首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
TheidentificationandcriteriaofshorttermseismicitygapbeforeagreatearthquakeJINGQUANCAO(曹井泉)JIALINSUN(孙加林)YIYANG(杨毅)Seismol...  相似文献   

2.
ThesourcerupturefeatureofthesouthernTaiwanStraitsearthquakeofSeptember16,1994(Ms7.3)&theanalysisofearthquakecircumstanceinsou...  相似文献   

3.
This paper describes the activities of the Kamchatka Branch of the Russian Expert Council on Earthquake Prediction, Assessment of Seismic Hazard and Risk (KB REC) over a 14 year period. We provide brief information on how the KB REC functions, the methods that are used for earthquake prediction in expert assessments, forecasts, and precursors of M ≥ 6.0 Kamchatka earthquakes for the 1998–2011 period. The efficiency of prediction using several methods is estimated.  相似文献   

4.
AnalysisofthegeothermalvortexestriggeringtheXingtaiearthquakein1966MAOCANGTANG(汤懋苍)XIAOQINGGAO(高晓清)LanzhouInstituteofPlate...  相似文献   

5.
AnalysisandstudyofthelargeearthquakeriskinYanqingHuailaibasinCHANGQUANLIU(刘昌铨)SHIXUJIA(嘉世旭)MINGJUNLIU(刘明军)CHANGFALI(李长发...  相似文献   

6.
The great Wenchuan earthquake (Ms = 8.0) in 2008 caused severe damage in the western part of the Chengdu Plain. Soil liquefaction was one of the major causes of damage in the plain areas, and proper evaluation of liquefaction potential is important in the definition of the seismic hazard facing a given region and post-earthquake reconstruction. In this paper, a simplified procedure is proposed for liquefaction assessment of sandy deposits using shear wave velocity (Vs), and soil liquefaction from the Banqiao School site was preliminarily investigated after the earthquake. Boreholes were made at the site and shear wave velocities were measured both by SASW and down-hole methods. Based on the in-situ soil information and Vs profiles, the liquefaction potential of this site was evaluated. The results are reasonably consistent with the actual field behavior observed after the earthquake, indicating that the proposed procedure is effective. The possible effects of gravel and fines contents on liquefaction of sandy soils were also briefly discussed.  相似文献   

7.
Introduction The study on deep crustal faults has been one of the most vigorous subjects in seismology. In the past, 3-D deep seismic sounding and 3-D seismic tomography were usually used for this pur-pose. But it is difficult to obtain the fine structures of the faults in deep crust by these methods. Recently, seismologists in the world pay more attention to the fault zone trapped waves. Since the fault-zone trapped waves arise from coherent multiple reflections at two boundaries of the fau…  相似文献   

8.
Introduction The Western Kunlun Mountain Pass M=8.1 earthquake occurred on November 14, 2001 is the other M=8 earthquake occurred 50 years after Dangxiong, Tibet M=8.0 earthquake in Chinese mainland. The earthquake has caused the attention of the seismologists in the following aspects: 1) The fracture length is more than 400 km, which is far away from the estimated length by the statistic empirical function between the magnitude and the fracture length (WANG, et al, 2002); 2) The aftersh…  相似文献   

9.
Introduction The MS=8.1 earthquake occurred in west of the Kunlun Pass on November 14, 2001. It is the greatest earthquake occurred in China since the last half of the century and is an important event in recent seismic history of China. Some specialists consider that the earthquake occurred in the area where the earthquake monitoring capability is lowest in Chinese mainland; no striking precursory seismicity was found. The study on the precursory seismicity before the earthquake has not b…  相似文献   

10.
Introduction An earthquake of MS=4.8 occurred near Yongle town, Jingyang county, Shaanxi Province on January 5, 1998. Its epicenter is 34.5篘, 108.9篍, origin time is 09h36min (Beijing time), focal depth is 14 km, intensity is >VI and its perceptibility is great in Xian city. The eastern part of Guanzhong in Shaanxi Province is the key earthquake monitoring area in China, and many great earthquakes occurred here in history. This earthquake is the greatest in the past forty years in Shaa…  相似文献   

11.
震源时间函数与震源破裂过程   总被引:2,自引:0,他引:2  
简要介绍了现代数字地震学的两个重要概念。一个是震源时间函数,另一个是地震震源的时空破裂过程。首先,从地震断层位移表示定量出发,介绍震源时间函数和震源破裂过程的基本概念。然后,分别介绍两种从远场地震记录中提取震源时间函数和获取有限断层面上时空破裂过程图像的反演方法。  相似文献   

12.
Seismicsourcerupturesofseveralstrongearthquakesof1989inSichuanregionofChinaYUANGAO1)(高原)ZHONG-LIANGWU2)(吴忠良)HUI-LANZHOU3)(周...  相似文献   

13.
Introduction An earthquake of MS=7.8 occurred near the Gujarat of India on January 26, 2001, which was one of the most deadly earthquakes since there was the record in the Indian history (Bendick, et al, 2001; Gupta, et al, 2001). The USGS of USA determined the origin time of the earthquake to be 3h16min41s (UTC), and the epicenter location to be 70.32篍, 23.40篘. Shortly after the earthquake, the moment tensor solutions or focal mechanisms and other related parameters were offered by s…  相似文献   

14.
In seismological study, most of the earthquake source rupture processes are inverted via matching the waveforms. The hypocenter location and fault parameters (such as strike direction, dip angle, etc.) are assumed firstly, and the fault is divided into a …  相似文献   

15.
IntroductionAnearthquakeofMs=7.9occurredinMaul,Xizang(Tibet),Chinaat10:02f55.4(UTC),No')ember8.1997.TheepicenterdeterminedbyChinaNationalSeismographNetwork(CNSN)is87.33"E.3>.26'N,thefocaldepthis40km,andthemagnitudeisMs=7.4.Accordingtothedeterllllnati...  相似文献   

16.
The temporal and spatial rupture process of the 14 November 2001 Kunlun Mountain Pass earthquake (KMPE) is obtained by inverting the high signal-to-noise-ratio P-waveform data of vertical components of 20 stations with epicentral distances less than 90°, which are of Global Digital Seismogragh Network (GDSN). The inverted results indicate that the KMPE consists of 3 sub-events. The rupture of the first sub-event initiated at the instrumental epicenter (35.97°N, 90.59°E) and then propagated both westwards and eastwards, extending 140 km westwards at the speed of 4.0 km/s and 80 km eastwards at the speed of 2.2 km/s, which appeared to be an asymmetrical bilateral rupture dominantly from east to west. This sub-event formed a 220-km-long fault. Fifty-two seconds after initiation of the first sub-event, at which time the first sub-event was not over but in its healing phase, the rupture of the second sub-event initiated 220 km west of the epicenter and propagated both westwards and eastwards, extending 50  相似文献   

17.
The source parameters, such as moment tensor, focal mechanism, source time function (STF) and temporal-spatial rupture process, were obtained for the January 26, 2001, India, M S=7.8 earthquake by inverting waveform data of 27 GDSN stations with epicentral distances less than 90°. Firstly, combining the moment tensor inversion, the spatial distribution of intensity, disaster and aftershocks and the orientation of the fault where the earthquake lies, the strike, dip and rake of the seismogenic fault were determined to be 92°, 58° and 62°, respectively. That is, this earthquake was a mainly thrust faulting with the strike of near west-east and the dipping direction to south. The seismic moment released was 3.5×1020 Nm, accordingly, the moment magnitude M W was calculated to be 7.6. And then, 27 P-STFs, 22 S-STFs and the averaged STFs of them were determined respectively using the technique of spectra division in frequency domain and the synthetic seismogram as Green’s functions. The analysis of the STFs suggested that the earthquake was a continuous event with the duration time of 19 s, starting rapidly and ending slowly. Finally, the temporal-spatial distribution of the slip on the fault plane was imaged from the obtained P-STFs and S-STFs using an time domain inversion technique. The maximum slip amplitude on the fault plane was about 7 m. The maximum stress drop was 30 MPa, and the average one over the whole rupture area was 7 MPa. The rupture area was about 85 km long in the strike direction and about 60 km wide in the down-dip direction, which, equally, was 51 km deep in the depth direction. The rupture propagated 50 km eastwards and 35 km westwards. The main portion of the rupture area, which has the slip amplitude greater than 0.5 m, was of the shape of an ellipse, its major axis oriented in the slip direction of the fault, which indicated that the rupture propagation direction was in accordance with the fault slip direction. This phenomenon is popular for strike-slip faulting, but rather rare for thrust faulting. The eastern portion of the rupture area above the initiation point was larger than the western portion below the initiation point, which was indicative of the asymmetrical rupture. In other words, the rupturing was kind of unilateral from west to east and from down to up. From the snapshots of the slip-rate variation with time and space, the slip rate reached the largest at the 4th second, that was 0.2 m/s, and the rupture in this period occurred only around the initiation point. At the 6th second, the rupture around the initiation point nearly stopped, and started moving outwards. The velocity of the westward rupture was smaller than that of the eastward rupture. Such rupture behavior like a circle mostly stopped near the 15th second. After the 16th second, only some patches of rupture distributed in the outer region. From the snapshots of the slip variation with time and space, the rupture started at the initiation point and propagated outwards. The main rupture on the area with the slip amplitude greater than 5 m extended unilaterally from west to east and from down to up between the 6th and the 10th seconds, and the western segment extended a bit westwards and downwards between the 11th and the 13th seconds. The whole process lasted about 19 s. The rupture velocity over the whole rupture process was estimated to be 3.3 km/s. Foundation item: 973 Project (G1998040705) from Ministry of Science and Technology, P. R. China, and the National Science Foundation of China under grant No.49904004. Contribution No. 02FE2026, Institute of Geophysics, China Seismological Bureau.  相似文献   

18.
The new inversion algorithm developed based on the recent progress in the nonlinear programming study by us is used to invert the earthquake source process of Chi Chi earthquake M w7.6, 20 Semptember, 1999, Taiwan. A curve fault model is constructed in our inversion to make the fault model close to the real rupturing fault to reduce the influence from the discrepancy between the constructed fault model and the real rupturing fault. The results show that (1) the rupture process of the Chi Chi earthquake source lasted about 32 seconds and the main faulting occurred between 6th to 21st second after the start of the ruptures and the high slip area were mainly located at the northern segment of the fault. (2) The slip was dominated by thrust faulting. The average rake angle was 64.5°, which was very consistent with those inverted by USGS, Harvard and CWB (Central Weather Bureau of Taiwan). The amount of the moment inverted in this paper was 7.76×1020 NM, which was a slightly bigger than those inverted by USGS and Harvard. (3) A clear nucleation step existed in the source faulting process and it lasted about 6 seconds. The moment release rate accelerated obviously at the end of the nucleation step. The faulting started from the southern segment and mainly occurred at the northern segment after 10 seconds. At the end of this paper, we analyzed the reliability of the inversion result via comparing with the GPS observations and discussed its scientific signification.  相似文献   

19.
An earthquake of M S=7.4 occurred in Mani, Xizang (Tibet), China on November 8, 1997. The moment tensor of this earthquake was inverted using the long period body waveform data from China Digital Seismograph Network (CDSN). The apparent source time functions (ASTFs) were retrieved from P and S waves, respectively, using the deconvolution technique in frequency domain, and the tempo-spatial rupture process on the fault plane was imaged by inverting the azimuth dependent ASTFs from different stations. The result of the moment tensor inversion indicates that the P and T axes of earthquake-generating stress field were nearly horizontal, with the P axis in the NNE direction (29°), the T axis in the SEE direction (122°) and that the NEE-SWW striking nodal plane and NNW-SSE striking nodal plane are mainly left-lateral and right-lateral strike-slip, respectively; that this earthquake had a scalar seismic moment of 3.4×1020 N·m, and a moment magnitude of M W=7.6. Taking the aftershock distribution into account, we proposed that the earthquake rupture occurred in the fault plane with the strike of 250°, the dip of 88° and the rake of 19°. On the basis of the result of the moment tensor inversion, the theoretical seismograms were synthesized, and then the ASTFs were retrieved by deconvoving the synthetic seismograms from the observed seismograms. The ASTFs retrieved from the P and S waves of different stations identically suggested that this earthquake was of a simple time history, whose ASTF can be approximated with a sine function with the half period of about 10 s. Inverting the azimuth dependent ASTFs from P and S waveforms led to the image showing the tempo-spatial distribution of the rupture on the fault plane. From the "remembering" snap-shots, the rupture initiated at the western end of the fault, and then propagated eastward and downward, indicating an overall unilateral rupture. However, the slip distribution is non-uniform, being made up of three sub-areas, one in the western end, about 10 km deep ("western area"); another about 55 km away from the western end and about 35 km deep ("eastern area"); the third about 30 km away from the western end and around 40 km deep ("central area"). The total rupture area was around 70 km long and 60 km wide. From the "forgetting" snap-shots, the rupturing appeared quite complex, with the slip occurring in different position at different time, and the earthquake being of the characteristics of "healing pulse". Another point we have to stress is that the locations in which the rupture initiated and terminated were not where the main rupture took place. Eventually, the static slip distribution was calculated, and the largest slip values of the three sub-areas were 956 cm, 743 cm and 1 060 cm, for the western, eastern and central areas, respectively. From the slip distribution, the rupture mainly distributed in the fault about 70 km eastern to the epicenter; from the aftershock distribution, however, the aftershocks were very sparse in the west to the epicenter while densely clustered in the east to the epicenter. It indicated that the Mani M S=7.9 earthquake was resulted from the nearly eastward extension of the NEE-SWW to nearly E-W striking fault in the northwestern Tibetan plateau. Contribution No. 99FE2016, Institute of Geophysics, China Seismological Bureau. This work is supported by SSTCC Climb Project 95-S-05 and NSFDYS 49725410.  相似文献   

20.
The Susamyr earthquake of August 19, 1992 in Kyrgyzstan is one of the largest events (Ms = 7.4, Mb = 6.8) of this century in this region of Central Asia. We used broadband and long period digital data from IRIS and GEOSCOPE networks to investigate the source parameters, and their space-time distribution by modeling both body and surface waves. The seismic moment (M0 = 6.8 × 1019 N m) and the focal mechanism were determined from frequency-time analysis (FTAN) of the fundamental mode of long period surface waves (100–250 s). Then, the second order integral moments of the moment-rate release were estimated from the amplitude spectra of intermediate period surface waves(40–70 s). From these moments we determined a source duration of 11–13 s, major and minor axes of the source of 30 km and 10–22 km, respectively; and an instant centroid velocity of 1.2 km/s. Finally, we performed a waveform inversion of P and SH waves at periods from 5–60 s. We found a source duration of 18–20 s, longer than the integral estimate from surface wave amplitudes. All the other focal parameters inverted from body waves are similar to those obtained by surface waves ( = 87° ± 6°, = 49° ± 6°, = 105° ± 3°, h = 14 ± 2 km, and M0 = 5.8 ± 0.7 × 1019 N m). The initial rupture of this shallow earthquake was located at the south-west border of Susamyr depression in the western part of northern Tien Shan. A finite source analysis along the strike suggests a westward propagation of the rupture. The main shock of this event was preceded 2 s earlier by small foreshock. The main event was almost immediately followed by a very strong series of aftershocks. Our surface and body wave inversion results agree with the general seismotectonic features of the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号