首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A review of published literature on the sensitivity of corals to turbidity and sedimentation is presented, with an emphasis on the effects of dredging. The risks and severity of impact from dredging (and other sediment disturbances) on corals are primarily related to the intensity, duration and frequency of exposure to increased turbidity and sedimentation. The sensitivity of a coral reef to dredging impacts and its ability to recover depend on the antecedent ecological conditions of the reef, its resilience and the ambient conditions normally experienced. Effects of sediment stress have so far been investigated in 89 coral species (~10% of all known reef-building corals). Results of these investigations have provided a generic understanding of tolerance levels, response mechanisms, adaptations and threshold levels of corals to the effects of natural and anthropogenic sediment disturbances. Coral polyps undergo stress from high suspended-sediment concentrations and the subsequent effects on light attenuation which affect their algal symbionts. Minimum light requirements of corals range from <1% to as much as 60% of surface irradiance. Reported tolerance limits of coral reef systems for chronic suspended-sediment concentrations range from <10mgL(-1) in pristine offshore reef areas to >100mgL(-1) in marginal nearshore reefs. Some individual coral species can tolerate short-term exposure (days) to suspended-sediment concentrations as high as 1000mgL(-1) while others show mortality after exposure (weeks) to concentrations as low as 30mgL(-1). The duration that corals can survive high turbidities ranges from several days (sensitive species) to at least 5-6weeks (tolerant species). Increased sedimentation can cause smothering and burial of coral polyps, shading, tissue necrosis and population explosions of bacteria in coral mucus. Fine sediments tend to have greater effects on corals than coarse sediments. Turbidity and sedimentation also reduce the recruitment, survival and settlement of coral larvae. Maximum sedimentation rates that can be tolerated by different corals range from <10mgcm(-2)d(-1) to >400mgcm(-2)d(-1). The durations that corals can survive high sedimentation rates range from <24h for sensitive species to a few weeks (>4weeks of high sedimentation or >14days complete burial) for very tolerant species. Hypotheses to explain substantial differences in sensitivity between different coral species include the growth form of coral colonies and the size of the coral polyp or calyx. The validity of these hypotheses was tested on the basis of 77 published studies on the effects of turbidity and sedimentation on 89 coral species. The results of this analysis reveal a significant relationship of coral sensitivity to turbidity and sedimentation with growth form, but not with calyx size. Some of the variation in sensitivities reported in the literature may have been caused by differences in the type and particle size of sediments applied in experiments. The ability of many corals (in varying degrees) to actively reject sediment through polyp inflation, mucus production, ciliary and tentacular action (at considerable energetic cost), as well as intraspecific morphological variation and the mobility of free-living mushroom corals, further contribute to the observed differences. Given the wide range of sensitivity levels among coral species and in baseline water quality conditions among reefs, meaningful criteria to limit the extent and turbidity of dredging plumes and their effects on corals will always require site-specific evaluations, taking into account the species assemblage present at the site and the natural variability of local background turbidity and sedimentation.  相似文献   

2.
Carbonate mineralogy of El Qasr reef sediments, north of Jeddah on the west coast of Saudi Arabia, was studied by X-ray analysis. Although the mineralogical composition varies only little, there are significant differences in the proportions of aragonite and high Mg-calcite between the environments. Lagoon sediments, which contain relatively more fine-grained material, are characterized by higher aragonite concentrations than the reef flat sediments. Decreasing grain size and increasing aragonite contents towards the centre of the lagoon suggest a transport of aragonitic mud from the shallow reef flat to the lagoon. The amount of fine fraction and occasionally the nature of the coarse fraction rather than the sand-sized skeletal material controls the aragonite concentrations in the reef sediments. Low Mg-calcite, which occurs in minor quantities and is erratically distributed in the reef sediments, is derived from the Pleistocene coral limestone in the coastal plain. Aragonite abundances in the sediments may be considered to delineate lagoon and reef flat environments in a coral reef complex.  相似文献   

3.
Expression of intracellular ammonium assimilation enzymes were used to assess the response of nitrogen (N) metabolism in bacterioplankton to N-loading of sub-tropical coastal waters of Key West, Florida. Specific activities of glutamine synthetase (GS) and total glutamate dehydrogenase (GDHT) were measured on the bacterial size fraction (<0.8 μm) to assess N-deplete versus N-replete metabolic states, respectively. Enzyme results were compared to concentrations of dissolved organic matter and nutrients and to the biomass and production of phytoplankton and bacteria. Concentrations of dissolved inorganic N (DIN), dissolved organic N (DON), and dissolved organic carbon (DOC) positively correlated with specific activities of GDHT and negatively correlated with that of GS. Total dissolved N (TDN) concentration explained 81% of variance in bacterioplankton GDHT:GS activity ratio. The GDHT:GS ratio, TDN, DOC, and bacterial parameters decreased in magnitude along a tidally dynamic trophic gradient from north of Key West to south at the reef tract, which is consistent with the combined effects of localized coastal eutrophication and tidal exchange of seawater from the Southwest Florida Shelf and Florida Strait. The N-replete bacterioplankton north of Key West can regenerate ammonium which sustains primary production transported south to the reef. The range in GDHT:GS ratios was 5–30 times greater than that for commonly used indicators of planktonic eutrophication, which emphasizes the sensitivity of bacterioplankton N-metabolism to changes in N-bioavailability caused by nutrient pollution in sub-tropical coastal waters and utility of GDHT:GS ratio as an bioindicator of N-replete conditions.  相似文献   

4.
Many cultured pearl farms are located in areas of the Pacific that have thriving, highly diverse fish communities but the impacts of farming on these communities are poorly understood. We studied the effects of pearl oyster farming on shore fish abundance and diversity in the lagoon of Ahe, French Polynesia by adapting roving diver census methods to the coral reef bommies of the lagoon and compared 16 sites with high pearl farming impact to others with no direct impact. Pearl farming has a slightly positive effect on reef fish abundance (N) and no significant impact on fish diversity (H) or community composition. This is important when considering the ecological sustainability of pearl farming in French Polynesia and suggests that a potential synergy between pearl farms and marine conservation should be further explored.  相似文献   

5.
With large-scale impacts on coral reefs due to global climatic change projected to increase dramatically, and suitability of many areas for reef growth projected to decrease, the question arises whether particular settings might serve as refugia that can maintain higher coral populations than surrounding areas. We examine this hypothesis on a small, local scale in Honduras, western Caribbean. Dense coral thickets containing high numbers of the endangered coral Acropora cervicornis occur on offshore banks while being rare on the fringing reef on nearby Roatán. Geomorphological setting and community dynamics were evaluated and monitored from 1996 to 2005. A model of population dynamics was developed to test assumptions derived from monitoring. Coral cover on the fringing reef declined in 1998 from >30% to <20%, but the banks maintained areas of very dense coral cover (32% cover by A. cervicornis on the banks but <1% on the fringing reef). Bathymetry from satellite images showed the banks to be well-separated from the fringing reef, making asexual connectivity between banks and fringing reef impossible but protecting the banks from direct land-runoff during storms. Exposure to SE tradewinds also causes good flushing. Only four A. cervicornis recruits were recorded on the fringing reef over 6 years. Runoff associated with hurricanes caused greater mortality than did bleaching in 1998 and 2005 on the fringing reef, but not on the banks. Since 1870, our analysis suggests that corals on the banks may have been favored during 17 runoff events associated with tropical depressions and storms and potentially also during five bleaching events, but this is more uncertain. Our model suggests that under this disturbance regime, the banks will indeed maintain higher coral populations than the fringing reef and supports the assumption that offshore banks could serve as refugia with the capacity to subsidize depleted mainland populations.  相似文献   

6.
This research focuses on damage to coral reefs from three anthropogenic stresses: the dropping of anchors and their chains, human contact, and emission of copper from antifouling paints. Forecasting models are described that quantify degradation in terms of percentage of coral cover damaged/year or increasing levels of water toxicity/year. The models utilize a Monte Carlo simulation that applies a range of values or a probability distribution to each of the numerous uncertain variables. This model has the flexibility to adapt, and become more accurate, when users input assumptions specific to their diving sites. Given our specific assumptions for a frequently visited site, anchors and their chains forecast a distribution of coral reef cover damage with a mean of 7.11%+/-4.77%, diver contact forecast a distribution of coral reef cover damage with a mean of 0.67%+/-0.38%, and antifouling paint forecast a distribution of copper level increase in the water with a mean of 0.037+/-0.014ppb. The results support recommendations for the implementation and sustained use of several specific marine recreation practices.  相似文献   

7.
Sediment and coral skeleton samples from 23 coral reefs along the Caribbean coast of Costa Rica and Panama (1497 km) were evaluated for total mercury (Hg). High levels of pollution were found in the entire region with averages of 18.9 and 71.3 ppb in coral skeletons and sediments respectively. Significantly higher contamination was found in Panamanian corals (21.4 ppb) while compared to Costa Rican reef sediments (85.9 ppb). Hg from several processes and non-point sources (e.g., erosion, runoff, flooding, mining, overuse of agrochemicals, industrial waste, ports, and refineries) may have affected the entire region. The widespread observed distribution suggests that Hg is being carried along long distances within the region due to its high concentrations found in “pristine” reefs. Forest burning and colonial mining residues may be considered as possible contamination factors.  相似文献   

8.
Sediment traps were used to evaluate the frequency, cause, and relative intensity of sediment mobility/resuspension along the fringing coral reef off southern Molokai (February 2000-May 2002). Two storms with high rainfall, floods, and exceptionally high waves resulted in sediment collection rates>1000 times higher than during non-storm periods, primarily because of sediment resuspension by waves. Based on quantity and composition of trapped sediment, floods recharged the reef flat with land-derived sediment, but had a low potential for burying coral on the fore reef when accompanied by high waves. The trapped sediments have low concentrations of anthropogenic metals. The magnetic properties of trapped sediment may provide information about the sources of land-derived sediment reaching the fore reef. The high trapping rate and low sediment cover indicate that coral surfaces on the fore reef are exposed to transient resuspended sediment, and that the traps do not measure net sediment accumulation on the reef surface.  相似文献   

9.
10.
Coral species composition of drilled cores from emergent bank reefs, and coral cover of the surface of old and living reefs located along the coast of the state of Bahia, Eastern Brazil, revealed that there is a marked change in the occurrence of the major building coral species in different time intervals of the reef structure, as well as in the living surface of reefs located in two different geographical sites. Holocene core sections from two reef areas (12 degrees 40'S-38 degrees 00'W and 18 degrees 00'S-39 degrees 00'W) have as major reef builders, on its topmost core interval (3 to 4 ky old), the endemic coral Mussismilia braziliensis Verrill, 1868, which also dominate on the 2.5-3.5 ky old surfaces of truncated reef tops. At the base of the cores (the 2m lower interval, older than 4 ky BP), another endemic coral Mussismilia harttii Verrill, 1868 is the dominant reef component. The relative abundance of M. braziliensis on the living surfaces of shallow reefs from both areas, shows that in the southern area, it is up to 98% on reefs located 60 km off the coast, in depths between 3 and 4m, but do not exceed 1.3% on the surface of the northern reefs located 1-2 km off the coast in depths 4-5m. The Holocene falling sea level that occurred along the coast of Brazil since 5.1 ky BP, causes an increasing runoff into the area of coastal reefs. This phenomenon may have affected the nearshore reef building fauna, replacing a more susceptive coral fauna with one better adapted to low light levels and higher sediment influx. The high turbidity associated with early Holocene shelf flooding, should also be responsible for the absence of M. braziliensis during the initial stages of reef buildup in Brazil. At the present time, the rapidly increasing human pressure, due to changes in land uses of the coastal zone (increasing sedimentation rate, nutrification of coastal waters, industrial pollution) and underwater practices, such as overfishing and an intense tourism, is aggravating the recovery capacity of this already naturally threatened coral community. If this situation coupled with increasing sea surface temperature persists, modern coral reef growth, in Brazil cannot be maintained and the major reef building coral species of the reefs in Bahia, a remnant endemic coral fauna will very soon appear in the list of endangered species.  相似文献   

11.
A photographic analysis was conducted at five shallow reef sites (5-6 m) at Eilat (northern Red Sea) to study changes in live coral cover during a 2-year period. Logit regression analysis showed that levels of total oxidized nitrogen (TON; NO(2)+NO(3)) and the presence of SCUBA divers were significant explicative variables of coral partial mortality, while sedimentation rate was not significant. Sites exposed to mean TON levels above 0.4 microM TON showed significantly lower live stony coral cover and abundance per m(2), and higher partial mortality of coral colonies than sites exposed to lower TON. These findings may be useful in establishing limits for TON levels at Eilat, but must be interpreted with caution due to the complexity of nutrient dynamics in coral reefs, the uncertainty of the effects of nutrients on coral physiological processes, and the possibility of interactions among multiple coral stressors.  相似文献   

12.
Photosystem II (PSII) herbicides have been shown to affect the photosynthesis of corals at low, environmentally relevant concentrations. The recent detection of the PSII herbicide Irgarol-1051 in coastal waters of Hong Kong at concentrations above the EC(50) for reduction of photosynthesis of corals prompted further investigation into the extent of PSII herbicide pollution in coral reefs of Hong Kong. Snap-shot and passive samples were taken from coral reef sites and evaluated via HPLC/MS-MS and a novel bioanalytical technique. Low concentrations (less than 10 ng L(-1)) of diuron and atrazine were found at all study sites. Extracts from these samples concentrated by a factor of 10 were found to reduce the photosynthetic yield of zooxanthellae. It appears unlikely that herbicide pollution is a key issue in isolation but may act synergistically with other stressors to reduce the viability of Hong Kong's coral reefs. The study has also demonstrated the feasibility of combining sample extraction techniques with a coral specific bioanalytical technique for a sensitive assessment of risks associated with herbicide exposure in corals.  相似文献   

13.
The bleaching and subsequent mortality of branching and massive corals on artificial and natural reefs in the central atolls of Maldives in 1998 are examined with respect to sea surface temperature (SST) anomalies. SST normally peaks in April-May in Maldives. The UK Meteorological Office's Global sea-Ice and SST data set version 2.3 b shows that in 1998 monthly mean SST was 1.2-4 S.D. above the 1950-1999 average during the warmest months (March-June), with the greatest anomaly in May of +2.1 degrees C. Bleaching was first reported in mid-April and was severe from late April to mid-May with some recovery evident by late-May. At least 98% of branching corals (Acroporidae, Pocilloporidae) on artificial structures deployed on a reef flat in 1990 died whereas the majority of massive corals (Poritidae, Faviidae, Agariciidae) survived the bleaching. The pre-bleaching coral community on the artificial reefs in 1994 was 95% branching corals and 5% massives (n = 1589); the post-bleaching community was 3% branching corals and 97% massives (n = 248). Significant reductions in live coral cover were seen at all natural reefs surveyed in the central atolls, with average live coral cover decreasing from about 42% to 2%, a 20-fold reduction from pre-bleaching levels. A survey of recruitment of juvenile corals to the artificial structures 10 months after the bleaching event showed that 67% of recruits (> or = 0.5 cm diameter) were acroporids and pocilloporids and 33% were from massive families (n = 202) compared to 94% and 6%, respectively, in 1990-1994 (n = 3136). Similar post-bleaching dominance of recruitment by branching corals was seen on nearby natural reef (78% acroporids and pocilloporids; 22% massives). A linear regression of April mean monthly SST against year was highly significant (p < 0.001) and suggests a rise of 0.16 degree C per decade. If this trend continues, by 2030 mean April SST in the central atolls will normally exceed the anomaly level at which corals appear there are susceptible to mass bleaching.  相似文献   

14.
The continuing degradation of coral reefs has serious consequences for the provision of ecosystem goods and services to local and regional communities. While climate change is considered the most serious risk to coral reefs, agricultural pollution threatens approximately 25% of the total global reef area with further increases in sediment and nutrient fluxes projected over the next 50 years. Here, we aim to inform coral reef management using insights learned from management examples that were successful in reducing agricultural pollution to coastal ecosystems. We identify multiple examples reporting reduced fluxes of sediment and nutrients at end-of-river, and associated declines in nutrient concentrations and algal biomass in receiving coastal waters. Based on the insights obtained, we recommend that future protection of coral reef ecosystems demands policy focused on desired ecosystem outcomes, targeted regulatory approaches, up-scaling of watershed management, and long-term maintenance of scientifically robust monitoring programs linked with adaptive management.  相似文献   

15.
《Marine pollution bulletin》1987,18(10):534-539
Sublethal effects of oil pollution on coral reefs may not become manifest except over very long periods of time. Uniform reefs with an Acropora palmata belt (2 m depth) and a Montastrea annularis community (4 m depth) were originally present along the coast near an oil refinery that has been in operation for more than 60 years in Aruba. Quantitative surveys of reef structure, coral cover, and numbers of juvenile corals along 15 km of the coast showed these reef characteristics to vary significantly in relation to the location of the refinery and the very persistent local current direction. The spatial structure of the reef has deteriorated, living coral cover is low, and less juveniles are present in front and downcurrent of the refinery. Some coral species, such as A. palmata and M. annularis, show a large gap in their distribution along the coast but a species such as Diploria strigosa is relatively abundant in the polluted area. The results of chronic oil pollution (such as spills, clean-ups, etc.) are, after 60 years, clearly discernible over a distance of 10 to 15 km along the reef.  相似文献   

16.
Coral reef degradation resulting from nutrient enrichment of coastal waters is of increasing global concern. Although effects of nutrients on coral reef organisms have been demonstrated in the laboratory, there is little direct evidence of nutrient effects on coral reef biota in situ. The ENCORE experiment investigated responses of coral reef organisms and processes to controlled additions of dissolved inorganic nitrogen (N) and/or phosphorus (P) on an offshore reef (One Tree Island) at the southern end of the Great Barrier Reef, Australia. A multi-disciplinary team assessed a variety of factors focusing on nutrient dynamics and biotic responses. A controlled and replicated experiment was conducted over two years using twelve small patch reefs ponded at low tide by a coral rim. Treatments included three control reefs (no nutrient addition) and three + N reefs (NH4Cl added), three + P reefs (KH2PO4 added), and three + N + P reefs. Nutrients were added as pulses at each low tide (ca twice per day) by remotely operated units. There were two phases of nutrient additions. During the initial, low-loading phase of the experiment nutrient pulses (mean dose = 11.5 microM NH4+; 2.3 microM PO4(-3)) rapidly declined, reaching near-background levels (mean = 0.9 microM NH4+; 0.5 microM PO4(-3)) within 2-3 h. A variety of biotic processes, assessed over a year during this initial nutrient loading phase, were not significantly affected, with the exception of coral reproduction, which was affected in all nutrient treatments. In Acropora longicyathus and A. aspera, fewer successfully developed embryos were formed, and in A. longicyathus fertilization rates and lipid levels decreased. In the second, high-loading, phase of ENCORE an increased nutrient dosage (mean dose = 36.2 microM NH4+; 5.1 microM PO4(-3)) declining to means of 11.3 microM NH4+ and 2.4 microM PO4(-3) at the end of low tide) was used for a further year, and a variety of significant biotic responses occurred. Encrusting algae incorporated virtually none of the added nutrients. Organisms containing endosymbiotic zooxanthellae (corals and giant clams) assimilated dissolved nutrients rapidly and were responsive to added nutrients. Coral mortality, not detected during the initial low-loading phase, became evident with increased nutrient dosage, particularly in Pocillopora damicornis. Nitrogen additions stunted coral growth, and phosphorus additions had a variable effect. Coral calcification rate and linear extension increased in the presence of added phosphorus but skeletal density was reduced, making corals more susceptible to breakage. Settlement of all coral larvae was reduced in nitrogen treatments, yet settlement of larvae from brooded species was enhanced in phosphorus treatments. Recruitment of stomatopods, benthic crustaceans living in coral rubble, was reduced in nitrogen and nitrogen plus phosphorus treatments. Grazing rates and reproductive effort of various fish species were not affected by the nutrient treatments. Microbial nitrogen transformations in sediments were responsive to nutrient loading with nitrogen fixation significantly increased in phosphorus treatments and denitrification increased in all treatments to which nitrogen had been added. Rates of bioerosion and grazing showed no significant effects of added nutrients. ENCORE has shown that reef organisms and processes investigated in situ were impacted by elevated nutrients. Impacts were dependent on dose level, whether nitrogen and/or phosphorus were elevated and were often species-specific. The impacts were generally sub-lethal and subtle and the treated reefs at the end of the experiment were visually similar to control reefs. Rapid nutrient uptake indicates that nutrient concentrations alone are not adequate to assess nutrient condition of reefs. Sensitive and quantifiable biological indicators need to be developed for coral reef ecosystems. The potential bioindicators identified in ENCORE should be tested in future research on coral reef/nutrient interactions. Synergistic and cumulative effects of elevated nutrients and other environmental parameters, comparative studies of intact vs. disturbed reefs, offshore vs. inshore reefs, or the ability of a nutrient-stressed reef to respond to natural disturbances require elucidation. An expanded understanding of coral reef responses to anthropogenic impacts is necessary, particularly regarding the subtle, sub-lethal effects detected in the ENCORE studies.  相似文献   

17.
Marine debris threatens Northwestern Hawaiian Islands' (NWHI) coral reef ecosystems. Debris, a contaminant, entangles and kills endangered Hawaiian monk seals (Monachus schauinslandi), coral, and other wildlife. We describe a novel multi-agency effort using divers to systematically survey and remove derelict fishing gear from two NWHI in 1999. 14 t of derelict fishing gear were removed and debris distribution, density, type and fouling level documented at Lisianski Island and Pearl and Hermes Atoll. Reef debris density ranged from 3.4 to 62.2 items/km2. Trawl netting was the most frequent debris type encountered (88%) and represented the greatest debris component recovered by weight (35%), followed by monofilament gillnet (34%), and maritime line (23%). Most debris recovered, 72%, had light or no fouling, suggesting debris may have short oceanic circulation histories. Our study demonstrates that derelict fishing gear poses a persistent threat to the coral reef ecosystems of the Hawaiian Archipelago.  相似文献   

18.
Closely related scleractinian coral species that exhibited similar survival patterns under relatively normal field conditions responded very differently to the occurrence of an environmental disturbance. The two species studied were Porites cylindrica and Porites rus which occur in the same reef zones in shallow reef flats. Transplants of both species were evenly distributed and attached to three different types of substrate: live coral colonies of P. cylindrica, dead coral colonies (also of P. cylindrica), and epoxy coated metal grids that were raised above the sandy substrate. With the onset of above-normal water temperatures due to the El Ni?o episode of 1998, P. cylindrica transplants immediately showed signs of bleaching stress and tissue necrosis, followed by algal overgrowth and mortality soon afterwards. In contrast, transplants of P. rus bleached more slowly and suffered less mortality, with a few actually showing signs of recovery at the end of the experimental period which covered a total of 14 weeks. These differences in responses could be attributed to properties of the symbiotic zooxanthellae, of the host coral tissue itself, or both. Over-all, survival was good on the metal grids (average of 35%), and on the live coral (average of 22%). It was poor on the dead coral (average of 6%). The metal grids as well as live coral tissue apparently provided a favorable substrate for the attached coral fragments, even for those of a different species. Under the conditions of this particular study, attachment of live coral fragments on already dead colonies for the purpose of increasing live coral cover on the reef did not yield favorable results. This is an area that requires further investigation.  相似文献   

19.
The frequency of oil spills in tropical seas may threaten coral reef survival and some of the past research has indicated that oil alone as well as oil dispersed with chemical dispersants is toxic to corals. These experiments were probably realistic of intertidal reef zones and sheltered shallow reef areas. However, few experiments have incorporated analytical chemistry necessary to relate reported biological effects to actual oil spill concentrations and exposure times. This paper outlines some new results with emphasis on a 3 year programme carried out in Bermuda using a flow-through laboratory dosing system, comparative laboratory and field experiments, real time measurements of oil concentrations, and non-destructive bioassays to allow repetitive data collection from the same specimens. Suggestions for future research programmes are given in light of these results. In addition to research on the effects of oil and chemically dispersed oil on other coral species and associated organisms in the coral reef, the relative sensitivity of the various ecosystems comprising the tropical coastal zone (mangroves, seagrasses and reef) must also be addressed. It is hoped that such advances will ensure that overall oil spill clean-up decisions will give due consideration to the individual physical and biological characteristics of each of these tropical environments.  相似文献   

20.
Land-use changes and associated river discharges in coastal tropical regions present a global threat to coral reef environments. This study investigated the temporal variation in biological oxygen demand (BOD5) and suspended particulate matter (SPM) at the mouths of seven rivers on Okinawa Island (Japan) over 20 years. We report strong positive relationships between human population densities within river catchment areas and both average BOD5 concentration (r2 = 0.968; p < 0.001) and SPM (r2 = 0.659; p < 0.003) at the mouths of the rivers. At the reef adjacent to one river (Hija River, 50.2 km2 catchment area) we applied moving window analysis to assess an optimal sampling strategy for elucidating transitional boundaries in coral composition from the river mouth to a point where the effect of river discharge was minimal. The optimal window width for Okinawan rivers was five 1 m2 quadrats spaced over 5 m intervals. This sampling strategy clearly showed dissimilarity spikes in coral community composition up to 400 m from the Hija River mouth, beyond which no significant differences in coral composition were detected using analysis of similarities (ANOSIM). We developed a simple diffusion model linking the rivers' maximum discharge rate, and the average concentration of BOD5 and SPM with the spatial impact on the coral communities. The diffusion model can aid in predicting negative shifts in coral communities expected to result from detrimental land-use changes and is an important tool for monitoring coral reefs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号