首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
张戈  赖欣  刘康 《高原气象》2023,(3):575-589
土壤冻融过程显著影响地表含水量和能量收支变化。利用玛曲2017年8月至2018年7月的土壤温度/湿度、涡动观测资料以及公用陆面模式(Community Land Model,CLM)最新版本CLM5.0的模拟资料,其中冻结过程阶段的辐射和能量通量使用模式模拟的数据,通过分析土壤冻融过程中土壤温湿度、地表能量平衡各分量的时间演变特征,探讨冻融过程中地表水热交换的特征。数据分析表明:(1)土壤冻融过程包括冻结过程、完全冻结、消融过程及完全消融四个阶段,各阶段中的土壤温度/湿度、辐射和能量通量存在明显的日变化,在冻结过程和消融过程阶段,土壤湿度随土壤温度变化显示出明显的日冻融循环。(2)冻融过程通过影响表层土壤水分影响地表辐射收支和能量分配。冻融过程中土壤中的水相变为冰,改变下垫面性质影响地表辐射收支。土壤中的液态水通过相变影响地表潜热通量,完全消融(冻结)阶段,地气之间能量交换以潜热(感热)通量为主。相比于以潜热通量为主的冻结过程阶段,消融过程阶段净辐射通量逐渐增大,地气之间能量交换主要受感热通量影响。土壤中水分的昼融夜冻导致频繁的潜热通量释放影响地表热通量。土壤热通量在冻结过程(G  相似文献   

2.
高寒草原水热交换的季节性特征显著,土壤冻融过程对地-气水热交换有着重要的影响.本文利用黄河源区汤岔玛小流域2014年5月至2015年5月陆面过程观测数据,将土壤冻融过程划分为完全融化(TT)和完全冻结(FF)两种状态与融冻(T-F)和冻融(F-T)两个过程,并分析了期间高寒草原下垫面净辐射、感热通量、潜热通量和地表热通...  相似文献   

3.
青藏高原近地表土壤冻融状况的时空变化特征   总被引:1,自引:0,他引:1  
利用青藏高原(下称高原)87个气象台站的日最低地表温度和气温资料,通过线性回归和相关分析法,分析高原1980-2015年近地表土壤冻融状况变化趋势及其与气温、海拔和纬度的相关性。利用M ann-Kendall检验对其进行突变分析,并探讨其空间变化特征。结果表明:近36年,高原近地表土壤冻融状况发生显著变化。冻结起始时间推迟约26天,其变化速率为0.72 d·a~(-1),冻结结束时间提前约14天,速率为0.40 d·a~(-1);冻结持续时间和冻结天数分别缩短约41天和33天,其变化速率分别为1.13 d·a~(-1)和0.93 d·a~(-1)。高原冻融状况变化整体表现一致,局部地区略有差异。高原中东部地区冻结起始时间较早,结束时间较晚;而在东南部地区则存在相反的变化特征,这是由于该地区海拔较低,且全年土壤温度较高导致。就冻融状况变化速率而言,东部地区变化最快,西部适中,变化较慢的站点零星分布在中部和南部地区。气温对近地表土壤冻融状况有重要影响,但气温对土壤冻融循环存在一定的滞后作用。此外,高原近地表土壤冻融状况与海拔呈极显著相关,随海拔的降低,冻结起始推迟,冻结结束时间提前,冻结持续时间和冻结天数显著减少。  相似文献   

4.
冻土变化对寒区基础建设、水文、生态等都有重要影响,在全球变暖背景下,探究土壤冻融过程具有重要现实意义。本文基于中国自然地理特征和冻土特性,划分出中国西部地区(以下简称西部地区)作为研究区域,并利用1981年1月至2020年6月ERA-5地表温度、土壤体积水含量和逐月气温数据,分析了近40年中国西部地区土壤冻融状况、活动层厚度和最大冻结深度空间分布,探讨了冻融状态与气温、海拔的相关性。研究结果表明:西部地区冻融起始时间空间分布具有由高海拔地区至低海拔地区冻结推迟、融化提前的特征。高海拔的藏北高原冻结最早,融化最晚,冻结持续时间最久昆仑山脉上零星区域冻结最长可持续300天以上。海拔低且土壤含水量低的西部西北塔里木盆地,冻结最晚,融化最早,融化持续时间最长,塔克拉玛干沙漠区域融化可维持在280天以上。多年冻土活动层厚度基本都超过2.0 m,只有喀喇昆仑山脉附近的区域才有较大范围活动层厚度低于2 m的区域,青藏高原的季节性冻土冻结深度最大,厚度可以达到2 m以上,塔里木盆地冻结深度最浅,厚度在0.6 m以内。1981-2020年间,西部地区冻结起始日推迟,融化起始日提前,开始冻结和完全冻结起始...  相似文献   

5.
青藏高原高寒湿地作为大江大河支流的发源地,其冻融过程对该地区及下游的生态系统和气候调节有重要意义。利用青藏高原腹地三江源区隆宝高寒湿地试验站的高时间分辨率土壤温湿数据,对冻融过程中土壤温湿的季节、日以及冻融转换期变化特征进行分析和探讨。结果表明:(1)高寒湿地土壤冻融过程中,土壤温度整体表现出夏高冬低的变化特征,冻结期5 cm、40 cm、20 cm、30 cm和10 cm地温依次增大,地温随深度变化存在一定的不规律性,而非冻结期则正好相反;土壤湿度在冻结期自上而下逐渐降低,融化期自上而下逐渐增加。(2)土壤表层5 cm和深层40 cm地温存在显著的日变化特征,表层较深层变化更显著,且夏季变化幅度最大;土壤含水率较稳定,除表层有一定波动,其他各层无明显日变化。(3)冻融转换期,土壤温度垂直分布存在显著的三层结构,10 cm和30 cm处与邻近层的温度差异是导致这种特殊分布的主要原因;随着深度的加深,土壤含水率冻结期(融化期)逐渐增加(减少),且深层比浅层的变化时间明显滞后。  相似文献   

6.
考虑冻融过程对陆气相互作用的重要性,参考国内外学者对于冻融过程的参数化方案研究,对BCC_AVIM陆面过程模式的冻融过程参数化方案进行了改进与检验。改进的内容主要包括:(1)加入了过冷水概念,改进土壤冻结判断条件与含冰量更新标准;(2)加入平衡温度概念代替原方案中恒定的冻结温度;(3)在导水率的参数化方案之中加入不可渗透分数。用改进前后方案分别模拟玛曲站2018-2019年,2019-2020年两次冻融过程。发现改进后的方案在冻融过程中相比原方案:(1)增大了冻结状态温度模拟值、振幅减小、变化趋势更加接近实测;(2)增大了冻结状态中含水量的模拟值,变化趋势与实测相关性更好;(3)土壤中冰的产生日期延后,冰的融解日期提前,最大含冰量模拟减小;(4)冻融过程各阶段的转变日期模拟更接近实测;(5)新方案对于强冻融年份的模拟提升效果更优于弱冻融年份。  相似文献   

7.
针对陆面模式冻融过程模拟偏差较大问题,基于Noah-MP模式对冻融参数化方案进行比较分析,并利用观测资料对模拟试验结果进行评估。结果表明:Noah-MP模式能够较好地模拟出青藏高原冻融过程特征;冻融过程模拟对冻融参数化方案相当敏感,冻结阶段到融化阶段期间,4组试验模拟值差异显著,融化阶段之后到冻结阶段之前,4组试验模拟值相当一致;相对于过冷水参数化方案,冻土渗透率参数化方案对冻融过程期间土壤温度的模拟更为敏感,过冷水参数化方案不同会导致冻融过程期间土壤液态水含量模拟值差异显著。地表能量通量模拟对冻融参数化方案相当敏感,4组试验地表能量通量模拟值在冻结阶段、冻结稳定阶段、融化阶段均存在显著差异。  相似文献   

8.
使用青藏高原中部野外22个站点2010-2014年观测数据结合GLDAS-NOAH陆面模式1960-2014年3 h 0.25°×0.25°格网数据,通过线性拟合等方法分析了高原中部的冻结强度变化并探讨了其与气温的关系.选取典型站点资料,结合GLDAS-NOAH数据对四次冻融过程进行分析比较,结果表明:(1)冻结强年和...  相似文献   

9.
利用国家重大科学研究计划项目"青藏高原沙漠化对全球变化的响应"北麓河站2014-2015年陆面过程观测资料,根据5 cm土壤日最高和最低温度将冻土分为融化过程、完全融化、冻结过程和完全冻结四个阶段,分析了地表感热通量Hs、潜热通量LE、地表土壤热通量G_0和波文比在不同冻融阶段的季节和日变化特征,并探讨了土壤冻融过程对地表能量及其分配的影响。结果表明,波文比和G_0的季节变化受土壤冻融阶段转变的影响显著,其中土壤完全融化使波文比减小,G_0变为正值;土壤冻结使波文比增大,G_0变为负值。冻结过程对Hs和LE变化趋势的影响不明显,但是使波文比显著增大;融化过程使Hs停止增长并出现减小趋势,使LE增大,从而使波文比显著减小。Hs的日变化在不同冻融阶段差异较小。LE的日变化主要与浅层土壤含水量的大小和日变化有关,其中完全融化和完全冻结阶段土壤含水量的日变化较小,土壤含水量越大,LE越大;在融化过程和冻结过程阶段,土壤含水量的日变化较大,且与R_(net)的日变化相反,限制了LE的增长。在冻结过程阶段,受冻融过程的影响,G_0的日变化小于其他阶段。  相似文献   

10.
利用国家重大科学研究计划项目"青藏高原沙漠化对全球变化的响应"北麓河站2014-2015年陆面过程观测资料,根据5 cm土壤日最高和最低温度将冻土分为融化过程、完全融化、冻结过程和完全冻结四个阶段,分析了地表感热通量Hs、潜热通量LE、地表土壤热通量G_0和波文比在不同冻融阶段的季节和日变化特征,并探讨了土壤冻融过程对地表能量及其分配的影响。结果表明,波文比和G_0的季节变化受土壤冻融阶段转变的影响显著,其中土壤完全融化使波文比减小,G_0变为正值;土壤冻结使波文比增大,G_0变为负值。冻结过程对Hs和LE变化趋势的影响不明显,但是使波文比显著增大;融化过程使Hs停止增长并出现减小趋势,使LE增大,从而使波文比显著减小。Hs的日变化在不同冻融阶段差异较小。LE的日变化主要与浅层土壤含水量的大小和日变化有关,其中完全融化和完全冻结阶段土壤含水量的日变化较小,土壤含水量越大,LE越大;在融化过程和冻结过程阶段,土壤含水量的日变化较大,且与R_(net)的日变化相反,限制了LE的增长。在冻结过程阶段,受冻融过程的影响,G_0的日变化小于其他阶段。  相似文献   

11.
青海南部高寒草地土壤冻融交替期水热特征分析   总被引:2,自引:0,他引:2  
为进一步了解高寒草地土壤冻融交替过程及其对水热因子的响应机制,通过2014年8月1日至2015年8月1日不同土层土壤温度和水分观测资料的对比分析,较为系统地探讨了青南高寒草地土壤冻融期不同深度土层土壤温度和水分的变化特征。结果表明,青南高寒草地土壤冻融阶段大体可分为初冻期、稳定冻结中期、稳定冻结后期和消融期4个时期;不同土层土壤温度随气温的变化呈周期性波动,且随着土层的加深变幅减小;不同冻融期表层和亚表层土壤温度和水分波动幅度较大,下层土壤对水热因子的敏感性较小;土壤完全冻结的天数达44~115d,日冻融交替过程主要发生在表层和亚表层土壤。土壤冻融交替增强了土壤的保水性,对该区草地植被提前返青和初级生产力的提高具有促进作用。  相似文献   

12.
为了对比分析降水过程中不同表达形式热力学变量和位涡时空分布特点,本文针对2017年7月13~14日吉林省强降水过程,利用模式输出资料对常规位温(θ)、相当位温(θe)、包含凝结概率函数的广义位温(θGao)、包含冻结概率函数的广义位温(θWang)和同时涵盖凝结过程与冻结过程(θGu)五种不同形式位温进行计算,并分析五种对应位涡[PV(θ)、PV(θe)、PV(θGao)、PV(θWang)、PV(θGu)]与降水的关系。结果表明,引入冻结概率函数的广义位温(θWang)和对应的广义湿位涡PV(θWang)与强降水的对应性更好。θWang与θGao差异集中在降水区对流层中高层5~11 km,前者始终高于后者,最大差异达2.5 K,说明冻结概率函数的引入扩大了广义位温的适用范围,更适合描述降水区湿大气非均匀饱和热力状态。五种位涡的差异主要在降水区上空12 km以下,由θGao和θWang定义的位涡PV(θGao)和PV(θWang)的正负异常中心更为明显。相比于PV(θGao)和PV(θWang)异常值更大,差异可达±0.2 PVU,这主要是由于冻结概率函数的引入增大降水区上空广义位温,促使冻结区的湿位涡异常增强。  相似文献   

13.
陆面模式CLM(Community Land Model)是目前国际上发展较为完善并被广泛应用的陆面过程模式。本文使用中国科学院寒区旱区环境与工程研究所位于青藏高原东部的若尔盖高原湿地生态系统研究站的观测资料,对CLM3.0版本及CLM4.0版本在上述地区的模拟性能进行了检验与对比。通过比较观测值与模拟值,验证了模式在高原季节性冻土地区的适用性,发现CLM4.0较CLM3.0在模拟结果上有了一定提高。CLM4.0加入了未冻水参数化方案,使模式可以模拟到冬季土壤冻结后存留的未冻水,显著增加了冻融期间土壤含水量的模拟,同时减小了土壤含冰量的模拟值。并因此增大了模拟的冻土热容量,减小了热导率,使冻融期间土壤温度的模拟也有了一定改善。但是模拟中也发现对于较深层土壤,温度模拟值在冻融期间较观测显著偏低。另外,在消融(冻结)过程阶段CLM4.0模拟的土壤含水量骤增(骤降)的时间均较观测提前。消融过程、冻结过程阶段模拟时间偏短,而完全冻结、完全消融阶段模拟时间偏长。因此CLM对于高原冻土地区的模拟仍是其需要重点改进的地方之一。  相似文献   

14.
张海宏  姜海梅  周秉荣  祁栋林 《气象》2019,45(11):1550-1559
利用玉树隆宝湿地的观测资料,分析了未冻结、冻结和冻结有积雪覆盖三种情况下动量通量和感热通量的日变化情况,计算了三种情况下动量总体输送系数、感热总体输送系数、动力学粗糙度和热力学粗糙度,分析了附加阻尼和粗糙度雷诺数的关系,并将三种附加阻尼的参数化方案进行了比较,结果表明:冻结状态下动量通量和感热通量的日变化幅度最大,冻结有积雪覆盖时,动量通量和感热通量的日变化幅度最小。动量总体输送系数C_D和感热总体输送系数C_H的值在冻结时最大,冻结有积雪覆盖时最小,动力学粗糙度和热力学粗糙度在冻结状况下最小,冻结有积雪覆盖时最大。未冻结、冻结和冻结有积雪覆盖状态下,三种附加阻尼kB~(-1)参数化方案中,幂函数型方案较为合适。  相似文献   

15.
本文通过实例,介绍EXCEL的使用技巧. 例如:某单位人事统计表结构如表1. 1 冻结窗格 在表格的列数和行数较多时,向右(向下)移动光标浏览表格时,"姓名"一列(表头一行)就会移出屏幕,浏览时十分不方便.为了在浏览时能将"姓名"列(表头行)留在屏幕上,可以使用"冻结窗格"功能.方法是:在张大鹏的性别单元格上单击鼠标左键,然后点击"窗口"→"冻结窗格"即可.解除"窗格冻结"的方法:点击"窗口"→"撤销冻结窗格".  相似文献   

16.
土壤冻融过程是青藏高原陆面过程中最突出的特征之一,量化表征土壤冻融过程的关键参量变化特征对认识青藏高原气候变化、生态和水文过程有重要的科学意义.本文利用青藏高原地区ECMWF/ERA5(European Centre for Medium-Range Weather Forecasts/ERA5)的浅层土壤温度、体积含...  相似文献   

17.
利用陆面过程模式CLM3.5对黄河源区若尔盖站进行了一年的数值模拟试验,通过比较土壤温度、土壤含水量的观测值与模拟值,检验了该模式在黄河源季节性冻土地区的模拟能力。结果表明,模式对土壤温度的模拟,非冻结期较好,深层土壤温度稍偏高;冻结期模拟值偏低,冻结深度偏大。对土壤含水量的模拟,在冻融期出现了较大偏差,含水量骤降(冻结)、骤增(消融)的时间均较观测提前。模式土壤热传导参数化方案中的土壤基质热导率计算偏大是造成土壤温、湿度偏差的主要原因。将Johansen土壤基质热导率方案替换了原模式参数化方案后,模拟结果有一定的改进,土壤温度暖舌、冷舌的模拟深度显著减小,冻结期土壤温度模拟偏低的现象也得到了改进,土壤含水量骤降、骤增的时间与观测更为接近。  相似文献   

18.
全球气候变化引起的中高纬度地区积雪覆盖和降雪格局变化,造成该区域土壤冻融交替强度和频次变化,是土壤氮循环的重要影响因素。冻融温差和冻融循环次数影响微生物数量和群落的变化,进而影响土壤氮素生物地球化学循环。以大伙房水库实验林场小流域的河岸缓冲带生态系统为研究对象,通过分析冻融交替对河岸缓冲带土壤无机氮和土壤微生物量氮的影响,阐明冻融交替对土壤无机氮含量变化的影响机制,为评估小流域氮素流失风险提供依据。结果表明:随着冻融循环次数的增加,土壤无机氮含量呈增加趋势;不同温差的冻融循环处理对土壤无机氮影响不同,冻融条件为-5/+5℃和-20/+5℃时土壤无机氮含量在冻融循环10次之后分别为34.9±0.9 mg/kg和37.2±0.8 mg/kg,是处理前的1.21和1.41倍;冻融温差和冻融循环次数对土壤NH4+–N含量有极显著影响(P<0.01),土壤冻融10次后土壤NH4+–N含量是对照处理的4-10倍;冻融循环次数对土壤NO3–N含量有显著影响(P<0.05),冻融温差对NO3–N含量无显著影响(P>0.05);土壤微生物量氮含量对冻融循环的响应显著(P<0.01)。可见,冻融交替显著增加了土壤无机氮含量,由于早春季节植被对无机氮吸收较少,可能增大土壤氮素随冰雪融化的淋溶流失风险。  相似文献   

19.
高原地表过程中冻融过程在东亚夏季风中的作用   总被引:3,自引:0,他引:3  
用茶卡站冻结日数与季风指数的相关简单说明高原冻融过程与东亚夏季风之间存在联系。作为个例,对沱沱河区域1998,1999年从冬到夏过渡季节的冻融过程与感、潜热变化及东亚夏季风建立之间的关系进行了初步分析。结果表明:从冬到夏的过渡季节中,青藏高原的冻融过程与高原加热存在着联系,土壤季节性冻融使得高原地表向大气的感、潜热输送随季节发生变化,青藏高原的加热作用对东亚夏季风的爆发时间和强度有重要影响。因此,高原地表过程中土壤冻融过程在东亚夏季风的爆发过程中扮演着重要角色。  相似文献   

20.
The improvements and validation of several parameterization schemes in the second version of the Beijing Climate Center Atmosphere–Vegetation Interaction Model(BCC_AVIM2.0) are introduced in this study. The main updates include a replacement of the water-only lake module by the common land model lake module(Co LM-lake) with a more realistic snow–ice–water–soil framework, a parameterization scheme for rice paddies added in the vegetation module, renewed parameterizations of snow cover fraction and snow surface albedo to accommodate the varied snow aging effect during different stages of a snow season, a revised parameterization to calculate the threshold temperature to initiate freeze(thaw) of soil water(ice) rather than being fixed at 0°C in BCC_AVIM1.0, a prognostic phenology scheme for vegetation growth instead of empirically prescribed dates for leaf onset/fall, and a renewed scheme to depict solar radiation transfer through the vegetation canopy. The above updates have been implemented in BCC_AVIM2.0 to serve as the land component of the BCC Climate System Model(BCC_CSM). Preliminary results of BCC_AVIM in the ongoing Land Surface, Snow, and Soil Moisture Model Intercomparison Project(LS3 MIP) of the Coupled Model Intercomparison Project Phase 6(CMIP6) show that the overall performance of BCC_AVIM2.0 is better than that of BCC_AVIM1.0 in the simulation of surface energy budgets at the seasonal timescale. Comparing the simulations of annual global land average before and after the updates in BCC_AVIM2.0 reveals that the bias of net surface radiation is reduced from-12.0 to-11.7 W m-2 and the root mean square error(RMSE) is reduced from 20.6 to 19.0 W m-2; the bias and RMSE of latent heat flux are reduced from 2.3 to-0.1 W m-2 and from 15.4 to14.3 W m-2, respectively; the bias of sensible heat flux is increased from 2.5 to 5.1 W m-2 but the RMSE is reduced from 18.4 to 17.0 W m-2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号