共查询到20条相似文献,搜索用时 0 毫秒
1.
Petrological constraints on the origin of arc picrites,New Georgia Group,Solomon Islands 总被引:7,自引:0,他引:7
Subduction related picrites from the New Georgia archipelago (Solomon Islands) range in bulk MgO from 13 to 30 wt%. Two generations of olivine are identified based on CaO contents: High-CaO olivine phenocrysts from the picritic parental melt and low-CaO olivine xenocrysts incorporated from either lithospheric or asthenospheric upper mantle. There is also evidence that some of the low-CaO olivines are boninitic in origin. The bulk MgO range in the picrites is largely controlled by assimilation of low-CaO olivine xenocrysts. Oxidation states of the melt (FMQ+2.2), calculated from magnetite activities in liquidus chromites, constrain the MgO content of the parental melt to 13 wt%, assuming Fe–Mg exchange equilibrium between melt and liquidus olivine composition. The dry liquidus temperature of the parent melt based on this MgO content is 1340°C, about 80°C above the temperature obtained with the olivine–clinopyroxene Ca-exchange thermobarometer. The residence time of the low-CaO olivine xenocrysts in the magma, estimated from Ca- and Fe–Mg interdiffusion profiles, did not exceed 1 year. 相似文献
2.
Field setting,mineralogy, chemistry,and genesis of arc picrites,New Georgia,Solomon Islands 总被引:5,自引:0,他引:5
W. R. H. Ramsay A. J. Crawford J. D. Foden 《Contributions to Mineralogy and Petrology》1984,88(4):386-402
The field setting, petrography, mineralogy, and geochemistry of a suite of picrite basalts and related magnesian olivine tholeiites (New Georgia arc picrites) from the New Georgia Volcanics, Kolo caldera in the active ensimatic Solomon Islands arc are presented. These lavas, with an areal extent in the order of 1002 km and almost 1 km thick in places, are located close to the intersection of the Woodlark spreading zone with the Pacific plate margin. They contain abundant olivine (Fo94-75) and diopside (Cr2O3 1.1-0.4%, Al2O3 1–3%), and spinels characterised by a large range in Cr/(Cr+Al) (0.85–0.46) and Mg/(Mg+ Fe++) (0.65–0.1). The spinels are Fe+++ rich, with Fe+++/ (Fe++++Cr+Al) varying from 0.06 to 1.0. A discrete group of spinels with the highest Cr/(Cr+Al) (0.83–0.86) and lowest Fe+++ contents are included in the most Mg-rich olivine (Fo91–94) and both may be xenocrystal in origin.The lavas, which range between 10–28% MgO, define linear trends on oxide (element) — MgO diagrams and these trends are interpreted as olivine (0.9) clinopyroxene (0.1) control lines. For the reconstructed parent magma composition of these arc picrites, ratios involving CaO, Al2O3, TiO2, Zr, V and Sc are very close to chondritic. REE patterns are slightly LREE — enriched ((La/Sm)N 1.3–1.43) and HREE are flat. All lavas show marked enrichments in K, Rb, Sr, Ba, and LREE relative to MORB with similar MgO contents, but the TiO2 content of the proposed parent magma is close to those of postulated primary MORB liquids. It is proposed that the arc parent magma was produced by partial melting of sub-oceanic upper mantle induced by the introduction of LILE — enriched hydrous fluids derived by dehydration and/or partial melting of subducted ocean crust and possibly minor sediments. 相似文献
3.
D. J. Smith M. G. Petterson A. D. Saunders I. L. Millar G. R. T. Jenkin T. Toba J. Naden J. M. Cook 《Contributions to Mineralogy and Petrology》2009,158(6):785-801
Savo, Solomon Islands, is a historically active volcano dominated by sodic, alkaline lavas, and pyroclastic rocks with up to 7.5 wt% Na2O, and high Sr, arc-like trace element chemistry. The suite is dominated by mugearites (plagioclase–clinopyroxene–magnetite ± amphibole ± olivine) and trachytes (plagioclase–amphibole–magnetite ± biotite). The presence of hydrous minerals (amphibole, biotite) indicates relatively wet magmas. In such melts, plagioclase is relatively unstable relative to iron oxides and ferromagnesian silicates; it is the latter minerals (particularly hornblende) that dominate cumulate nodules at Savo and drive the chemical differentiation of the suite, with a limited role for plagioclase. This is potentially occurring in a crustal “hot zone”, with major chemical differentiation occurring at depth. Batches of magma ascend periodically, where they are subject to decompression, water saturation and further cooling, resulting in closed-system crystallisation of plagioclase, and ultimately the production of sodic, crystal and feldspar-rich, high-Sr rocks. The sodic and hydrous nature of the parental magmas is interpreted to be the result of partial melting of metasomatised mantle, but radiogenic isotope data (Pb, Sr, Nd) cannot uniquely identify the source of the metasomatic agent. 相似文献
4.
A crystal fractionation model for the basaltic rocks of the New Georgia Group,British Solomon Islands 总被引:1,自引:0,他引:1
Study of the data provided by Stanton and Bell (1969) for certain basaltic rocks from the New Georgia Group reveals an apparent discrepancy between compositional variation and the sequence of phenocryst phases available for fractionation. The discrepancy none-the-less appears explicable in terms of two low-pressure crystal fractionation mechanisms. The first of these we term compensated crystal settling, a process which, it is postulated, allows a substantial amount of magma undergoing crystal settling to maintain its overall composition since crystals settling from it are continually replaced by compositionally similar crystals which settle into it from higher levels. The second process involves selective fractionation of phases sinking at different rates. Slow sinking of plagioclase relative to ferromagnesian minerals is believed to produce cumulus enrichment in plagioclase in the upper part of the chamber, the resultant magmas being erupted as highly porphyritic, high-alumina, basaltic andesites. 相似文献
5.
6.
The Upper Miocene to present day Gallego Volcanic Field (GVF) is located in northwest Guadalcanal, Solomon Islands, SW Pacific, and potentially includes the offshore Savo volcano. The GVF is a multi-centred complex covering an area of ~ 800 km2 on Guadalcanal and a further ~ 30 km2 on the island of Savo, north of west Guadalcanal. GVF volcanism is characterised by effusive eruptions of lava, intrusion of sub-volcanic plutons, as well as pyroclastic flow and fall deposits dominated by block and ash flow deposits. Geochemical analysis of a representative suite of samples from the GVF demonstrates that the GVF comprise largely a ‘main suite’ of basalts to andesites and minor trachyandesites. The predominant mineralogy of the GVF comprises plagioclase, amphibole, clinopyroxene and magnetite-ilmenite. Associated with the ‘main suite’ are cognate nodules composed of hornblendite, gabbros, and clinopyroxenite. Interpretation of major and trace element geochemistry and petrographic studies suggests that fractionation was dominated by early clinopyroxene, and later amphibole + clinopyroxene + minor plagioclase. Geochemical features such as the incompatibility of Sr suggest that plagioclase largely crystallised en-masse late in the fractionation sequence. The presence of amphibole and late fractionation of plagioclase is suggestive of derivation from initially water-rich magmas. The region is characterised by strong geographically-related geochemical variations as evidenced by the Woodlark (and Manus) basins: basalts become more arc-like within the ocean basins with decreasing distance to the subducting trench. The GVF-Savo volcanoes are spatially and geochemically affected by deep N-S fractures that show some evidence of sympathetic geochemical variations with distance from the trench (e.g. Sr/Y ratios). Comparison with a range of international data for Th/Nb vs Pb/Nb and Dy/Yb vs SiO2 indicate that: amphibole was indeed a strong controlling phase on magmatic evolution; garnet had no obvious role; there was little sediment input into the source region; that relative Pb/Nb enrichments may be linked to similar enrichments within the subducting Woodlark basin (and by analogy with the Manus basin and its abundant hydrothermal Pb-rich sulphide deposits); and the predominant influence on the source region for GVF-Savo was from metasomatic fluids and/or melts from the slab subducting at the southern trench. 相似文献
7.
内蒙古哈沙图北超镁铁杂岩体成因的地球化学制约 总被引:1,自引:4,他引:1
哈沙图北超镁铁杂岩体位于华北克拉通西北缘,具小规模多岩相的特征,主要由蛇纹石化橄榄岩、橄榄二辉岩、角闪辉石岩、异剥辉石岩及石英闪长玢岩等组成的铁质超镁铁杂岩。岩体由两大系列岩石组成:第一系列岩石结晶粗大,具平坦型稀土元素分配模式,亏损Nb、Ta、Ti等高场强元素(HFSE)和Rb、Cs、Ba等大离子亲石元素(LILE),富集U和Rb,Zr,Hf及HREE等元素含量变化较大,为大陆地壳拉张环境下富集型岩石圈地幔较高程度熔融形成的岩浆经小规模分异后分期侵入原地结晶形成的,在每期岩浆结晶初期存在一定程度的堆晶作用。第二系列岩石呈致密太,磁铁矿含量较高,岩石风化表面呈黄褐色,亏损Rb、Cs、K、Ti,富集Nb、Ta、Pb、LREE,∑REE高,为初始洋壳下富集地幔较低程度熔融形成的岩浆结晶的产物。Nd同位素组成变化较小(^143Nd/^144Nd=0.5122-0.5124),两个系列岩石中分配系数相等的微量元素比值分别分布在两个区域,岩石地球化学特征表明,该岩体为一长寿命的岩浆通道中不同源区、不同构造环境中不同期岩浆的堆积物,岩浆源区为EM1型富集地幔;表明华北克拉通西北缘在古元古代以来存在长期的陆壳增生事件,经历了拉张减薄、初始洋壳演化阶段。 相似文献
8.
阿布郎当超镁铁质侵入体位于扬子地台西缘,康滇地轴中段,安宁河深大断裂之西侧。该岩体呈似同心环状相带分布,基性程度很高,岩体的中心为含长橄榄岩,向外依次过渡为含长辉橄岩、辉橄岩及斜长辉橄岩,边缘带斜长橄辉岩。在岩体的边缘带附近存在明显的Cu-Ni-PGE矿化。随着近年来矿产价格的走高和国家对地质普查工作的力度加大,阿布郎当岩体又重新引起人们的关注。该岩体在地质勘探方面已经积累了丰富的资料,但在地球化学方面的研究还很薄弱。本文对阿布郎当超镁铁岩体进行了系统的主要造岩矿物成分、主量元素、微量元素及铂族元素含量的分析,讨论了该岩体的原始岩浆和地幔部分熔融程度,并对成岩过程进行了探讨。研究认为,阿布郎当超镁铁质岩属拉斑玄武岩系列,是峨眉山大火成岩省构造-岩浆活动产物,成岩原始岩浆为苦橄质岩浆,由类似于洋岛玄武岩岩浆源区成分的地幔经18%左右的部分熔融形成。在岩浆上升过程中,最先结晶的镁铁矿物由于岩浆的流动而集中于岩浆管道的中央,于是形成各种岩石的环带分布。当岩浆上升侵入阿布郎当岩浆房以后,发生了以橄榄石为代表的镁铁矿物的堆积,与此同时,岩浆在岩浆房内继续进行着结晶分异并且还可能与围岩发生了混染,导致岩体边缘相附近出现了硫化物的熔离。在后期的地壳运动中,阿布朗当岩浆房露出地表,即今天所见到的阿不朗当超镁铁质岩体。 相似文献
9.
Takeshi Hanyu Laure Dosso Osamu Ishizuka Kenichiro Tani Barry B. Hanan Claudia Adam Shun’ichi Nakai Ryoko Senda Qing Chang Yoshiyuki Tatsumi 《Contributions to Mineralogy and Petrology》2013,166(5):1285-1304
We present the first report of geochemical data for submarine basalts collected by a manned submersible from Rurutu, Tubuai, and Raivavae in the Austral Islands in the South Pacific, where subaerial basalts exhibit HIMU isotopic signatures with highly radiogenic Pb isotopic compositions. With the exception of one sample from Tubuai, the 40Ar/39Ar ages of the submarine basalts show no significant age gaps between the submarine and subaerial basalts, and the major element compositions are indistinguishable at each island. However, the variations in Pb, Sr, Nd, and Hf isotopic compositions in the submarine basalts are much larger than those previously reported in subaerial basalts. The submarine basalts with less-radiogenic Pb and radiogenic Nd and Hf isotopic compositions show systematically lower concentrations in highly incompatible elements than the typical HIMU basalts. These geochemical variations are best explained by a two-component mixing process in which the depleted asthenospheric mantle was entrained by the mantle plume from the HIMU reservoir during its upwelling, and the melts from the HIMU reservoir and depleted asthenospheric mantle were then mixed in various proportions. The present and compiled data demonstrate that the HIMU reservoir has a uniquely low 176Hf/177Hf decoupled from 143Nd/144Nd, suggesting that it was derived from an ancient subducted slab. Moreover, the Nd/Hf ratios of the HIMU basalts and curvilinear Nd–Hf isotopic mixing trend require higher Nd/Hf ratios for the melt from the HIMU reservoir than that from the depleted mantle component. Such elevated Nd/Hf ratios could reflect source enrichment by a subducted slab during reservoir formation. 相似文献
10.
A. C. Kerr John Tarney Giselle F. Marriner Gerard T. Klaver Andrew D. Saunders Matthew F. Thirlwall 《Contributions to Mineralogy and Petrology》1996,124(1):29-43
The island of Curaçao in the southern Caribbean Sea is composed mainly of a thick sequence (>5?km) of pillow lavas, grading upwards from picrites at the base of the exposed section, to basalts nearer the top. Modelling suggests that picrites are related to the basalts by fractional crystallisation. Initial radiogenic isotope ratios of the picrites have a restricted compositional range: ?Nd=+6.1 to +6.6, 87Sr/86Sr=0.70296–0.70319; whereas the basalts display a wider range of compositions: ?Nd=+6.6 to +7.6, 87Sr/86Sr=0.70321–0.70671. This variation in isotope ratios between basalts and picrites may be due to the assimilation of altered oceanic crust (or possibly partial melts of such crust) by a picritic magma along with fractional crystallisation. The relatively narrow range of Nd and Pb isotopic compositions in the Curaçao lavas suggests either that the source region was homogeneous, or that melts from a heterogeneous mantle source were well mixed before eruption. Chondritic to slightly light rare earth element enriched patterns, combined with long-term light rare earth element depletion (positive ?Nd), suggest that the lavas were formed by polybaric melting of spinel lherzolite, with small a contribution from garnet lherzolite melts. High-MgO lavas, the absence of a subduction related chemistry, and the chemical similarity to other oceanic plateaux, suggest a mantle plume origin for the Curaçao lava succession. The Curaçao volcanic sequence is part of an oceanic plateau formed at about 88–90?Ma, fragments of which are dispersed around the Caribbean as well as being obducted onto the western margin of Colombia and Ecuador. The occurrence of high-Mg lavas throughout this Cretaceous Caribbean–Colombian igneous province requires anomalously hot mantle (>200°?C hotter than ambient upper mantle) over a large part of a putative plume head, which is inconsistent with some mantle plume models. 相似文献
11.
A combined study of zircon U–Pb ages and Lu–Hf isotopes, mineral O isotopes, whole-rock elements and Sr–Nd isotopes was carried out for Mesozoic granitoids from the Shandong Peninsula in east-central China, which tectonically corresponds to the eastern part of the Sulu orogen that formed by the Triassic continental collision between the South and North China Blocks. Four plutons were investigated in this region, with the Linglong and Guojialing plutons from the northwestern part (Jiaobei) and the Kunyushan and Sanfoshan plutons from the southeastern part (Jiaodong). The results show that these granitoids mostly have high Sr, low Yb and Y contents, high (La/Yb)N and Sr/Y ratios with negligible to positive Eu anomalies (Eu/Eu* = 0.69–1.58), which are similar to common adakites. On the other hand, they have relatively low MgO, Cr, Ni contents and thus low Mg#. Zircon U–Pb dating yields Late Jurassic ages of 141 ± 3 to 157 ± 2 Ma for the Linglong and Kunyushan plutons, but Early Cretaceous ages of 111 ± 2 to 133 ± 3 Ma for the Guojialing and Sanfoshan plutons. Some zircon cores from the Linglong and Kunyushan granitoids have Neoproterozoic U–Pb ages. All the granitoids have variably negative zircon εHf(t) values of ?39.6 to ?5.4, with Mesoproterozoic to Paleoproterozoic Hf model ages of 1515 ± 66 to 2511 ± 97 Ma for the Sanfoshan pluton, but Paleoproterozoic to Paleoarchean Hf model ages of 2125 ± 124 to 3310 ± 96 Ma for the other three plutons. These indicate that the Mesozoic granitoids formed in the postcollisional stage and were derived mainly from partial melting of the subducted South China Block that is characterized by Paleoproterozoic juvenile crust and Neoproterozoic magmatic rocks along its northern edge. However, there are some differences between the Jiaobei and Jiaodong plutons. Compared to the Jiaodong granitoids, the Jiaobei granitoids have very old zircon Hf model ages of 3310 ± 96 Ma suggesting the possible involvement of a Paleoarchean crust that may be derived from the North China Block. Therefore, the continental collision between the two blocks would bring crustal materials from both sides into the subduction zone in the Triassic, yielding subduction-thickened crust as the magma source for the adakite-like granitoids. While lithospheric extension and orogenic collapse are considered a major cause for postcollisional magmatism, anatexis of the subducted mafic crust is proposed as a mechanism for chemical differentiation of the continental crust towards felsic composition. 相似文献
12.
Andesites and high-alumina basalts from the central-south Chile high Andes: Geochemical evidence bearing on their petrogenesis 总被引:1,自引:0,他引:1
L. Lopez-Escobar F. A. Frey M. Vergara 《Contributions to Mineralogy and Petrology》1977,63(3):199-228
High-alumina basalts from seven High-Andean stratovolcanoes (37 °30′S to 41 °S) have major and trace element (including rare
earth elements, REE) that are consistent with derivation by partial melting (typically 10–15%) of garnet-free peridotite followed
by fractional crystallization of olivine and pyroxene. High-alumina basalts from two stratovolconoes require significantly
lower degrees of melting (<5%) or melting of an incompatible, element-enriched source. However, a poorly understood feature
of all of these basalts-and calc-alkaline rocks in general-is the mechanism for causing their low TiO2 and heavy REE content relative to oceanic basalts. Further north in Chile (33 °–34 °S and 21 °–22 °S) amphibole-bearing andesites
have REE abundances consistent with derivation from a garnet-bearing source such as incompatible, element-rich eclogite (e.g.,
Franciscan eclogites) or garnet peridotite. The marked petrological and geochemical changes along strike of the Andes are
probably related to the varying nature of the subduction process; e.g., dips of the downgoing slab varying from 10 to 30 °. 相似文献
13.
山西省繁峙玄武岩位于华北克拉通重力梯度带附近,是华北克拉通中部新生代玄武岩重要组成部分。前人全岩K-Ar测年结果为26.3~24.3Ma。对繁峙地区苏孟庄和应县两地玄武岩的地球化学特征研究表明,其微量元素和同位素均具有类OIB特征,即富集不相容元素,轻、重稀土元素分馏明显((La/Yb)N=8.42~21.60),不存在Sr、Eu负异常,Sr同位素比值(87Sr/86Sr=0.703848~0.704870)较低,Nd(143Nd/144Nd=0.512617~0.513057)和Hf(176Hf/177Hf=0.282873~0.283001)同位素比值较高,Pb同位素比值分别为206Pb/204Pb=17.2~17.9,207Pb/204Pb=15.3~15.4和208Pb/204Pb=37.5~37.9。结合岩相学特征和主量元素特征,我们推断繁峙新生代玄武岩是软流圈低程度部分熔融结果,并存在岩石圈物质的加入,岩浆上升时在岩石圈地幔条件下的岩浆房内经历了以橄榄石、单斜辉石为主的分离结晶作用,岩浆因快速上升而地壳混染程度甚低。苏孟庄碱性玄武岩具有较深的熔融深度和较低的熔融程度,而应县亚碱性玄武岩熔融深度较浅,熔融程度较高。结合重力梯度带附近其他地区的新生代玄武岩的研究,我们推测重力梯度带附近新生代的火山活动可能起源于西部软流圈地幔向东流动越过重力梯度带时的减压部分熔融,该地区广泛分布的断裂带为岩浆上涌提供了通道。本文为中国东部新生代玄武质火山活动的岩石成因学研究提供了新的视角。 相似文献
14.
S. König S. Schuth C. Münker C. Qopoto 《Contributions to Mineralogy and Petrology》2007,153(1):85-103
The petrogenesis of high-Mg andesites (HMA) in subduction zones involves shallow melting of refractory mantle sources or, alternatively, the interaction of ascending slab-derived melts with mantle peridotite. To unravel the petrogenesis of HMA, we report major, trace element and Sr–Nd–Hf–Pb isotope data for a newly found occurrence of HMA in the New Georgia group, Solomon Islands, SW-Pacific. Volcanism in the Solomon Islands was initiated by subduction of the Pacific plate beneath the Indian–Australian plate until a reversal of subduction polarity occurred ca. 10 Ma ago. Currently, the Indian–Australian plate is subducted northeastwards along the San Cristobál trench, forming the younger and still active southwestern Solomon island arc. However, a fossil slab of Pacific crust is still present beneath the arc. The edifice of the active volcano Simbo is located directly in the San Cristobál trench on top of the subducting Indian–Australian plate. Simbo Island lies on top of a strike-slip fault of the adjacent Woodlark spreading centre that is subducted beneath the Pacific plate. Geochemical and petrological compositions of volcanic rocks from Simbo are in marked contrast to those of volcanic rocks from islands north of the trench (mostly arc basalts). Simbo-type rocks are opx-bearing HMA, displaying 60–62 wt% SiO2 but rather primitive Mg–Ni–Cr characteristics with 4–6 wt% MgO, up to 65 ppm Ni, up to 264 ppm Cr and Mg# from 67 to 75. The compositions of the Simbo andesites are explained by a binary mixture of silicic and basaltic melts. Relict olivine phenocrysts with Fo88–90 and reaction-rims of opx also support a mixing model. The basaltic endmember is similar to back-arc basalts from the Woodlark Ridge. A slab melt affinity of the silicic mixing component is indicated by Gd(N)/Yb(N) of up to 2.2 that is higher if compared to MORB and other arc basalts from the Solomon Islands. 87Sr/86Sr, ɛNd and ɛHf values in the analysed rocks range from 0.7035 to 0.7040, +6.4 to +7.9 and +12 to +14.4, respectively. These values reveal the presence of the Indian–Australian mantle domain beneath Simbo (i.e. the Indian–Australian plate) and also beneath all other volcanic islands of the New Georgia group, which are located north of the San Cristobál trench. 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb values (18.43–18.52, 15.49–15.55 and 18.13–18.34, respectively) confirm the presence of slab melts from the subducted Pacific plate beneath southern Simbo where the highest Gd(N)/Yb(N) ratios are reported. A spatial shift towards an Indian–Australian slab signature is observed when approaching the active San Cristobál trench on northern Simbo, reflecting the decreasing influence of slab melts from the old subducted Pacific plate. 相似文献
15.
J. C. Bailey T. I. Frolova I. A. Burikova 《Contributions to Mineralogy and Petrology》1989,102(3):265-280
Whole-rock (major- and trace-element) and mineral chemical data are presented for basaltic rocks from the main evolutionary stages of the Kurile island arc, NW Pacific. An outer, inactive arc contains a Cretaceous-Lower Tertiary sequence of tholeiitic, calcalkaline and shoshonitic basalts. The main arc (Miocene-Quaternary) is dominated by weakly tholeiitic, with lesser, alkalic basalts. The mineralogy of Kuriles basalts is characterised by An-rich plagioclases, a continuous transition from chromites to titanomagnetites, pyroxenes with low Fe3+ contents and without strong Fe-enrichment, abundance of groundmass pigeonites and the absence of amphiboles. There is an increase in K2O contents both along-arc (northwards) and towards the reararc side. The basalts show an exceptionally wide but continuous range of K2O contents (0.1–4.7%) which correlate with other LIL element contents. Tholeiitic basalts with low LIL element contents, La/Yb and Th/U, but high K/ Rb, P2O5/La and Zr/Nb were derived from depleted, lherzolitic mantle which had suffered fluid metasomatism by K, Rb, Cs, Sr, Ba, Pb and H2O only. Alkali basalts are also thought to be derived from depleted mantle but melt metasomatism involved addition of all LIL elements to a garnet lherzolite mantle. The Kuriles basalts and their mantle sources range continuously between these two end-member compositions. The metasomatic fluids/melts were probably released by early dehydration and later melting within subducted oceanic lithosphere though the process is not adequately constrained. 相似文献
16.
《Chemical Geology》2002,182(2-4):513-528
The Northern Taiwan Volcanic Zone (NTVZ) is a Late Pliocene–Quaternary volcanic field that occurred as a result of extensional collapse of the northern Taiwan mountain belt. We report here mineral compositions, major and trace element and Sr/Nd isotope data of high-Mg basaltic andesites from the Mienhuayu, a volcanic islet formed at ∼2.6 Ma in the central part of the NTVZ. The rocks are hypocrystalline, showing porphyritic texture with Mg-rich olivine (Fo≈81–80), bronzite (En≈82–79) and plagioclase (An≈66–58) as major phenocryst phases. They have uniform whole-rock compositions, marked by high magnesium (MgO≈5.9–8.1 wt.%, Mg value≈0.6) relative to accompanying silica contents (SiO2≈52.8–54.5 wt.%). The high-Mg basaltic andesites contain the highest TiO2(∼1.5 wt.%) and lowest K2O (∼0.4 wt.%) among the NTVZ volcanic rocks. In the incompatible element variation diagram, these Mienhuayu magmas exhibit mild enrichments in large ion lithophile (LILE) and light rare earth elements (LREE), coupled with an apparent Pb-positive spike. They do not display depletions in high field strength elements (HFSE), a feature observed universally in the other NTVZ volcanics. The high-Mg basaltic andesites have rather unradiogenic Nd (εNd≈+5.1–7.2) but apparently elevated Sr (87Sr/86Sr≈0.70435–0.70543; leached values) isotope ratios. Their overall geochemical and isotopic characteristics are similar to mid-Miocene (∼13 Ma) high-Mg andesites from the Iriomote-jima, southern Ryukyus, Japan. Despite these magmas have lower LILE and LREE enrichments and Pb positive spike, their “intraplate-type” incompatible element variation patterns are comparable to those of extension-induced Miocene intraplate basalts emplaced in the Taiwan–Fujian region. Therefore, we interpret the Mienhuayu magmas as silica-saturated melts derived from decompression melting of the ascended asthenosphere that had been subtly affected by the adjacent Ryukyu subduction zone processes. This interpretation is consistent with the notion that in the northern Taiwan mountain belt post-orogenic lithospheric extension started in Plio–Pleistocene time. 相似文献
17.
18.
《Journal of South American Earth Sciences》2008,25(2-4):138-166
The Paleozoic granitoids of the Sierra de San Luis comprise the Ordovician tonalite suite (OTS; metaluminous to mildly peraluminous calcic tonalite–granodiorites) and granodiorite–granite suite (OGGS; peraluminous calcic to calc-alkaline granodiorite–monzogranites), as well as the Devonian granite suite (DGS; peraluminous alkali-calcic monzogranites) and monzonite–granite suite (DMGS; metaluminous alkali-calcic quartz monzonite–monzogranite ± granodiorite, mildly peraluminous alkalicalcic monzogranites). The OTS has relatively high K2O, CaO, and YbN and low Cr, Ni, Ba, Sr, Rb/Sr, Sr/Y, and (La/Yb)N, as well as negative Eu/Eu1, high 87Sr/86Sr (0.70850–0.71114), and unradiogenic εNd(470Ma) (−5.3 to −6.0), which preclude an origin of variably fractionated mantle melts and favour a mafic lower crustal source. The OGGS consists of two granitoids: (1) high-temperature characterized by low Al2O3/TiO2, Rb/Sr, and (La/Yb)N, a smooth negative Eu/Eu1, and relatively high CaO and (2) low-temperature with high Al2O3/TiO2 and Rb/Sr, low CaO, (La/Yb)N, and Sr/Y, and negative Eu/Eu1. Melting of metagreywackes at pressures below 10 kbar with a variable supply of water could account for the chemistry of the high-T OGGS, whereas dehydration melting of biotite-bearing metasedimentary sources at low pressures is proposed for the low temperature OGGS. Melting of crustal sources relates to a contemporaneous mafic magmatism.Devonian magmatism is characterized by high Ba, Sr, K2O, Na2O, Sr/Y, and (La/Yb)N. Sources for the DGS include metasedimentary or metatonalitic protoliths. Biotite dehydration melting triggered by the addition of heat, supplied by mantle-derived magmas, is proposed. High Ba, Sr, LREE, MgO, Cr, Ni, Zr, and V of the monzonites suggest an enriched lithospheric mantle source. Low Yb and Y and high Sr and (La/Yb)N indicate a garnet-rich residual assemblage (P ⩾ 10 kbar). Melts for the peraluminous rocks may have derived from a metasedimentary or metaigneous source at lower pressures in a process dominated by biotite consumption and plagioclase in the residue.The Ordovician granitoids are synkinematic with compressive deformation related to the early stages of Famatinian convergence. The Devonian magmatism is synkinematic with a system of shear zones that were active during the Achalian cycle. 相似文献
19.
Shinji Yoneshima Kimihiro Mochizuki Eiichiro Araki Ryota Hino Masanao Shinohara Kiyoshi Suyehiro 《Tectonophysics》2005,397(3-4):225-239
The Woodlark Basin, located south of the Solomon Islands arc region, is a young (5 Ma) oceanic basin that subducts beneath the New Britain Trench. This region is one of only a few subduction zones in the world where it is possible to study a young plate subduction of several Ma. To obtain the image of the subducting slab at the western side of the Woodlark Basin, a 40-day Ocean Bottom Seismometer (OBS) survey was conducted in 1998 to detect the micro-seismic activity. It was the first time such a survey had been performed in this location and over 600 hypocenters were located. The seismic activity is concentrated at the 10–60 km depth range along the plate boundary. The upper limit just about coincides with the leading edge of the accretionary wedge. The upper limit boundary was identified as the up-dip limit of the seismogenic zone, whereas the down-dip limit of the seismogenic zone was difficult to define. The dip angle of the plate at the high seismicity zone was found to average about 30°. Using the Cascadia subduction zone for comparison, which is a typical example of a young plate subduction, suggests that the subduction of the Woodlark Basin was differentiated by a high dip angle and rather landward location of the seismic front from the trench axis (30 km landward from the trench axis). Furthermore, as pointed out by previous researchers, the convergent margin of the Solomon Islands region is imposed with a high stress state, probably due to the collision of the Ontong Java Plateau and a rather rapid convergence rate (10 cm/year). The results of the high angle plate subduction and inner crust earthquakes beneath the Shortland Basin strongly support the high stress state. The collision of the Ontong Java Plateau, the relatively rapid convergence rate, and moderately cold slab as evidenced by low heat flow, rather than the plate age, may be dominantly responsible for the geometry of the seismogenic zone in the western part of the Woodlark Basin subduction zone. 相似文献
20.
吉林东南部晚中生代中酸性火山作用成因的地球化学制约 总被引:3,自引:1,他引:3
详细的主、微量元素和Sr-Nd-Pb同位素研究结果显示,延吉地区晚中生代(早白垩世)中酸性火山岩具有岛弧型微量元素特征(富集轻稀土(LREE)、大离子亲石元素(LILE)和亏损高场强元素(HFSE)),和中等放射成因Sr、Pb及类似于硅质地球的Nd同位素组成(~(87)Sr/~(86)Sr(i)=0.70437~0.70525;~(206)Pb/~(204)Pb(i)=18.19~18.37,~(207)Pb/~(204)Pb(i)=15.54~15.57,~(208)Pb/~(204)Pb(i)=38.13~38.22;ε_(Nd)(t)=-2.75~+1.61)。其Sr-Nd-Pb同位素组成特征类似于区域同期基性火山岩和大兴安岭地区同时代火山岩。这些广泛分布于吉林南部的晚中生代中酸性火山岩是岩石圈地幔来源岩浆经分离结晶或地壳物质混染/AFC过程的产物。吉林省东南部晚中生代不同区域火山岩的Sr-Nd-Pb同位素对比结果显示,辽源-延吉与通化地区分属不同构造单元,其中辽源-延吉一带则为中亚造山带的东段,而通化地区为华北克拉通的一部分,夹皮沟-松江断裂可能是华北克拉通东北缘的边界。 相似文献