首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
In the paper two types of numerical models – a lumped-parameter model and a high-resolution two-dimensional hydrodynamic model – are used to analyse the response of a system of partially-connected tidal basins to inhomogeneous open sea forcing. The equations of the lumped-parameter model, suitable for an arbitrary number of basins with sloping walls, are formulated based on one-dimensional continuity and momentum equations. Numerical solutions to the equations are thoroughly examined, showing the influence of inhomogeneous open sea forcing and of geometrical parameters of the basins on the tidal range and the water transport through the system, with particular emphasis given to inter-basin water exchange and cumulative water transport through basins boundaries. The results of the lumped-parameter model simulations for the tidal basins of the German Wadden Sea are successfully compared with the results of calculations with the two-dimensional hydrodynamic model, which is used to investigate in more detail circulation patterns and the influence of specific local features of inlet bathymetry on the hydrodynamic processes in the study area. The influence of wind on the basins response is discussed as well.  相似文献   

3.
Different shoreline boundary conditions for numerical models of the Non-Linear Shallow Water Equations based on Godunov-type schemes are compared. The study focuses on the Peregrine and Williams [Peregrine, D.H., Williams, S.M., 2001. Swash overtopping a truncated plane beach. Journal of Fluid Mechanics 440, 391–399.] problem of a single bore collapsing on a slope. This is considered the best test to assess performances of the shoreline boundary treatments in terms of all the parameters of interest in swash zone modelling. Emphasis is given to the shoreline trajectory and flow velocity modelling. A mismatch of the velocity at the early stage of the motion is highlighted. Most of the tested techniques perform similarly in terms of maximum run-up, the backwash phase is critical in all cases. Starting from the Brocchini et al. [Brocchini, M., Bernetti, R., Mancinelli, A., Albertini, G., 2001. An efficient solver for nearshore flows based on the WAF method. Coastal Engineering 43(2), 105–129.] shoreline boundary treatment, a simple technique that improves the accuracy of velocity predictions is also developed. A sensitivity analysis of the domain resolution and the threshold value of the water depth that defines a wet cell is also presented.  相似文献   

4.
Coherence of broad-band acoustic waves for mid-to-high frequencies (0.6-18 kHz) is obtained for a very shallow-water (15-m-deep) waveguide over a wide band of environmental conditions and for a source-receiver range of 387 m. Temporal behavior is sampled at two different rates: one that resolves at fractions of a second over intermittent periods of 40 s and another that resolves at 10 min over periods of several days. Spatial behavior is sampled in the vertical by hydrophones with spacings of the order of meters. The effect of environmental variability on coherence, in particular, soundspeed fluctuations in the water column and wind-induced modulations of the air-sea interface, is noted as a function of acoustic frequency and ray path. Analysis of the acoustic fluctuations over short time scales more accurately resolves the temporal decorrelation of the received signal due to sea surface waves. The vertical sampling of the received signal permits an analysis of arrival-angle fluctuations. The dependence of coherence on the number of surface bounces is studied by comparing arrivals that have zero, one, two, and three surface bounces  相似文献   

5.
A shallow-water high-frequency (HF) acoustic propagation experiment was conducted just off shore in Panama City, FL. Several broad-band high-resolution sources and receivers were mounted on stable platforms and deployed in water depths of 8-10 m. Signals covering the frequency range from 20 to 200 kHz were transmitted from the sources to two spatially separated receivers. The data were analyzed to provide estimates of the signal phase variances as a function of frequency and source-to-receiver range. These phase variabilities are correlated with small-scale water column thermal variabilities and ocean swell conditions  相似文献   

6.
High-resolution (<1 cm) roughness height measurements were made of the seafloor at seven locations on continental-shelf sediments on water depths ranging from 18 to 50 m. Roughness profiles of the sediment-water interface were digitized primarily from stereo photogrammetric measurements of varying pathlengths and increments. The data show that the root-mean-square roughness height varies from 0.3 cm for flat, featureless bottoms to 2.3 cm for rippled bottoms. Slopes of the roughness power spectra were calculated to be -1.5 to near -3.0 and depended to a large extent on contributions in higher spatial frequencies due to coarse sediments. Correlation lengths of different bottom types were estimated by using the Weiner-Khintchine theorem and examining the low-frequency behavior of the roughness spectra derived from the longest roughness profiles  相似文献   

7.
Recognising the importance of understanding sediment dynamics to evaluate the status of a coastal lagoon environment, this work has been focused on the investigation of the hydrodynamic and sediment transport processes occurring in such basins. In order to describe the lagoon system, a modelling approach combining hydrodynamics, waves and sediment dynamics has been developed. The framework of the numerical model consists of a finite element hydrodynamic model, a third generation finite element spectral wave model and a sediment transport and morphodynamic model for both cohesive and non-cohesive sediments. The model adopts the finite element technique for spatial integration, which has the advantage to describe more accurately complicated bathymetry and irregular boundaries for shallow water areas. The developed model has been applied to test cases and to a very shallow tidal lagoon, the Venice Lagoon, Italy. Numerical results show good agreement with water level, waves and turbidity measurements collected in several monitoring stations inside the Lagoon of Venice. Such a model represents an indispensable tool in analysing coastal problems and assessing morphological impacts of human interference.  相似文献   

8.
This paper presents an evaluation of second, third, and fourth-order moments for the passive detection of transient signals in both simulated Gaussian noise and measured noise. The measured noise was recorded by a vertical array located near the San Diego, CA, harbor and is dominated at low frequencies by ship-generated noise. The detectors assume neither noise nor signal stationarity and can use single or multiple channels of data. Simulation results indicate that the fourth-order moment detector often performs better than the energy detector in the correlated measured noise, with increasing channel contributions to the moment function, resulting in increased gain. The results in simulated Gaussian noise likewise favor the fourth-order moment detector, at least for the signals with significant fourth-order moments, but the ability of the higher order detector to discriminate against correlated noise is evident. Analysis over a 30-min segment of the measured noise with selected signals demonstrates that fourth-order detection gains can be reliably expected as the noise statistics change.  相似文献   

9.
In this paper, we propose an efficient scheme for extracting the complex bottom reflection coefficient (phase and amplitude) in a shallow water waveguide by using the WKB modal condition. The input data are the measured modal wavenumber (km) and the modal attenuation (βm). The main advantages of this scheme are: 1) it is efficient, because there are no replica calculations as in the conventional matched field processing (MFP) scheme, 2) the inverted error induced by the “noise” of the contaminated data can be estimated analytically, and 3) the impact of the environmental (SSP) mismatch can also be estimated analytically. Numerical simulations illustrate that the proposed scheme works well in different scenarios of shallow water waveguides  相似文献   

10.
Threshold of motion of coarse-grained sediment under waves in shallow water   总被引:1,自引:0,他引:1  
This paper considers the threshold of motion of sediment in shallow coastal waters under breaking and non-breaking waves. A simple model, representing conditions at the fluid/sediment interface, is developed. The representation of a breaking wave is based on bore theory, and the shear stress at the bed is based on the friction formula of O'Connor and Yoo. A threshold formula is presented based on the use of energy dissipation. The threshold data is also related to the Shields threshold criterion.  相似文献   

11.
A new coherent reverberation model developed at the Naval Research Laboratory, Washington, DC, and the Supreme Allied Commander Atlantic Undersea Research Centre, La Spezia, Italy, is exercised in the 17-750-Hz band to estimate the degree of non-Rayleighness of shallow-water reverberation envelopes as a function of waveguide multipath, system bandwidth, directivity, and frequency. Findings suggest that reverberation from diffuse, but non-Gaussian, scatterer distributions is significantly more Rayleigh for multipath environments than for equivalent environments excited by a single or small number of modes or for broadside receiver array processing that extracts narrow angles of reception. These findings suggest that the problem of non-Rayleigh reverberation in shallow-water waveguides can be ameliorated through the use of tuned ensonification and reception schemes, which retain high probabilities of detection while reducing the associated probability of false alarm.  相似文献   

12.
The shallow-water acoustic channel supports far-field propagation in a discrete set of modes. Ocean experiments have confirmed the modal nature of acoustic propagation, but no experiment has successfully excited only one of the suite of mid-frequency trapped modes propagating in a coastal environment. The ability to excite a single mode would be a powerful tool for investigating shallow-water ocean processes. A feedback control algorithm incorporating elements of adaptive estimation, underwater acoustics, array processing, and control theory to generate a high-fidelity single mode is presented. This approach also yields a cohesive framework for evaluating the feasibility of generating a single mode with given array geometries, noise characteristics, and source power limitations. Simulations and laboratory wave guide experiments indicate the proposed algorithm holds promise for ocean experiments  相似文献   

13.
Measurements of time-averaged intensity of water motion with plaster balls   总被引:1,自引:0,他引:1  
Water motion is a very important environment surrounding marine organisms. It is, however, difficult to measure currents with a propeller type of current meters in seagrass or seaweed beds in shallow waters. Therefore, we elaborate the measuring method of time-averaged intensity of water motion with plaster balls invented by Muus (1968) to set them at several depths at short vertical intervals in shallow waters. Theoretical examination is also made on the relation between speed of steady flow and dissolution rate of plaster balls by experiments in a circuit tank. These experiments revealed that the temporal rate of decrease in the 1/2 power of wet weight of plaster balls excluding a rod supporting the plaster ball was proportional to the speed of steady flow in the tank. On the basis of this relation, we propose the method for estimating the time-averaged intensity of water motion by converting the loss of wet weight of plaster ball to the speed of steady flow bringing equivalent loss. Since this method is simple and convenient, it can be applied to obtaining environmental indices of water motion not only in seagrass or seaweed forests, but also in fishing grounds culturingporphyra, yellow tail (Seriola quinqueradiata) or oysters.  相似文献   

14.
The transformation of a nonlinear wave in shallow water is investigated analytically and numerically within the framework of long-wave theory. It is shown that the nonlinearity parameter (the Mach number), which is defined as the ratio of the particle velocity in the wave to the propagation velocity, can be well above unity in a deep trough and that a jump appears initially in the trough. It is demonstrated that shockwave amplitudes at large times change in accordance with the prediction of weakly nonlinear theory. The shock front generates a reflected wave, which, in turn, transforms into a shock wave if the initial amplitude is large enough. The amplitude of the reflected wave is proportional to the cube of the initial amplitude (as predicted by weakly nonlinear theory) over a wide range of amplitudes except for the case of anomalously strong nonlinearity. When there is a sign-variable sufficiently intense initial perturbation, the basic wave transforms into a positive shock pulse (crest) and the reflected wave turns into a negative pulse (trough).  相似文献   

15.
An in situ resistivity profiler was developed to measure with minimal disruption, the near-surface porosity of shallow-water marine sands. Results from a siliciclastic site off NW Florida and two Bahamian carbonate sites (an ooid shoal and coral reef sand flat) suggest the following general features. First, there is a 5- to 15-mm thick zone of elevated porosity adjacent to the sediment-water interface. Porosity in this layer was from 0.05 to 0.25 (decimal porosity) greater than the subjacent values, and would be difficult to resolve using traditional measurement techniques. Second, average porosity at >10-mm depth was 0.38 /spl plusmn/ 0.01 at the siliciclastic site, 0.39 /spl plusmn/ 0.01 at the ooid shoal site, and 0.49 /spl plusmn/ 0.02 at the coral reef sand flat site; consistent with literature values. Third, individual profiles exhibited 0.05-0.15 fluctuations about the mean, with vertical length scales of 5-15 mm. These fluctuations may be the result of grain packing heterogeneities caused by hydrodynamic sorting during deposition and subsequent physical and biological mixing or could be artifacts caused by disruption of the grain framework. Fourth, ripple troughs at the siliciclastic sand site had a significantly higher near-surface porosity compared to ripple crests, due most likely to the presence of detrital material in the troughs.  相似文献   

16.
Proliferation of fast-growing ephemeral macroalgae in shallow-water embayments constitutes a large-scale environmental change of coastal marine ecosystems. Since inorganic nutrients essential for the initiation and maintenance of macroalgal growth may be supplied from the underlying sediment, we investigated the coupling between benthic inorganic nutrient (mainly N and P) fluxes and sediment properties in 6 bays representing a wide gradient of sediment characteristics (grain size, organic matter content, solid phase C and N). The initial characterization of bays was made in June and also included measurements of oxygen flux and microphytobenthic and macrofaunal biomass. In September, still within the growth season of the macroalgae, complementary experiments with sediment-water incubations for benthic flux measurements of oxygen and nutrients focused on trophic status (balance between auto- and heterotrophy) as a controlling factor for rates of measured benthic nutrient fluxes. Generally, sediments rendered autotrophic by microphytobenthic photosynthesis removed nutrients from the overlying water, while heterotrophic sediments supplied nutrients to the overlying bottom water. Estimations of the green-algal nutrient demand suggested that late in the growth season, net heterotrophic sediments could cover 20% of the N-demand and 70% of the P demand. As the benthic trophic status is a functional variable more closely coupled to nutrient fluxes than the comparably conservative structural parameter organic matter content, we suggest that the trophic status is a more viable parameter to classify sediments and predict benthic nutrient fluxes in shallow-water environments.  相似文献   

17.
A criterion for initiation of sediment movement on a horizontal bed under non-breaking waves is established. Bagnold's sediment transport model is used. The dissipation rate of energy has been related to the length and velocity scales of the large-scale turbulence. The proposed equation is compared with the available laboratory results for fine and coarse material 0.1 mm < D ? 45 mm over a wide range of particle sizes, density ratios and liquid viscosities and a reasonable agreement between the two is obtained. An incipient motion hypothesis based on the development of vorticity is proposed.  相似文献   

18.
Distribution of 230Th and 231Pa in the water column was measured in the Eurasian basins of the Arctic Ocean, i.e. the Makarov, Amundsen and Nansen basins. The profiles obtained were compared to one previously published from the Alpha Ridge (Bacon et al., Earth and Planetary Science Letters, 95 (1989) 15–22. The Amundsen and Nansen basins are similar in their 23OTh and 231Pa distribution, whereas in the Makarov Basin and at the Alpha Ridge these radionuclides are comparatively enriched in the deep basin. This may be due to low particle flux in conjunction with low water mass renewal rates. The 230Th concentration in water depth < 1000 m in the Makarov Basin is relatively low compared with the Alpha Ridge, which may be caused by an exchange of water masses between the Amundsen and Makarov basins.In the Eurasian Basin Deep Water, 230Th profiles can be explained both by a scavenging model and by a mixing-scavenging model. Enhanced particle load caused by resuspension may explain the increased scavenging in the Eurasian Basin Bottom Water. The differences in scavenging between the Norwegian-Greenland Sea and the Eurasian basins at present are not large enough to cause significant fractionation between 230Th and 231Pa.  相似文献   

19.
We present a semiempirical model of the bottom turbulent boundary layer aimed at the application as one of the components of the procedure of evaluation of the vertical distribution of the concentration of suspensions in the coastal region of the sea. The model is based on data of laboratory experiments and is suitable for the sand bottom in a broad range of amplitudes of the bottom velocities of the wave origin.  相似文献   

20.
A submersible surface ship (SSS) is based on a novel concept that the SSS goes on surface like conventional ships in moderate seas but goes underwater in rough seas to the depth sufficient to avoid wave effects. The SSS has a wing system that produces downward lift to go underwater with preserving the residual buoyancy for its safety. The SSS is expected to be able to keep both safety and punctuality even if it encounters unexpected bad weather.The motion of the SSS is studied. The equations of motion are formulated and the procedures for estimating hydrodynamic derivatives are presented. The hydrodynamic derivatives are estimated for a SSS having a configuration, a hull with a pair of main wings and a pair of horizontal tail wings. Using these estimated hydrodynamic derivatives, calculation of the SSS motion is carried out.The calculation results show some specific aspects of the SSS especially for effects of the elevator of main wings and horizontal tail wings, aileron of main wings, rudder and propeller revolution. It is confirmed that the existence of static roll restoring moment and having large hull comparing with wing area play important roles in the motion of the SSS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号