during the Early Pleistocene. Minor uplift is documented also during the post-early Saalian and probably the post-Elsterian. The post-early Saalian and post-Elstrian uplift phases are probably due to glacio-isostatic rebound. The Quaternary terrace sequence was formed due to base-level changes, epigenetic erosion after glaciations and neotectonic movements. The Cromerian fluvial deposits/terraces do not indicate tectonic influence at all. All other Quaternary terraces indicate clear divergence, and the post-early Saalian terraces also show fault scarps. The fluvial pattern remained stable, once formed during the Pliocene, with only minor changes along the uplifted block along the Bardo gorge, inferring an antecedent origin for the Bardo gorge. Only during the post-glacial times, have epigenetic incisions slightly modified the valley.  相似文献   

18.
Crustal uplift in southern England: evidence from the river terrace records   总被引:6,自引:0,他引:6  
Much of the past work on the Quaternary rivers of northwest Europe has been concerned with river terraces, which characterise almost every valley. While these terraces are undoubtedly striking features of the landscape, the incision achieved by Quaternary rivers is equally significant in terms of river behaviour, and for an understanding of the factors affecting landform development during the Quaternary. This paper examines the incision achieved during the Quaternary by the Thames, in both its upper and lower catchments, and by the Hampshire Avon in southern England. Valley incision rates of ca. 0.07–0.10 m ka−1 have been identified, although in the lower catchment of the Thames, these have been enhanced by additional incision in response to glacio-isostasy and valley shortening. A model is proposed in which regional uplift is recognized as the primary cause of incision by these Quaternary rivers. Possible mechanisms for regional uplift are considered.  相似文献   

19.
The Serra Gelada sea cliffs are carved in Mesozoic carbonate rocks belonging to the External Zones of the eastern Betic Cordillera (Alicante, SE Spain). Several normal faults with vertical slips of more than a hundred metres have played an important role in the origin of this coastline. Some previous studies propose that the present cliff morphology was mainly originated by Quaternary fault activity. However, the integration of geomorphological features, stratigraphical and sedimentological data, together with the results of the tectonic analysis of fractures occurring in Serra Gelada, and a detailed study of seismic reflection profiles carried out in the adjacent continental shelf, indicate that these normal faults were active mainly during the late Miocene. Therefore, the Serra Gelada sea cliffs represent a tectonically controlled long-term landscape. Thus, normal faults have not significantly modified the Serra Gelada relief since then. Furthermore, the northern part of the Serra Gelada cliff may be considered as an inherited pre-Quaternary relict palaeocliff since it has only undergone very little erosive recession.  相似文献   

20.
Relationships between tectonic framework and gravity-driven phenomena have been investigated in an area of the Central Apennines (Italy) characterised by high relief. The north–south, half-dome shaped Maiella anticline lies in the easternmost part of the Apennine fold-and-thrust belt. Its backlimb is bordered by the Caramanico Fault, a normal fault with a maximum downthrown of about 3.5 km that separates the western slope of the Maiella Massif from the Caramanico Valley. The southwestern Maiella area is affected by deep-seated gravitational slope deformation indicated by major double crest lines, down-hill and up-hill facing scarps, a pattern of crossing trenches, bulging at the base of slopes and the presence of different types of landslide and talus slope deposits.The onset and development of deep-seated gravitational slope deformations and the location of Quaternary, massive rockslope failures have been strongly influenced by the structural framework and tectonic pattern of the anticline. Deep-seated gravitational slope deformation at Mt. Macellaro–Mt. Amaro ridge has developed along the Maiella western, reverse slope in correspondence with the anticline axial culmination; it is bordered at the rear by a NNW–SSE oriented, dextral, strike-slip fault zone and has an E–W direction of rock mass deformation. Closer to the southern plunging area of the anticline, gravity-driven phenomena show instead a N–S and NW–SE direction, influenced by bedding attitude.3D topographic models illustrate the relationship between deep-seated gravitational slope deformation and massive rockslope failures. The Campo di Giove rock avalanche, a huge Quaternary failure event, was the result of an instantaneous collapse on a mountaine slope affected by a long-term gravity-driven deformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号