首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Considering the importance of black carbon (BC), this study began by comparing the 20th century simulation of South Asian summer climate in IPCC CMIP3, based on the scenario of models with and without BC. Generally, the multi-model mean of the models that include BC reproduced the observed climate relatively better than those that did not. Then, the 21st century South Asian summer precipitation was projected based on the IPCC CMIP3 projection simulations. The projected precipitation in the present approach exhibited a considerable difference from the multimodel ensemble mean (MME) of IPCC AR4 projection simulations, and also from the MME of the models that ignore the effect of BC. In particular, the present projection exhibited a dry anomaly over the central Indian Peninsula, sandwiched between wet conditions on the southern and northern sides of Pakistan and India, rather than homogeneous wet conditions as seen in the MME of IPCC AR4. Thus, the spatial pattern of South Asian summer rainfall in the future may be more complicated than previously thought.  相似文献   

2.
The South Asian High(SAH) is one of the most important components of the Asian summer monsoon system. To understand the ability of state-of-the-art general circulation models(GCMs) to capture the major characteristics of the SAH, the authors evaluate 18 atmospheric models that participated in the Coupled Model Intercomparison Project Phase 5/Atmospheric Model Intercomparison Project(CMIP5/AMIP). Results show that the multi-model ensemble(MME) mean is able to capture the climatological pattern of the SAH, although its intensity is slightly underestimated. For the interannual variability of the SAH, the MME exhibits good correlation with the reanalysis for the area and intensity index, but poor skill in capturing the east-west oscillation of the SAH. For the interdecadal trend, the MME shows pronounced increasing trends from 1985 to 2008 for the area and intensity indexes, which is consistent with the reanalysis, but fails to capture the westward shift of the SAH center. The individual models show different capacities for capturing climatological patterns, interannual variability, and interdecadal trends of the SAH. Several models fail to capture the climatological pattern, while one model overestimates the intensity of the SAH. Most of the models show good correlations for interannual variability, but nearly half exhibit high root-mean-square difference(RMSD) values. Six models successfully capture the westward shift of the SAH center in the interdecadal trends, while other models fail. The possible causes of the systematic biases involved in several models are also discussed.  相似文献   

3.
Three sources of uncertainty in model projections of precipitation change in China for the 21st century were separated and quantified: internal variability,inter-model variability,and scenario uncertainty.Simulations from models involved in the third phase and the fifth phase of the Coupled Model Intercomparison Project(CMIP3 and CMIP5) were compared to identify improvements in the robustness of projections from the latest generation of models.No significant differences were found between CMIP3 and CMIP5 in terms of future precipitation projections over China,with the two datasets both showing future increases.The uncertainty can be attributed firstly to internal variability,and then to both inter-model and internal variability.Quantification analysis revealed that the uncertainty in CMIP5 models has increased by about 10%–60% with respect to CMIP3,despite significant improvements in the latest generation of models.The increase is mainly due to the increase of internal variability in the initial decades,and then mainly due to the increase of inter-model variability thereafter,especially by the end of this century.The change in scenario uncertainty shows no major role,but makes a negative contribution to begin with,and then an increase later.  相似文献   

4.
The future changes in the relationship between the South Asian summer monsoon (SASM) and the East Asian summer monsoon (EASM) are investigated by using the high-emissions Shared Socioeconomic Pathway 5-8.5 (SSP5- 8.5) experiments from 26 coupled models that participated in the phase 6 of the Coupled Model Intercomparison Project (CMIP6). Six models, selected based on their best performance in simulating the upper- and lower-level pathways related to the SASM-EASM teleconnection in the historical run, can capture the positive relationship between the SASM and the rainfall over northern China. In the future scenario, the upper-level teleconnection wave pattern connecting the SASM and the EASM exhibits a significant weakening trend, due to the rainfall anomalies decrease over the northern Indian Peninsula in the future. At the lower level, the western North Pacific anticyclone is projected to strengthen in the warming climate. The positive (negative) rainfall anomalies associated with positive (negative) SASM rainfall anomalies are anticipated to extend southward from northern China to the Yangtze-Huai River valley, the Korea Peninsula, and southern Japan. The connection in the lower-level pathway may be strengthened in the future.  相似文献   

5.
南亚地区黑碳气溶胶对亚洲夏季风的影响   总被引:13,自引:1,他引:13       下载免费PDF全文
王志立  张华  郭品文 《高原气象》2009,28(2):419-424
利用NCAR的全球大气模式CAM3,模拟了南亚地区黑碳气溶胶对亚洲夏季风的影响.结果表明:晚春时期,南亚地区黑碳气溶胶强烈吸收太阳辐射,加热低层大气,造成孟加拉湾及沿岸地区雨季的提前,可能导致南亚夏季风提前爆发.夏季,被加热的大气沿青藏高原南坡爬升,在高空形成一个稳定的加热层.高空的持续加热,引起局地的深对流活动,使得印度洋和南亚大陆之间产生一个北升南降的经圈环流,导致印度洋洋面上的向北运动加强,从而使南亚夏季风的强度增大.但是,南亚地区黑碳气溶胶通过影响表面气压、垂直运动、降水和850 hPa风场等减弱了东亚夏季风,且导致西太平洋副热带高压北移西伸,使我国梅雨带位置向东北方向移动.  相似文献   

6.
CMIP5模式对中国年平均气温模拟及其与CMIP3模式的比较   总被引:5,自引:0,他引:5  
利用CRUT3v和CN05两套观测资料,评估25个CMIP5模式对1906-2005年中国年平均气温变化的模拟能力,并与CMIP3模式对比。结果表明:1906-2005年中国平均温升速率为0.84℃/100a,CMIP5多模式集合平均模拟的增温率为0.77℃/100a。模式对20世纪后期温升模拟好于前期,仅有两个模式能模拟中国20世纪40年代异常增暖。模式对气温气候态空间分布模拟较好,但在中国西部地区存在最大模拟冷偏差和不确定性。1961-1999年,中国北方增暖大于南方。多模式集合平均可以较好地模拟气温变化线性趋势的空间分布,但对南北气温变化趋势的差异模拟过小。总体说来,在中国平均气温变化趋势、气温气候态空间分布和气温变化趋势空间分布三方面,CMIP5模式都较CMIP3模式有所提高。  相似文献   

7.
As the first leading mode of upper-tropospheric circulation in observations, the meridional displacement of the East Asian westerly jet (EAJ) varies closely with the East Asian rainfall in summer. In this study, the interannual variation of the EAJ meridional displacement and its relationship with the East Asian summer rainfall are evaluated, using the historical simulations of CMIP5 (phase 5 of the Coupled Model Intercomparison Project). The models can generally reproduce the meridional displacement of the EAJ, which is mainly manifested as the first principal mode in most of the simulations. For the relationship between the meridional displacement of the EAJ and East Asian rainfall, almost all the models depict a weaker correlation than observations and exhibit considerably large spread across the models. It is found that the discrepancy in the interannual relationship is closely related to the simulation of the climate mean state, including the climatological location of the westerly jet in Eurasia and rainfall bias in South Asia and the western North Pacific. In addition, a close relationship between the simulation discrepancy and intensity of EAJ variability is also found: the models with a stronger intensity of the EAJ meridional displacement tend to reproduce a closer interannual relationship, and vice versa.  相似文献   

8.
El Ni?o-Southern Oscillation(ENSO)events have a strong influence on East Asian summer rainfall(EASR).This paper investigates the simulated ENSO-EASR relationship in CMIP6 models and compares the results with those in CMIP3 and CMIP5 models.In general,the CMIP6 models show almost no appreciable progress in representing the ENSO-EASR relationship compared with the CMIP5 models.The correlation coefficients in the CMIP6 models are relatively smaller and exhibit a slightly greater intermodel diversity than those in the CMIP5 models.Three physical processes related to the delayed effect of ENSO on EASR are further analyzed.Results show that,firstly,the relationships between ENSO and the tropical Indian Ocean(TIO)sea surface temperature(SST)in the CMIP6 models are more realistic,stronger,and have less intermodel diversity than those in the CMIP3 and CMIP5 models.Secondly,the teleconnections between the TIO SST and Philippine Sea convection(PSC)in the CMIP6 models are almost the same as those in the CMIP5 models,and stronger than those in the CMIP3 models.Finally,the CMIP3,CMIP5,and CMIP6 models exhibit essentially identical capabilities in representing the PSC-EASR relationship.Almost all the three generations of models underestimate the ENSO-EASR,TIO SST-PSC,and PSC-EASR relationships.Moreover,almost all the CMIP6 models that successfully capture the significant TIO SST-PSC relationship realistically simulate the ENSO-EASR relationship and vice versa,which is,however,not the case in the CMIP5 models.  相似文献   

9.
The South Asian summer monsoon (SASM) precipitation is analyzed based on reanalysis datasets and historical simulation results from 23 climate models of the Coupled Model Intercomparison Project phase ...  相似文献   

10.
南亚高压的南北偏移与我国夏季降水的关系   总被引:3,自引:2,他引:3       下载免费PDF全文
该文定义了一个能较好反映南亚高压南北偏移的指数,并发现该指数与我国夏季降水,尤其是华北和长江流域的降水,无论在年际变化上还是长期趋势上都具有十分显著的相关关系。南亚高压位置偏北时,在我国东部至日本上空存在一个显著的异常反气旋,其中心自上而下向南倾斜,在高层给华北地区带来辐散,在低层使得气流在长江流域辐散,在华北地区辐合,造成华北地区降水偏多,长江流域降水偏少。同时,南亚高压偏北对应着高层西风急流以及中层西太平洋副热带高压偏北,使得我国整个雨带偏北。此外,通过与海温的相关分析发现,南亚高压的长期偏南趋势可能受到印度洋增暖的直接影响。南北偏移指数可作为预测我国夏季区域降水的重要指标,在气候预测业务中有一定的应用价值。  相似文献   

11.
We present a study of summer precipitation changes over the Yangtze River Valley (YRV) and North China (NC) simulated from 20 models of the CMIP3 (phase 3 of the Coupled Model Intercomparison Project). It is found that the LASG-FGOALS-g1.0 (fgoals) model has the highest ability in simulating both the interannual variability of individual regions and the seesaw pattern of the two regions observed during the past few decades. Analyses of atmospheric circulations indicate that the variability in precipitation is closely associated with the 850 hPa meridional winds over the two regions. Wetness in the YRV and dryness in NC are corresponding to strong meridional wind gradient and weak meridional wind over these two regions, respectively. The ability of a coupled general circulation model (CGCM) to simulate precipitation changes in the YRV and NC depends on how well the model reproduces both observed associations of precipitation with overlying meridional winds and observed meridional wind features in summer. Analysis of future precipitation changes over the two regions projected by the fgoals model under the IPCC scenarios B1 and A1B suggests a significant increase of 7–15% for NC after 2040s due to the strengthened meridional winds, and a slight increase over the YRV due to less significant intensification of the Mei-yu front.  相似文献   

12.
The output of 25 models used in the Coupled Model Intercomparison Project phase 3 (CMIP3) were evaluated, with a focus on summer precipitation in eastern China for the last 40 years of the 20th century. Most models failed to reproduce rainfall associated with the East Asian summer monsoon (EASM), and hence the seasonal cycle in eastern China, but provided reasonable results in Southwest (SW) and Northeast China (NE). The simulations produced reasonable results for the Yangtze-Huai (YH) Basin area, although the Meiyu phenomenon was underestimated in general. One typical regional phenomenon, a seasonal northward shift in the rain belt from early to late summer, was completely missed by most models. The long-term climate trends in rainfall over eastern China were largely underestimated, and the observed geographical pattern of rainfall changes was not reproduced by most models. Precipitation extremes were evaluated via parameters of fitted GEV (Generalized Ex- treme Values) distributions. The annual extremes were grossly underestimated in the monsoon-dominated YH and SW regions, but reasonable values were calculated for the North China (NC) and NE regions. These results suggest a general failure to capture the dynamics of the EASM in current coupled climate models. Nonetheless, models with higher resolution tend to reproduce larger decadal trends and annual extremes of precipitation in the regions studied.  相似文献   

13.
东北亚地区夏季850 hPa南风异常与东北旱涝的关系   总被引:12,自引:3,他引:9  
孙力  安刚  唐晓玲 《大气科学》2003,27(3):425-434
利用东北地区均匀分布的80个测站40年(1961~2000年)夏季月降水资料和同一时期北太平洋海温及NCEP/NCAR月平均再分析等资料,首先分析了东北亚地区夏季850 hPa南风异常特征,然后讨论了这种异常与东北降水的关系及其物理意义,最后给出了东北亚地区夏季南风异常的某些前兆特征.结果表明,东北亚地区夏季南风的强弱变化不仅与东北旱涝存在着十分密切的关系,而且对大范围大气环流异常也具有非常敏感的反应,东北亚地区南风异常的出现还具有前冬和前春北太平洋海温和500 hPa大气环流异常的前兆信号.  相似文献   

14.
对比云和降水表征的东亚夏季风活动   总被引:1,自引:0,他引:1  
利用1998~2007年候平均ISCCP(International Satellite Cloud Climatology Project)D1云资料和台站融合降水资料,定义了两类云指数和降水指数,分别反映东亚夏季风活动期间不同云类云量和降水量位置及强弱的变化。用云指数和降水指数研究了东亚夏季风在中国大陆的推进过程,发现两类指数均能表现东亚夏季风的停滞与北跳特征且具有时空上的一致性。基于云指数变化定义了中国东部华南、华东和华北三个区域季风活跃期、过渡期和中断期,检验了季风活跃期和中断期云指数的差异、500 hPa环流场和水汽场的差异,验证了用云表征季风活动的合理性。对比了用云指数和降水指数定义的季风活动期,发现两个指数定义的季风活跃期和中断期日数虽有差异但基本一致,二者的区别在于降水指数偏重于对降水特征差异的描述,云指数则更偏重于对不同类型云量差异的描述,二者的差异还反映了降水性质的差异。  相似文献   

15.
分析了国家气候中心两个参加第六次国际耦合模式比较计划(CMIP6)的模式BCC-CSM2-MR和BCCESM1对东亚夏季风季节内演变的模拟情况,包括气候态特征以及在ENSO(El Ni?o and Southern Oscillation)循环不同位相下的特征。本文同时对比分析了观测海温海冰驱动大气环流模式试验(AMIP试验)以及耦合模式的历史气候模拟试验(Historical试验)的结果。结果表明,模式能够合理地模拟出东亚夏季风环流和降水的气候态特征。相比大气模式,耦合模式能够明显改善对气候态的模拟,特别是耦合模式能够较好地模拟出副热带高压从6~8月向北以及向东移动的季节内演变特征。对于El Ni?o衰减年和La Ni?a年合成来说,大气模式能够在一定程度上模拟出El Ni?o衰减年(La Ni?a年)副高偏西(东)、对流减弱(增强)的特征,但是对于位置和强度的模拟存在偏差,特别是对于其季节内尺度的演变。耦合模式相比大气模式来说,并没有改善对于ENSO循环影响东亚夏季风季节内演变的模拟,这可能和耦合模式模拟的ENSO本身的偏差有关。因此要想改善对于东亚夏季风季节内演变及其年际差异的模...  相似文献   

16.
In the summer of 1998, heavy rainfall persisted throughout the summer and resulted in a severe prolonged flooding event over East Asia. Will a similar rainy summer happen again? To date, many studies have investigated projected changes in the seasonality or daily extreme precipitation events over East Asia; however, few studies have focused on the changes in extreme summer-averaged East Asian rainfall. This type of summer is referred to as a "heavy rainy summer(HRS)" in this study, and an investigation of future changes in its probability is performed by analyzing CMIP5 model outputs in historical climate simulation(HIST) and under RCP4.5 and RCP8.5.All models project increased probabilities of HRS by a factor of two to three. The projected East Asian summer rainfall(EASR)(EASR_(RCPs)-EASR_(HIST)) in both climatology and HRS is expected to intensify significantly. The increased EASR could be attributed to significantly intensified water vapor transport(WVT) originating from the tropical Indian Ocean(TIO) and the eastern subtropical North Pacific(SNP), which is a result of the thermodynamic component. The WVT from the TIO would supply more moisture for EASR because of its stronger intensity and faster rate of increase.Meanwhile, the EASR anomaly in HRS relative to climatology(EASR_(HRS)-EASR_(CLM)) would increase by approximately 11%–33%. In HIST, the associated WVT anomaly, caused only by the dynamic component, converges moisture from adjacent land and ocean. However, under the RCPs, the WVT anomaly from the TIO, resulted from the thermodynamic component, would appear and increase by a factor of three to be comparable to the WVT anomaly from the eastern SNP.The latter would result from the dynamic component but increase by only half.  相似文献   

17.
The characteristics of moisture transport over the Asian summer monsoon region and its relationship with summer precipitation in China are examined by a variety of statistical methods using the NCEP/NC AR reanalysis data for 1948-2005.The results show that:1) The zonal-mean moisture transport in the Asian monsoon region is unique because of monsoon activities.The Asian summer monsoon region is a dominant moisture sink during summer.Both the Indian and East Asian monsoon areas have their convergence cente...  相似文献   

18.
CMIP5模式对中国地区气温模拟能力评估与预估   总被引:5,自引:0,他引:5  
利用第五次国际耦合模式比较计划(CMIP5)中29个气候模式的气温模拟结果,评估了各模式对中国地区年平均气温的模拟能力,对未来不同典型浓度路径(RCPs)下中国地区气温的可能变化给出了预估。结果表明:各模式能较好地模拟过去100多年中国地区增温趋势和年平均气温的空间分布,从模式间标准差来看,各模式对中国中部、南部气温模拟具有较高的一致性。利用相对均方根误差分析了各模式的模拟能力,对于多时间尺度(月、年)气温的气候平均态,有7个模式表现良好,高于中等水平,5个模式的模拟能力低于中等水平,模式集合平均值的模拟效果优于大多数单个模式。根据29个模式的评估结果,使用模拟性能相对较好的模式分析了未来不同排放情景下中国地区气温变化,21世纪前期,不同排放情景之间的预估结果差别较小,21世纪中期各情景之间的差别逐渐增大,到21世纪后期,3种排放情景的升温差别明显增大。  相似文献   

19.
CMIP3及CMIP5模式对冬季和春季北极涛动变率模拟的比较   总被引:1,自引:0,他引:1  
结合NCEP再分析资料,评估了28个参加第五次耦合模式比较计划(CMIP5)的耦合模式对1950-2000年冬、春季北极涛动(AO)变率的模拟能力,并与CMIP3模式模拟结果进行了对比。结果表明,尽管CMIP5模式没能模拟出冬、春季AO指数前30年处于显著的负位相期而后20年处于显著的正位相期的特征,但是基本能够模拟出冬、春季AO指数1950-2000年显著的增强趋势以及振荡周期,多模式集合改进了模拟效果。同样,CMIP3模式没能模拟出冬、春季AO指数前30年处于显著的负位相而后20年处于显著的正位相的特征,而且1950-2000年冬、春季AO指数的增强趋势在CMIP3模式模拟结果中也没有表现出来,多模式集合没有改进模式模拟效果。不仅如此,CMIP3模式对AO指数的长期变化周期模拟不好,只是模拟出了冬季周期为2~3 a的振荡,没有模拟出春季AO指数的4~5 a振荡周期。尽管CMIP5模式对冬、春季AO指数的模拟能力还不够理想,没有完全模拟出AO指数的变化特征,但是相对于CMIP3模式,无论是对AO指数变化趋势的模拟还是对其变化周期的模拟,CMIP5模式都有所提高。  相似文献   

20.
利用NCAR的全球大气模式CAM3分析了黑碳气溶胶在大气顶和地表的直接辐射强迫分布及其季节变化,重点讨论了云对黑碳气溶胶直接辐射强迫的影响,以及黑碳气溶胶对中国夏季降水的影响。结果表明:黑碳气溶胶在大气顶和地表的直接辐射强迫分布范围和强度都具有明显的季节变化。有云条件下,黑碳气溶胶在大气顶产生正的直接辐射强迫,全球年平均强迫值为+0.33 W·m-2;在地表产生负的直接辐射强迫,全球年平均强迫值为-0.56 W·m-2。晴空条件下,黑碳气溶胶在大气顶和地表的全球年平均辐射强迫值分别为+0.21 和-0.71 W·m-2。云的存在对黑碳气溶胶的辐射强迫产生了很大的影响,使大气顶的正辐射强迫增加,地表的负辐射强迫减小。黑碳气溶胶导致夏季中国北方30°N~45°N之间区域降水明显增加;而中国长江以南地区除了海南和广西的部分城市外,降水明显减少。模拟结果表明,中国夏季近50年来经常发生的南涝北旱并非由黑碳气溶胶引起。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号