首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A method is proposed for the determination of the dispersion equation of Love waves propagating in a homogeneous layer lying over a laterally inhomogeneous half-space. The proposed method can be made to work only when the lateral inhomogeneities in the lower half-space are finite in nature so that their Fourier transforms are available. As an illustration the dispersion equation of Love waves is obtained for one of such media in which the shear-wave velocity and the rigidity in the lower half-space either increases or decreases along the direction of propagation of waves according as the parameter of heterogeneity is positive or negative.  相似文献   

2.
This paper aims to study the propagation of Love waves in fiber-reinforced layer lying over a gravitating anisotropic porous half-space. The closed form of dispersion equation has been derived for the Love waves in terms of Whittaker function and its derivative, which are further expanded asymptotically, retaining the terms up to second degree. The frequency equation shows that the transverse and longitudinal rigidity of reinforced material, as well as gravity and porosity of the porous halfspace have significant effect on the propagation of Love waves. The study reveals that the increment in width of reinforced layer decreases the phase velocity. For a particular width of the reinforced layer, it is also observed that the phase velocity increases with increasing porosity of the half-space, but it decreases with increasing gravity.  相似文献   

3.
The three-dimensional thin layer element method is formulated for the dynamic response analysis of an axi-symmetric structure in submerged soil. Biot's wave equation for fluid-filled porous medium is used in the formulation. The three-dimensional thin layer element method computes the wave numbers and their associated mode shapes, for both Rayleigh waves and Love waves in submerged soil, which define the characteristics of the waves. The submerged condition affects the characteristics of the Rayleigh waves in soil. As a result, it alters substantially the soil-structure interaction stresses if the permeability of the soil is relatively large and, to less extent, the response of the structure. The thin layer element method is far more efficient than the finite element method for analyzing the fluid-filled porous medium, yet capable of taking into account a multi-layered inhomogeneous soil.  相似文献   

4.
竖向非均匀介质中的Love面波   总被引:2,自引:0,他引:2  
本利用KWBJ2(即几何近似)理论研究介质参数随深度作连续变化的竖向非均匀弹性半空间上覆盖一层厚度为H的元首中向同性的弹性介质时Love面波的频散问题。给出了频散方程。中以剪切弹性模量和质量密度随深度呈抛物线变化的非均匀介质为例,给出其最低阶振型的频散曲线  相似文献   

5.
Summary It is shown that the problem of Love wave propagation in an anisotropic inhomogeneous medium can be studied alternatively by defining elastic parameters in the equivalent isotropic case. An example is considered to illustrate the application of the method in obtaining the frequency equation of Love waves, propagating in an anisotropic inhomogeneous layer embedded between two isotropic homogeneous half spaces.  相似文献   

6.
Summary The frequency equation is derived for the propagation of Love waves in the earth's crust, composed of transversely isotropic layers and overlying anisotropic and inhomogeneous mantle. The exact boundary value problem is solved for a single layer and extended to multilayered media by generalizing theHaskell's technique. In fact the problem of deriving the frequency equation has been reduced to finding out the solution of the equation of motion subject to the appropriate boundary conditions. To illustrate the method, the author has derived frequency equations of Love waves for linear, exponential and generalized power law variation of vertical shear wave velocity with depth in the half space overlain by transversely isotropic inhomogeneous stratum.  相似文献   

7.
目前完全弹性介质中面波频散特征的研究已较为完善,多道面波分析技术(MASW)在近地表勘探领域也取得了较好的效果,但黏弹介质中面波的频散特征研究依然较少.本文基于解析函数零点求解技术,给出了完全弹性、常Q黏弹和Kelvin-Voigt黏弹层状介质中勒夫波频散特征方程的统一求解方法.对于每个待计算频率,首先根据传递矩阵理论得到勒夫波复频散函数及其偏导的解析递推式,然后在复相速度平面上利用矩形围道积分和牛顿恒等式将勒夫波频散特征复数方程的求根问题转化为等价的连带多项式求解问题,最后通过求解该连带多项式的零点得到多模式勒夫波频散曲线与衰减系数曲线.总结了地层速度随深度递增和夹低速层条件下勒夫波频散特征根在复相速度平面上的运动规律和差异.证明了频散曲线交叉现象在复相速度平面上表现为:随频率增加,某个模式特征根的移动轨迹跨越了另一个模式特征根所在的圆,并给出了这个圆的解析表达式.研究还表明,常Q黏弹地层中的基阶模式勒夫波衰减程度随频率近似线性增加,而Kelvin-Voigt黏弹地层中的基阶模式勒夫波衰减程度随频率近似指数增加,且所有模式总体衰减程度强于常Q黏弹地层中的情况.  相似文献   

8.
Summary Propagation of Love waves over the spherical surface of a layered earth model has been discussed with special emphasis on the dispersion produced in the layer. The velocity of the waves with large wave-length increases appreciably as compared to the case of plane layer. The analysis has been extended to deduce an expression for the dispersion equation of the waves when the upper layer is of varying thickness. The modifications imparted to the dispersion equation depends on the amplitude only and not the shape of the corrugations provided we neglect small quantities of the second order. The effect is a substantial decrease in the phase velocity and becomes more pronounced if the amplitude of the corrugations increases.  相似文献   

9.
Rayleigh's principle and the concept of the local wave number have been utilised for the approximate determination of the dispersion of Love waves propagating in a laterally heterogeneous layer lying over a homogeneous half-space. The shear wave velocity and the rigidity in the surface layer have been assumed to decrease with the increase of the lateral distance from the origin. The range of validity of the dispersion equation obtained by this method has been examined critically. It was found that: (a) for existence of Love waves the minimum value of shear wave velocity in the layer must be less than that in the matter below, and (b) the phase velocity of Love waves decreases with the increase of the lateral distance from the origin.  相似文献   

10.
A numerical procedure for the analysis of Rayleigh waves in saturated porous elastic media is proposed by use of the finite element method. The layer stiffness matrix, the layer mass matrix and the layer damping matrix in a layered system are presented for the discretized form of the solid-fluid equilibrium equation proposed by Biot. In order to consider the influence of the permeability coefficient on the behavior of Rayleigh waves, attention is focused on the following states: ‘drained’ state, ‘undrained’ state and the states between two extremes of ‘drained’ and ‘undrained’ states. It is found from computed results that the permeability coefficient exerts a significant effect on dispersion curves and displacement distributions of Rayleigh waves in saturated porous media.  相似文献   

11.
Summary The propagation of Love waves in an inhomogeneous interstratum, whose rigidity and density follow generalized power law variation, lying between two homogeneous half-spaces has been considered. The characteristic frequency equations have been obtained. The computational results for some special cases are presented in the form of dispersion curves showing the variation of phase and group velocity of Love waves with wave number.  相似文献   

12.
The phenomenon of reflection and transmission of plane harmonic waves at the plane interface between two dissimilar poroelastic solids saturated with two immiscible viscous fluids is investigated. Both porous media are considered dissipative due to the presence of viscosity in pore‐fluids. Four attenuated (three dilatational and one shear) waves propagate in such a dissipative porous medium. A finite non‐dimensional parameter is used to define the effective connections between the surface‐pores of two media at their common interface. Another finite parameter represents the gas‐share in the saturation of pores. An attenuated wave in a dissipative medium is described through the specification of directions of propagation and maximum attenuation. A general representation of an attenuated wave is defined through its inhomogeneous propagation, i.e., different directions for propagation and attenuation. Incidence of an inhomogeneous wave is considered at the interface between two dissipative porous solids. This results in four reflected and four transmitted inhomogeneous waves. Expressions are derived for the partition of incident energy among the reflected and transmitted waves. Numerical examples are studied to determine the effects of saturating pore fluid, frequency, surface‐pore connections and wave inhomogeneity on the strengths of reflected and transmitted waves. Interaction energy due to the interference of different (inhomogeneous) waves is calculated in both the dissipative porous media to verify the conservation of incident energy.  相似文献   

13.
Summary The effect of thickening of the crustal layer in mountainous region on the dispersion curve of Love waves has been studied. Perturbation method has been applied to obtain the modified frequency equation for Love waves through the surface of separation between a semi-infinite material and a layer the thickness of which abruptly increases throughout a certain length of the path. The effect is to decrease the phase velocity of the waves particularly in the low period range. It has been pointed out that by proper study, the amount of thickening may be obtained.  相似文献   

14.
Summary An analysis is carried out of the Love wave propagation in a system consisting of an anisotropic, inhomogeneous layer bounded on either side by homogeneous, isotropic solid halfspaces. The period equation is obtained, which incorporates in it the effects of a typical variation of directional rigidities and density in the layer on dispersive properties of the Love waves. The conditions for the existence of the real roots of the frequency equation is brought out in the form of limits on phase velocity values. Corresponding to these values, the frequency equation is discussed in different wave length ranges. Numerical computation is done to analyse the variation of (i) Phase and Group velocity and (ii) Amplitudes (at different depths), with wave number. Conclusions on the significant results follow in the end.  相似文献   

15.
Summary A unification of the theories of Biot and Weiskopf has been made to form the suitable equations of motion for porous water saturated soils and marine sediments. It has been shown that the velocities of the body waves depend on the direction of propagation. In the vertical direction there are three, one distortional and two dilatational waves. In the horizontal direction there are two dilatational and two distortional waves. Finally, propagation of Love waves and Rayleigh waves have been discussed. Suitable potential functions have been derived to find the frequency equation for Rayleigh waves.  相似文献   

16.
The simplified macro‐equations of porous elastic media are presented based on Hickey's theory upon ignoring effects of thermomechanical coupling and fluctuations of porosity and density induced by passing waves. The macro‐equations with definite physical parameters predict two types of compressional waves (P wave) and two types of shear waves (S wave). The first types of P and S waves, similar to the fast P wave and S wave in Biot's theory, propagate with fast velocity and have relatively weak dispersion and attenuation, while the second types of waves behave as diffusive modes due to their distinct dispersion and strong attenuation. The second S wave resulting from the bulk and shear viscous loss within pore fluid is slower than the second P wave but with strong attenuation at lower frequencies. Based on the simplified porous elastic equations, the effects of petrophysical parameters (permeability, porosity, coupling density and fluid viscosity) on the velocity dispersion and attenuation of P and S waves are studied in brine‐saturated sandstone compared with the results of Biot's theory. The results show that the dispersion and attenuation of P waves in simplified theory are stronger than those of Biot's theory and appear at slightly lower frequencies because of the existence of bulk and shear viscous loss within pore fluid. The properties of the first S wave are almost consistent with the S wave in Biot's theory, while the second S wave not included in Biot's theory even dies off around its source due to its extremely strong attenuation. The permeability and porosity have an obvious impact on the velocity dispersion and attenuation of both P and S waves. Higher permeabilities make the peaks of attenuation shift towards lower frequencies. Higher porosities correspond to higher dispersion and attenuation. Moreover, the inertial coupling between fluid and solid induces weak velocity dispersion and attenuation of both P and S waves at higher frequencies, whereas the fluid viscosity dominates the dispersion and attenuation in a macroscopic porous medium. Besides, the heavy oil sand is used to investigate the influence of high viscous fluid on the dispersion and attenuation of both P and S waves. The dispersion and attenuation in heavy oil sand are stronger than those in brine‐saturated sandstone due to the considerable shear viscosity of heavy oil. Seismic properties are strongly influenced by the fluid viscosity; thus, viscosity should be included in fluid properties to explain solid–fluid combination behaviour properly.  相似文献   

17.
Dispersion of Rayleigh type surface wave propagation has been discussed in four-layered oceanic crust. It includes a sandy layer over a crystalline elastic half-space and over it there are two more layers—on the top inhomogeneous liquid layer and under it a liquid-saturated porous layer. Frequency equation is obtained in the form of determinant. The effects of the width of different layers as well as the inhomogeneity of liquid layer, sandiness of sandy layer on surface waves are depicted and shown graphically by considering all possible case of the particular model. Some special cases have been deduced, few special cases give the dispersion equation of Scholte wave and Stoneley wave, some of which have already been discussed elsewhere.  相似文献   

18.
利用有限单元法及解析法建立和求解了土中Love波特征方程以及位移计算公式.计算结果表明,这一计算方法比纯解析法优越,可以用来分析均质和非均质上中Love波弥散性.本文利用这一方法详细讨论了Love波在上软下硬地基及软夹层地基中的传播特性和弥散特性.上软下硬地基Love波具有弥散性,土层的剪切波及厚度对Love波弥散曲线影响较大,而质量密度的相对变化对Love彼弥散曲线影响较小.软夹层地基中低频时Love波以第一模态波为主,现场所测为第一模态波波速;高频时存在多个高模态波,土中传播的波为这几个高模态波的叠加波,现场所测波速随两传感器的位置不同而有波动.  相似文献   

19.
饱和多孔微极介质的波动方程及其势函数方程   总被引:1,自引:0,他引:1       下载免费PDF全文
胡亚元 《地球物理学报》2005,48(5):1132-1140
土是由一定尺寸大小颗粒所构成的多孔介质,具有明显的颗粒特性,当土颗粒间的孔隙被流体(如水或油)充满时则成为饱和土.利用微极理论和Biot波动理论的研究成果,把饱和土中多孔固体骨架部分近似地视为微极介质,孔隙中的流体部分视为质点介质,获得饱和多孔微极介质的弹性波动方程.借鉴Greetsma理论,建立了饱和多孔微极介质弹性本构方程力学参数与相应单相介质弹性参数的相互关系,使饱和多孔微极介质弹性波动方程中的物理参数具有明确的物理意义,易于在试验中确定.运用场论理论把饱和多孔微极介质的波动方程简化为势函数方程,建立了饱和多孔微极介质中五种弹性波的弥散方程,数值分析了五种简谐体波在无限饱和多孔微极介质中的传播特性. 结果表明,P1波、P2波和剪切S1波的波速弥散曲线与经典饱和多孔介质基本相同,当频率小于临界频率ω0时旋转纵波θ波和横波S2波不存在,当频率大于临界频率ω0时,θ波和S2波的传播速度随频率增加而减小.  相似文献   

20.
The analysis of Stoneley wave propagation in a fracture is essential for the identification and evaluation of fracture parameters from the borehole Stoneley wave. Also, it is important for many geophysics considerations, e.g. for tremor and long-period events observed in volcanoes and geothermal areas. In this paper, we investigate the guided waves propagation in a fluid layer lying between two viscoelastic vertically transversely isotropic media. The viscoelastic mechanism models the attenuation due to the presence of fluid saturation in the rock. A model based on the superposition of three inhomogeneous partial plane waves: one in the fluid and two heterogeneous waves in the solid is developed. The dispersion equation is obtained for this case. A numerical solution is carried out to obtain the guided wave velocity and attenuation coefficient. The results of this investigation show that there is a strong correlation between the velocity dispersion and attenuation of Stoneley wave and the anisotropic parameters of the medium especially in a sandstone (fast) medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号