首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbon sequestration occurs when cultivated soils are re-vegetated. In the hilly area of the Loess Plateau, China, black locust(Robinia pseudoacacia) plantation forest and grassland were the two main vegetation types used to mitigate soil and water loss after cultivation abandonment. The purpose of this study was to compare the soil carbon stock and flux of these two types of vegetation which restored for 25 years. The experiment was conducted in Yangjuangou catchment in Yan′an City, Shaanxi Province, China. Two adjacent slopes were chosen for this study. Six sample sites were spaced every 35–45 m from summit to toe slope along the hill slope, and each sample site contained three sampling plots. Soil organic carbon and related physicochemical properties in the surface soil layer(0–10 cm and 10–20 cm) were measured based on soil sampling and laboratory analysis, and the soil carbon dioxide(CO2) emissions and environmental factors were measured in the same sample sites simultaneously. Results indicated that in general, a higher soil carbon stock was found in the black locust plantation forest than that in grassland throughout the hill slope. Meanwhile, significant differences in the soil carbon stock were observed between these two vegetation types in the upper slope at soil depth 0–10 cm and lower slope at soil depth 10–20 cm. The average daily values of the soil CO2 emissions were 1.27 μmol/(m2·s) and 1.39 μmol/(m2·s) for forest and grassland, respectively. The soil carbon flux in forest covered areas was higher in spring and less variation was detected between different seasons, while the highest carbon flux was found in grassland in summer, which was about three times higher than that in autumn and spring. From the carbon sequestration point of view, black locust plantation forest on hill slopes might be better than grassland because of a higher soil carbon stock and lower carbon flux.  相似文献   

2.
In order to study the effects of different land vegetative covers on soil quality attributes, a loess hill slope was selected in eastern Golestan Province, Ghapan watershed, Iran. Four profiles in four land uses, including Quercus natural forest; Pinus artificial forest; Cupressus artificial forest and a cultivated land, were studied. Results showed that MWD was significantly different in the studied land uses, and it varied between 1.6 mm in Quercus natural forest and o.31 mm in cultivated land use. The lowest CEC, microbial respiration rate and organic carbon were 28.4 cmol·kg^1, 177 μgCO2·g^-1·day^-1 and 1.32 % found in cultivated land use, respectively. The organic matter was considerably higher content in the forest areas than that of cultivated land use. The studies on soil profile development revealed that the natural forest soils were highly developed. The soils of the Quercus natural forest were classified as Calcic Haploxeralfs with a well developed argillie horizon unlike the cultivated soils which showed the minimum development and classified as Typic Xerorthents. The soils of the artificial forests had both mollic epipedons and were classified as Typic Calcixerolls with moderate profile development. Micromorphological studies revealed that argillic horizons had speckled and partly crystallitic b-fabric in the natural forest indicating the high landscape stability. In contrast, the crystallitic b-fabric of other land uses shows the absence of enough leaching of carbonate and the subsequent migration of clay particles indicating the unstable conditions and high soil erosion. Intense erosion of the surface horizons of cultivated land use has resulted in the outcropping of the subsurface carbonate rich horizons preventing soil development.  相似文献   

3.
A research trial with four land management practices, i.e., traditional tillage-fallow (TTF), traditional tillage-wheat (TTW), conservation tillage-fallow (CTF) and conservation tillage-wheat (CTW), was sampled in the 15th year after its establishment to assess the effects of different management practices on labile organic carbon fractions (LOCFs), such as easily oxidizable organic carbon (EOC), dissolved organic carbon (DOC), particulate organic carbon (POC) and microbial biomass carbon (MBC) in a typical paddy soil, Chongqing, Southwest China. The results indicated that LOCFs were significantly influenced by the combination of no-tillage, ridge culture and crop rotation. And, different combination patterns showed different effectiveness on soil LOCFs. The effects of no-tillage, ridge culture and wheat cultivation on EOC, DOC, POC and MBC mainly happened at 0–10cm. At this depth, soil under CTW had higher EOC, DOC, POC and MBC contents, compared to TTF, TTW and CTF, respectively. Moreover, the contents of LOCFs for different practices generally decreased when the soil depth increased. Our findings suggest that the paddy soil in Southwest China could be managed to concentrate greater quantities of EOC, DOC, POC and MBC. Foundation item: Under the auspices of Key Project of National Natural Science Foundation of China (No. 40231016)  相似文献   

4.
A dynamic box model of bioactive elements in the southern Taiwan Strait   总被引:3,自引:0,他引:3  
A dynamic box model was applied to study the characteristics of biogeochemical cycling of PO_4-P,NO_3-N,AOU,POC and PON in the southern Taiwan Strait region based on field data of the"Minnan Taiwan Bank Fishing Ground Upwelling Ecosystem Study" during the period of Dec.1987-Nov.1988.According to the unique hydrological and topographical features of the region,six boxesand three layers were considered in the model.The variation rates and fluxes of elements induced by hor-izontal current,upwelling,by diffusion,sinking of particles and biogeochemical processes were estimatedrespectively.Results further confirmed that upwellings had important effects in this region.Thenearshore upwelling areas had net input fluxes of nutrients brought by upwelling water,also had high de-pletion rates of nutrients and production rates of particulate organic matter and dissolved oxygen.Theabnormal net production of nutrients in the middle layer(10-30m) indicated the important role of bacte-ria in this high production region.Th  相似文献   

5.
Two hundred and thirty-five samples collected from Weinan loess section (L2 – S0) have been analyzed by TOC (total organic carbon) and pyrolysis hydrocarbons. The curve of TOC with depth has been set up and compared well with other climatic markers. The main periods of TOC variation of the last 0.14 Ma are 67.08 ka and 18.29 ka, which is near with the periods of the variation of sunshine, showing that the TOC variation may be controlled by the variation of 65°N sun-shine. The distribution of pyrolysis hydrocarbon and its parameters shows that there are two kinds of hydrocarbon associated with climatic change. One is called hydrocarbon pyrolysted directly from organism (pHC2–1) which is in the range of T max350°C – 500°C, and associated with atmospheric water. The other is called carbonate inclusion hydrocarbon (pHC2–2) which is in the range of T max 500°C – 600°C and formed by evaporation and associated with dry climate. The formula calculating humidity has been deduced Og=pHC2–1/(pHC2–1 + pHC2–2). The range of humidity of the section is 47% – 77% and the reducing order is S1–3, S1–2, S0, S1–1, S1–4, S1–1, L1–1, L1–3, and L1–5. And the trend of the humidity is still increasing today.  相似文献   

6.
Land use changes are known to alter soil organic carbon (SOC) and microbial properties, however, information about how conversion of natural forest to agricultural land use as well as plantations affects SOC and microbial properties in the Changbai Moun- tains of Northeast China is meager. Soil carbon content, microbial biomass carbon (MBC), basal respiration and soil carbon mineraliza- tion were studied in five selected types of land use: natural old-growth broad-leaved Korean pine mixed forest (NF); spruce plantation (SP) established following clear-cutting of NF; cropland (CL); ginseng farmland (GF) previously under NF; and a five-year Mongolian oak young forest (YF) reforested on an abandoned GF, in the Changbai Mountains of Northeast China in 2011. Results showed that SOC content was significantly lower in SP, CL, GF, and YF than in NF. MBC ranged from 304.4 mg/kg in CL to 1350.3 mg/kg in NF, which was significantly higher in the soil of NF than any soil of the other four land use types. The SOC and MBC contents were higher in SP soil than in CL, GF, and YF soils, yielding a significant difference between SP and CL. The value of basal respiration was also higher in NF than in SP, CL, GF, and YF. Simultaneously, higher values of the metabolic quotient were detected in CL, GF, and YF soils, indicat- ing low substrate utilization of the soil microbial community compared with that in NF and SP soil. The values of cumulative mineral- ized carbon and potentially mineralized carbon (Co) in NF were significantly higher than those in CL and GF, while no significant dif- ference was observed between NF and SP. In addition, YF had higher values of Co and C mineralization rate compared with GF. The results indicate that conversion from NF into agricultural land (CL and GF) uses and plantation may lead to a reduction in soil nutrients (SOC and MBC) and substrate utilization efficiency of the microbial community. By contrast, soils below SP were more conducive to the preservation of soil organic matter, which was reflected in the comparison of microbial indicators among CL, GF, and YF land uses. This study can provide data for evaluating soils nutrients under different land use types, and serve as references for the rational land use of natural forest in the study area.  相似文献   

7.
In the Sanjiang Plain,Northeast China,the natural wetland is undergoing a rapid conversion into agricultural land,which has resulted in drastic ecological changes in the region. To investigate the effects of different land uses on soil labile organic carbon,soils of Calamagrostis angustifolia wetland,Carex lasiocarpa wetland,dry farmland,paddy field,forest land and abandoned cultivated land were collected for measuring the contents of soil microbial biomass carbon (MBC),dissolved organic carbon (DOC),readil...  相似文献   

8.
Earthworms are the important constituents in the decayed food web and the main ecological conditioners in the process of decomposition and nutrient mineralization. The transformation of organic carbon (C) and total nitrogen (N) in the broad-leaved litters ingested by earthworms was researched by means of a laboratory experiment. Experimental samples were collected from broad-leaved Korea Pine mixed forest in Liangshui National Natural Reserve (47°10′50″N, 128°53′20″E) in the northeastern Xiao Hinggan Mountains of Northeast China. The contents of organic C and total N in earthworms, leaf litters and earthworm faeces were analyzed. Results show that the organic C content was in the fol- lowing order: leaf litters>faeces>earthworms, while total N content was contrary to that of the organic C. The organic C contents in the different leaf litters were in the following order: Tilia amurensis>Betula costata>Acer mono, whereas the total N contents in the different leaf litters were: Betula costata>Tilia amurensis>Acer mono. The contents of organic C and total N in the faeces from the different leaf litters were almost consistent with the contents of the leaf litters. After the leaf litters were ingested by earthworms, the organic C, which was transformed to increase earthworms' weights, ac- counted for 3.90%-13.31% of the total ingestion by earthworms, while that in the earthworm faeces accounted for 6.14%-13.70%. The transformed organic C through the other metabolism (e.g., respiration) of earthworms accounted for 75.04%-89.92%. The ingested organic C by earthworms was mostly used for metabolic activities. The N ingested by earthworms was less than organic C. It is estimated that 37.08% of total N was transformed to increase the earthworm's weight, 19.97% into earthworm faeces and 47.86% for the consumption of the earthworm's activities. The earthworms not only increased the content of organic C and total N in the soil, but also decreased the values of C/N in the soil and leaf litters. Earthworms play a major role in the leaf litters' decomposition and transformation.  相似文献   

9.
To evaluate the influence of wetland reclamation on vertical distribution of carbon and nitrogen in coastal wetland soils, we measured the soil organic carbon(SOC), soil total nitrogen(STN) and selected soil properties at five sampling plots(reed marsh, paddy field, corn field, forest land and oil-polluted wetland) in the Liaohe River estuary in September 2013. The results showed that reclamation significantly changed the contents of SOC and STN in the Liaohe River estuary(P 0.001). The SOC concentrations were in the order: oil-polluted wetland corn field paddy field forest land reed marsh, with mean values of 52.17, 13.14, 11.46, 6.44 and 6.16 g/kg, respectively. STN followed a similar order as SOC, with mean values of 1351.14, 741.04, 632.32, 496.17 and 390.90 mg/kg, respectively. Interaction of reclamation types and soil depth had significant effects on SOC and STN, while soil depth had significant effects on SOC, but not on STN. The contents of SOC and STN were negatively correlated with pH and redox potential(Eh) in reed marsh and corn field, while the SOC and STN in paddy field had positive correlations with electrical conductivity(EC). Dissolved organic carbon(DOC), ammonium nitrogen(NH_4~+-N) and nitrate nitrogen(NO_3~–-N) were also significantly changed by human activities. NH_4~+-N and NO_3~–-N increased to different degrees, and forest land had the highest NO_3~–-N concentration and lowest DOC concentration, which could have been caused by differences in soil aeration and fertilization. Overall, the results indicate that reed harvest increased soil carbon and nitrogen release in the Liaohe River Estuary, while oil pollution significantly increased the SOC and STN; however, these cannot be used as indicators of soil fertility and quality because of the serious oil pollution.  相似文献   

10.
Soil organic carbon (SOC) was considered to be a key index in evaluation of soil degradation and soil C sequestration. To discuss the spatial-temporal dynamics of SOC in arable layer in reversed desertification area, a case study was conducted in Yulin City, Shaanxi Province, China. Data of SOC were based on general soil survey in 1982 and repeated soil sampling in 2003. Soil organic carbon content (SOCC) was determined by K2Cr3O2-FeSO4 titration method, and soil organic carbon density (SOCD) was calculated by arithmetic average and area weighted average method, respectively. On average, SOCC and SOCD of the arable layer in the study area from 1982 to 2003 had increased 0.5 Ig/kg and 0.16kg/m2, respectively. Considering main soil types, the widest distributed Arid-Sandic Entisols had lowest values and increments of SOCC and SOCD during the study period; while the second widest Los-Orthic Entisols had higher values and increments of SOCC and SOCD, compared to the mean values of the whole region. The results indicated that reversed desertification process was due to the modification of land use and management practices, such as natural vegetation recovery, planting grass, turning arable land to grassland, and soil and water conservation etc., which can improve SOCC and SOCD and thus enhance soil C sequestration.  相似文献   

11.
A 6.2 m thick core of Gucheng Lake sediment provided a 3600 years record of climate change. The contents of the TOC in the core changed from 2.63% to 8.48%, and the δ13C values of organic matter were from −21.54% to −27.3%. The TOC/TN ratios indicated that the organic materials in sediments were from lake plankton and land-derived plants. The 2.9–22 m core interval with high TOC/TN ratios, low δ13C values and low contents of TOC indicated a cold climate stage. The 6.2–5.5 m and 0.4–0.1 m intervals were characterized by low TOC/TN ratios, high δ13C values and high contents of TOC, and reflected temperate climate stages. Project 49372129 supported by NSFC.  相似文献   

12.
Riverine carbon flux is an important component of the global carbon cycle. The spatial and temporal variations of organic and inorganic carbon were examined during both dry and wet seasons in the Yellow River estuary. Concentrations of dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) in the Yellow River during dry seasons were higher than those during wet seasons. The effective concentrations of DOC (CDOC*) were higher than the observed DOC at zero salinity. This input of DOC in the Yellow River estuary was due to sediment desorption processes in low salinity regions. In contrast to DOC, the effective concentrations of DIC were 10% lower than the DIC measured at freshwater end, and the loss of DIC was caused by CaCO3 precipitation in low salinity region. Particulate organic carbon (POC) and particulate inorganic carbon (PIC) contents of the particles stabilized to constant values (0.5%±0.05% and 1.8%±0.2%, respectively) within the turbidity maximum zone (TMZ) and showed no noticeable seasonal variations. A rapid drop of PIC and rise of POC occurred simultaneously outside the TMZ due to an intense dilution of riverine inorganic-rich particles being transported into a pool of aquatic organic-poor particles outside the TMZ. Annually, the Yellow River transported 6.95×105 t of DIC, 0.64×105 t of DOC, 78.58×105 t of PIC and 2.29×105 t of POC to the sea.  相似文献   

13.
Labile organic carbon (LOC) is one of the most important indicators of soil organic matter quality and dynamics elevation and plays important function in the Tibetan Plateau climate. However, it is unknown what the sources and causes of LOC contamination are. In this study, soil organic carbon (SOC), total nitrogen (TN), microbial biomass carbon (MBC), microbial biomass nitrogen (MBN) and LOC were analyzed based on different soil horizons and elevations using turnover time in an experimental site (3700 m to 4300 m area) in Sygera. SOC and LOC in higher-elevation vegetation types were higher than that of in lower-elevation vegetation types. Our results presented that the soil microbial biomass carbon (SMBC) and soil microbial biomass nitrogen (SMBN) were positively correlated with SOC. The content of easily oxidized carbon (EOC), particulate organic carbon (POC) and light fraction organic carbon (LFOC) decreased with depth increasing and the content were the lowest in the 60 cm to 100 cm depth. The total SOC, ROC and POC contents decreased with increasing soil horizons. The SOC, TN, MBC and MBN contents increased with increasing altitude in the Sygera Mountains. The MBC and MBN contents were different with the changes of SOC (p<0.05), meanwhile, both LFOC and POC were related to total SOC (p<0.05). The physical and chemical properties of soil, including temperature, humidity, and altitude, were involved in the regulation of SOC, TN, MBC, MBN and LFOC contents in the Sygera Mountains, Tibetan Plateau.  相似文献   

14.
The effect of land use change on soil and water quality in northern Iran   总被引:1,自引:1,他引:0  
Rapid urbanization has led to extensive land-use changes,particularly in developing countries.This research is aimed to investigate the role of land use and its effect on soil and water quality in Ziarat watershed focusing on four land uses:forest,pasture,cultivated and urban development.Soil samples were taken from a depth of 0-30 cm on each land use and were analyzed by completely randomized split-plot design in two geographical directions.Results showed that bulk density(BD),electrical conductivity(EC),pH,calcium carbonate equivalent(CCE),and soil particle density(DS) of the soil samples in pastures,cultivated and urban areas increased and the mean weight diameter(MWD),soil porosity(F),organic carbons(OC),total nitrogen(TN),exchangeable cations(Ca 2+,Mg 2+,K +,Na +),cation exchange capacity(CEC) and soil microbial respirations(SMR) decreased,respectively in comparison with the forest soils.For water quality evaluations,sodium adsorption ratio(SAR),electrical conductivity(EC),pH,total dissolved solids(TDS),bicarbonate(HCO 3),chloride(Cl),total hardness(TH),calcium(Ca 2+),potassium(K +),sodium(Na +) and magnesium(Mg 2+) were investigated in two areas:Nahrkhoran and Abgir stations.Results showed that the concentration of TDS,EC and HCO 3 in Naharkhoran station is higher than that in Abgir station.On the other hand,the concentration of TDS,EC and HCO 3 in Abgir station are the relatively higher due to its location.Total hardness had the same trend during the study years except in the last three years;however,TH showed an increase of 25% TH in Naharkhoran for the last two years.Cl,K + and SAR in Naharkhoran station increased by 61%,22%,78% and 56% respectively,in comparison with Abgir station.This study demonstrated that the trend of soil degradation and mismanagement of land use may increase the frequency of urban floods and human health problems.  相似文献   

15.
Concentrations of dissolved and particulate organic carbon (DOC and POC) were documented in 1996–1997 at 4 different trophic state stations in Donghu Lake, a typical shallow eutrophic lake along the Changjiang River's middle reaches. The mean concentrations of DOC were 15.11±3.26, 15.19±4.24, 14.27±3.43, and 13.31±3.30 mg/L in Station I, II, III, and IV, respectively. The DOC concentrations of the studied area were very similar to that in other lakes along the Changjiang River's middle reaches. The POC mean of the whole lake was 5.01 mg/L due to the large amount of organic detritus of both allochthonous and autochthonous origin. Significant linear relationship was found between POC and chlorophyll a at all 4 stations, which presumably reflect that phytoplankton, its exudates and its metabolic products were the main contributors to the POC pool in the water column. The slope of such linear relationship at Station IV was significantly steeper than that at Station I, II and III. In addition, the DOC/POC ratios (mean value: 4.40) indicated that the organic detritus was the most important component of the particulate organic matter; in other works, next to organic detritus, phytoplankton dominated the particulate organic matter in Donghu Lake. Project 39770146, 39430101 supported by NSFC and the State Key Laboratory of Freshwater Ecology and Biotechnology, affiliated to the Institute of Hydrobiology, Chinese Academy of Sciences.  相似文献   

16.
Size-fractionated 210Po and 210Pb, in the size fractions >0.4 μm, >2 μm and >10 μm, were examined to determine the seasonal variability of particulate fluxes in Xiamen Bay. Good correlations between 210Po and particulate organic carbon (POC) or non-Particulate Organic Matter (nPOM) suggested that 210Po can be used to trace the export fluxes of POC and nPOM. Both steady-state (SS) model and nSS model were used to evaluate fluxes of size-fractionated 210Po, results showed that nSS model was better than the SS model in coastal areas. Based on the nSS model, size-fractionated POC fluxes decreased with increasing particle size. For the particle size studied, maximum POC fluxes occurred in autumn, followed by spring, winter, and summer. Fluxes of nPOM were an order of magnitude higher than the corresponding size-fractionated POC fluxes. Differences between size-fractionated nPOM fluxes indicated that hydrodynamic conditions were the main factor regulating transportation of particulate out of the inner Bay. In winter most particulates, including >10 μm particles, were transported under the strongest hydrodynamic conditions. In contrast, only a fraction of the <2 μm particulates were transported from the inner Bay in spring. This study suggested that 210Po is a powerful tracer of seasonal particulate export in coastal seas.  相似文献   

17.
Wetland stores substantial amount of carbon and may contribute greatly to global climate change debate. However, few researches have focused on the effects of global climate change on carbon mineralization in Zoigê al-pine wetland, Qinghai-Tibet Plateau, which is one of the most important peatlands in China. Through incubation ex-periment, this paper studied the effects of temperature, soil moisture, soil type (marsh soil and peat soil) and their in-teractions on CO2 and CH4 emission rates in Zoigê alpine wetland. Results show that when the temperature rises from 5℃ to 35℃, CO2 emission rates increase by 3.3-3.7 times and 2.4-2.6 times under non-inundation treatment, and by 2.2-2.3 times and 4.1-4.3 times under inundation treatment in marsh soil and peat soil, respectively. Compared with non-inundation treatment, CO2 emission rates decrease by 6%-44%, 20%-60% in marsh soil and peat soil, respec-tively, under inundation treatment. CO2 emission rate is significantly affected by the combined effects of the tempera-ture and soil type (p < 0.001), and soil moisture and soil type (p < 0.001), and CH4 emission rate was significantly af-fected by the interaction of the temperature and soil moisture (p < 0.001). Q10 values for CO2 emission rate are higher at the range of 5℃-25℃ than 25℃-35℃, indicating that carbon mineralization is more sensitive at low temperature in Zoigê alpine wetland.  相似文献   

18.
Soil carbon to nitrogen(C/N) ratio is one of the most important variables reflecting soil quality and ecological function,and an indicator for assessing carbon and nitrogen nutrition balance of soils.Its variation reflects the carbon and nitrogen cycling of soils.In order to explore the spatial variability of soil C/N ratio and its controlling factors of the Ili River valley in Xinjiang Uygur Autonomous Region,Northwest China,the traditional statistical methods,including correlation analysis,geostatistic alanalys and multiple regression analysis were used.The statistical results showed that the soil C/N ratio varied from 7.00 to 23.11,with a mean value of 10.92,and the coefficient of variation was 31.3%.Correlation analysis showed that longitude,altitude,precipitation,soil water,organic carbon,and total nitrogen were positively correlated with the soil C/N ratio(P 0.01),whereas negative correlations were found between the soil C/N ratio and latitude,temperature,soil bulk density and soil p H.Ordinary Cokriging interpolation showed that r and ME were 0.73 and 0.57,respectively,indicating that the prediction accuracy was high.The spatial autocorrelation of the soil C/N ratio was 6.4 km,and the nugget effect of the soil C/N ratio was 10% with a patchy distribution,in which the area with high value(12.00–20.41) accounted for 22.6% of the total area.Land uses changed the soil C/N ratio with the order of cultivated land grass land forest land garden.Multiple regression analysis showed that geographical and climatic factors,and soil physical and chemical properties could independently explain 26.8%and 55.4% of the spatial features of soil C/N ratio,while human activities could independently explain 5.4% of the spatial features only.The spatial distribution of soil C/N ratio in the study has important reference value for managing soil carbon and nitrogen,and for improving ecological function to similar regions.  相似文献   

19.
Surface water can be divided into three layers from top downward: surface microlayer (SML, thickness≤50 μm), subsurface layer (SSL, ≈25 cm) and surface layer (SL, 1–5m), among which the SML plays an important role on sea-air interaction because of its unique physical-chemical property. Carbon dioxide system including DIC (dissolved inorganic carbon), Alk (alkalinity), pH and pCO2 (partial pressure of CO2) in multilayered waters of the Yellow Sea was studied for the first time in March and May 2005. The results show that: DIC and Alk are obviously enriched in SML. The contents of DIC, Alk and pCO2 become lower in turn from SML, SSL to SL, higher in March and lower in May, whereas for pH it was opposite. The relationship between DIC and Alk is clearly positive, but negative between pH and pCO2. Meanwhile, pCO2 and temperature/salinity is also in positive relation, pCO2 decreases with latitude increase. DIC and Alk show a similar variation trend with the maximum at 02:00–03:00, but pH and pCO2 show an opposite pattern. In addition, the distribution patterns are similar to each other in the three layers. The Yellow Sea is shown to be a sink of atmospheric CO2 in spring by two methods: (1) comparing pCO2 in seawater and atmosphere; (2) turning direction of “pH-depth” curve. Calculation on the base of pCO2 data in SML in four models shows that carbon flux in spring in the area was about -6.96×106 t C.  相似文献   

20.
Land cover type is critical for soil organic carbon(SOC) stocks in territorial ecosystems. However, impacts of land cover on SOC stocks in a karst landscape are not fully understood due to discontinuous soil distribution. In this study, considering soil distribution, SOC content and density were investigated along positive successional stages(cropland, plantation, grassland, scrubland, secondary forest, and primary forest) to determine the effects of land cover type on SOC stocks in a subtropical karst area. The proportion of continuous soil on the ground surface under different land cover types ranged between 0.0% and 79.8%. As land cover types changed across the positive successional stages, SOC content in both the 0–20 cm and 20–50 cm soil layers increased significantly. SOC density(SOCD) within 0–100 cm soil depth ranged from 1.45 to 8.72 kg m-2, and increased from secondary forest to primary forest, plantation, grassland, scrubland, and cropland, due to discontinuous soil distribution. Discontinuous soil distribution had a negative effect on SOC stocks, highlighting the necessity for accurate determination of soil distribution in karst areas. Generally, ecological restoration had positive impacts on SOC accumulation in karst areas, but this is a slow process. In the short term, the conversion of croplandto grassland was found to be the most efficient way for SOC sequestration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号