首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 296 毫秒
1.
邵坤  赵改红  赵朝辉 《岩矿测试》2019,38(6):715-723
磁铁矿是一种绿色廉价的矿物材料,对水体中重金属离子具有良好的吸附性,但吸附容量低,选择性差,易团聚,通过改性可以克服该缺点并提高其吸附性能。本文以腐植酸为改性剂,采用常温水相反应制备了腐植酸改性磁铁矿吸附材料。通过傅里叶红外光谱(FTIR)、扫描电镜(SEM)和X射线光电子能谱(XPS)表征研究其表面形貌和微观结构。采用静态平衡实验考察了pH、吸附时间等因素对铅、镉吸附性能的影响,探讨了吸附动力学规律,拟合了吸附等温线。结果表明:腐植酸上的羧基、羟基被成功地接枝到了磁铁矿表面。在室温下,溶液初始pH对Pb~(2+)的吸附率几乎无影响,对Cd~(2+)的影响较大,当pH=7时,Pb~(2+)和Cd~(2+)吸附率均达到了95%。对初始质量浓度为10mg/L的Pb~(2+)、Cd~(2+)最佳吸附平衡时间为360min,吸附过程符合准二级动力学方程。吸附等温线实验得到的竞争吸附顺序为Pb~(2+)Cd~(2+),由Langmuir等温吸附模型得到Pb~(2+)、Cd~(2+)饱和吸附容量分别为39.27mg/g、28.95mg/g,显著大于磁铁矿的饱和吸附容量,表明磁铁矿经腐植酸改性后增强了对水中铅镉的吸附能力。  相似文献   

2.
齐勇  刘羽 《地质学报》2006,80(4):560
本文研究了在Pb~(2+),Cd~(2+)和Cu~(2+)等离子共存的条件下,羟基磷灰石对溶液中Zn~(2+)离子的吸附行为,讨论了Pb~(2+),Cd~(2+)和Cu~(2+)离子对Zn~(2+)吸附行为的影响;比较了羟基磷灰石对上述离子的吸附能力。实验结果表明:随着Cd~(2+)离子浓度增大,对Zn~(2+)的去除率逐渐增高,羟基磷灰石对Cd~(2+)和Zn~(2+)离子无吸附选择性。而随着Cu~(2+)离子浓度增大,对Zn~(2+)的去除率急剧下降,表现出明显的吸附选择性。另一方面,对Zn~(2+)的去除率几乎不随Pb~(2+)离子浓度的变化而改变,这是由于羟基磷灰石对这两种离子的吸附行为与机理不同。上…  相似文献   

3.
麦饭石作为一种对生物无毒、无害并具有一定生物活性的复合矿物或药用岩石,其利用历史十分悠久,明代李时珍所著《本草纲目》对麦饭石的性能、用途和用法已有记载。从地质科学的角度讲,麦饭石母岩通常被认为是岩浆结晶分异晚期残留岩浆以次火山岩产出的闪长玢岩、石英钠长斑岩或石英闪长斑岩等,矿物成分主要有斜长石、钾长石、石英、角闪石、绿泥石等,作为一类非金属矿产资源,目前研究多集中在畜牧与动物医学、中药学以及地质学等领域,基础研究薄弱,因而对其理化性质、矿物组成和岩石类型目前尚无统一的标准和认识。我国麦饭石产地众多,内蒙古奈曼旗、山东蒙阴联城、齐齐哈尔碾子山等地矿产储量较高、品质较好。其中,齐齐哈尔市碾子山区于2001年5月被国家授予"中国麦饭石之乡"的称号。碾子山麦饭石资源储量达1.4亿m3,因其含硒、锌、磷、钙等20多种微量元素,被国内外市场看好,以其为原料生产的饮具、酒具等器皿类和床垫、颗粒肥、粉末等远销日本、韩国、香港、澳大利亚等地。但由于碾子山麦饭石的地质产出、岩石矿物组分、微量元素含量、元素溶出及吸附能力等各项理化性能尚缺乏基础研究信息和数据,对其进一步的开发利用缺少理论指导依据。本研究主要通过对碾子山麦饭石开展基础研究,通过确定其成分、结构、性能,再在此基础上根据麦饭石的吸附功能、含有多种微量元素、抑菌功能等特性开展化妆品、功能涂料、功能陶瓷、催化剂载体、保健品等产品的开发。通过岩石手标本观察、岩石光学薄片观察、粉晶X射线衍射分析(XRD)、傅里叶变换红外光谱分析(FTIR)、X射线荧光光谱分析(XRF)、热重分析(TG)、孔结构及比表面分析等手段对碾子山麦饭石作了初步了解,并进一步研究了其重金属吸附性能、VOCs吸附性能、p H缓冲能力等性能,从而全面揭示了碾子山麦饭石基础性能信息,为后续的产品开发提供了理论支持。研究得知该地区麦饭石主要矿物有钾长石、斜长石、石英等,同时含少量的风化产物——黏土矿物(蒙脱石、绿泥石、角闪石);微量元素分析结果显示碾子山麦饭石含少量人体有益微量元素(Sr、V、Mn、Zn等);由于大量长石及少量黏土矿物的存在,推测该麦饭石具有一定的吸附能力及pH缓冲能力。通过实验还发现,碾子山麦饭石对重金属离子具有一定的吸附能力,且矿区不同层位的麦饭石吸附性存在一定差异。由于矿区表层风化程度相对较高,黏土质含量较高,因而吸附性优良,麦饭石对重金属的吸附性能随麦饭石样品层位由上部至下部依次减弱。另外,p H缓冲实验测试显示,麦饭石对酸碱溶液都具有很好的调节作用,尤其对酸液的调节作用极为显著,该结论同时在重金属吸附试验中得到验证,溶液由吸附初始的酸性变为吸附后的中性偏碱性。本研究通过对碾子山麦饭石样品开展一系列基础功能性实验,初步量化其基本理化性能及吸附特性,为其更好的开发利用提供了依据。  相似文献   

4.
麦饭石是一种天然矿物药石,多用于医药保健、农业畜牧等领域。采用近代岩石学分析测试技术,对有中华麦饭石之乡称号的齐齐哈尔市碾子山区麦饭石的岩石学特征、矿物组分与化学成分、热学性质以及结构特性等进行研究测定。结果表明:碾子山麦饭石是一种具有斑状结构呈致密块状的闪长玢岩,其中,w(SiO_2)约64%,w(Al_2O_3)约16%,里特曼指数σ=2.93.3。含Sr,V等对人体有益微量元素,主要矿物有斜长石、钾长石、石英,含少量风化蚀变产物(如角闪石、绿泥石和蒙脱石等粘土矿物)。在1 000℃条件下,碾子山麦饭石仍保持良好的热稳定性。碾子山麦饭石具有海绵状多孔结构,孔径以6μm以上的大孔为主。大孔结构使其既可作为优良吸附剂应用于环境领域,同时也便于其中微量元素的溶出,有望作为制药载体等得到广泛应用。  相似文献   

5.
本文利用褐铁矿中针铁矿经热脱水相变获得以纳米晶赤铁矿为主要物相的纳米-微米多级孔结构材料,并用于模拟净化富Mn~(2+)地下水。同时考察了热处理温度、初始pH值、初始Mn~(2+)浓度、吸附反应时间等对材料去除溶液中Mn~(2+)的影响。XRD、TEM、BET表征结果表明,300℃热处理产物中赤铁矿孔径最小为2.7 nm,比表面积最大达到107.4 m~2/g。吸附实验结果表明,在pH值5~10的范围内,p H值对煅烧褐铁矿颗粒对Mn~(2+)去除效果影响较小;材料在贫氧条件下对水中低浓度Mn~(2+)的最大吸附量为6.45 mg/g;吸附动力学符合准二级动力学模型;褐铁矿热处理形成的纳米晶赤铁矿对Mn~(2+)具有吸附和催化氧化作用,其中的杂质锰氧化物对Mn~(2+)的吸附和催化氧化具有增强作用。  相似文献   

6.
以天然钙基膨润土和燃料废弃物粉煤灰为原料,工业淀粉为致孔剂,采用挤出-滚圆技术,制备了粉煤灰/膨润土复合颗粒吸附剂,并用于含Pb~(2+)溶液的吸附。研究了吸附时间、pH、投样量和溶液初始浓度对吸附性能的影响。结果表明,采用挤出-滚圆法制得的复合颗粒吸附剂大小均匀,表面没有裂纹,具有良好的机械强度。吸附实验中,在投样量10.0 g/L,溶液pH为6,吸附时间120 min,溶液初始浓度100 mg/L时,复合颗粒吸附剂对Pb~(2+)的去除率达到97.40%,吸附量为9.74mg/g。热力学实验表明吸附剂对Pb~(2+)的吸附更符合Langmuir吸附等温模型。  相似文献   

7.
沸石对放射性核素Cs+,Sr2+的吸附阻滞作用   总被引:7,自引:0,他引:7  
通过对新疆乌鲁木齐浅水河地区沸石的物化性质和工程特性(包括阳离子交换容量、孔结构、粒度组成、击实密度、渗透系数等)、活化处理以及对放射性核素C s ,S r2 吸附性能的研究,结果表明:该沸石的阳离子交换容量(CEC)达到97.9 m eq/100 g,在中性条件下最高为195.4 m eq/100 g;击实后的渗透系数为8.7×10-4m/s。沸石对溶液中的C s ,S r2 吸附量分别达到162.6×1-0 3和74.9×1-0 3,吸附效果优于内蒙高庙子膨润土矿。经过钠改性和铵改性处理后的沸石,对C s 的吸附量有不同程度的提高,最高达234.5×1-0 3;但对S r2 的吸附效果影响不大。溶液pH值对C s ,S r2 的吸附量有明显影响,中性和碱性环境更有利于沸石吸附作用的进行。  相似文献   

8.
四川盆地大气层具有湿度高和流通性弱的特征,冬春低温季节易形成雾霾。本文着重构建了低温高湿条件下的石英、方解石纳米颗粒与甲苯、Cr~(3+)共存体系,系统测试了石英、方解石颗粒与甲苯、Cr~(3+)耦合前后Zeta电位值、胶体粒径及团聚形态、亲疏水性的变化趋势,以模拟研究四川盆地低温高湿静稳大气环境中矿物颗粒、有机物、重金属离子之间的耦合作用规律。研究发现:甲苯、Cr~(3+)与石英、方解石之间存在显著的成键耦合作用,甲苯、Cr~(3+)存在时会大幅度降低高湿度环境中石英、方解石颗粒的Zeta电位值,增大两种矿物颗粒在低温条件下的活跃度; Cr~(3+)可通过静电作用力,促使石英、方解石颗粒在高湿度环境中形成粒径更大的团聚状胶体;甲苯吸附在石英和方解石颗粒表面会增强其疏水性,减弱高湿度水分对矿物胶体稳定性的侵扰。上述有关石英/方解石颗粒、甲苯、Cr~(3+)在低温高湿条件下的界面成键耦合作用规律发现,对理解四川盆地雾霾形成机制有积极的启发意义。  相似文献   

9.
天然丝光沸石表面重构改性及其在水中去除重金属的应用   总被引:2,自引:1,他引:1  
天然丝光沸石作为一种绿色廉价多孔材料广泛应用于环境治理中去除重金属,目前报道的天然沸石对重金属的去除率多在60%~90%,提升其去除效率已成为研究热点。本文采用正硅酸乙酯对天然丝光沸石进行表面重构改性,通过TEM、XRD、BET等手段表征其形貌和结构。结果表明:正硅酸乙酯水解生成的SiO_2可与天然丝光沸石复合形成新颖的"SiO_2/丝光沸石",原沸石表面包覆了新生纳米SiO_2孔结构,同时没有损坏原始沸石的多孔结构,使改性沸石材料兼具了天然丝光沸石和纳米SiO_2孔结构优点,增强了对重金属离子的吸附能力。该改性材料对水中Pb~(2+)、Cd~(2+)、Zn~(2+)和Mn~(2+)的最高吸附率为99. 3%、97. 1%、98. 3%和97. 0%,且极少解吸,性能稳定。考虑经济成本并保证合适吸附率的情况下选择吸附效率最佳的投加量,得到改性材料对初始浓度10 mg/L的Pb~(2+)、Cd~(2+)、Zn~(2+)、Mn~(2+)溶液的最佳投加量分别为0. 5 g/L、2 g/L、2 g/L、5 g/L,可为中试和规模应用提供参考。较之焙烧、酸、碱、盐和有机改性,本改性方式对多种重金属均有高的吸附率,并显现出操作简便、成本低和环境友好等优势,具有较好应用前景。  相似文献   

10.
土壤对重金属离子的吸附容量严格受H~+浓度的控制。本文通过试验探讨了H~+ 对Cu~(2+)——Pb~(2+),Cn~(2+)——Zu~(2+),Cu~(2+)——Hg~(2+)系统中Cu~(2+)吸附量的影响规律。当pHpH时,Cu~(2+)吸附量随pH值增大而减小。对于酸性土,pH=6.5(初始值)或7.0(平衡值),对碱性土,pH=5.5(初始值)或7.8(平衡值)。在pHpH_(ZPC)时,吸附模式具有完全不同的形式。  相似文献   

11.
The interaction between minerals and heavy metals has been a hot object of study in environmental science,mineralogy and soil science,Through the selective adsorption experiment of Ca-montomorillonite,illite and kaolinite to Cu2 ,Pb^2 ,Zn^2 ,Cd^2 ,and Cr^3 ions at certain conditions,it could be concluded that Cr^3 is most effectively sorbed by all the three minerals.Also,it can be found that Pb^2 shows a strong affinity for illite and kaolinite while cu^2 for montmorillonite .Based on the adsorption experiment at varying pH of solution,it can be found that the amount of heavy etals sorbed by minerals increases with increasing pH of the solution.  相似文献   

12.
A binary mixture of humic acid and geothite was prepared and used to modify kaolinite to produce geothite–humic acid (GHA)-modified kaolinite adsorbent useful for the adsorption of Pb2+, Cd2+, Zn2+, Ni2+ and Cu2+ from Single and Quinary (5) metal ion systems. The cation exchange capacity (CEC) and specific surface area of GHA-modified kaolinite clay adsorbent were found to be 40 meq/100 g and 13 m2/g, respectively, with the CEC being five times that of raw kaolinite clay (7.81 meq/100 g). The Langmuir–Freundlich equilibrium isotherm model gave better fit to experimental data as compared with other isotherm models. In Quinary metal ion system, the presence of Zn2+ and Cu2+ appears to have an antagonistic effect on the adsorption of Pb2+, Cd2+ and Ni2+, while the presence of Pb2+, Cd2+ and Ni2+ shows a synergistic effect on the adsorption of Zn2+ and Cu2+. The GHA-modified kaolinite showed strong preference for the adsorption of Pb2+ in both metal ion systems. Brouers–Weron–Sotolongo (BWS) kinetic model gave better fit to kinetic data compared with other kinetic models used. Data from BWS kinetic model indicate that adsorption of metal ions onto GHA-modified adsorbent in both metal ion systems followed strictly, diffusion-controlled mechanism with adsorption reaction proceeding to 50 % equilibrium in <2 min in the Single metal ion system and <1 min in the Quinary metal ion system. Adsorption of metal ions onto GHA-modified kaolinite is fairly spontaneous and endothermic in nature in both metal ion systems although the rate of metal ion uptake and spontaneity of reaction are reduced in the Quinary metal ion system.  相似文献   

13.
Various soil zones such as Bw, C1, and C3 are developed on spilite. Montmorillonite, vermiculite and chlorite is moderately occurred in the C1 and C3 soil zones, in contrast montmorillonite and vermiculite are absent in Bw soils whereas illite and sesquioxide are relatively increased. The high cation exchange capacity (CEC) of montmorillonite and vermiculte and moderate CEC of chlorite and illite resulted in the high adsorption of heavy metals. The adsorption of the heavy metals on spilite soil zones was studied at different concentrations and pH levels. Heavy metals like lead, cadmium, and copper were selected for adsorption studies considering their contribution as toxic metals in the environment. The initial solute concentrations ranged from 7.0 × 10−3 to 1.0 × 102 mg/L. The sorption behavior of Cd2+, Pb2+, and Cu2+ on soil zones of spilite was investigated using the batch equilibrium technique at 25°C. The characteristics of the adsorption process were investigated using Scatchard plot analysis (q/C vs. q) by the batch equilibrium technique at 25°C. In the adsorption of heavy metals, deviation from linearity in the plot of q/C versus q was observed, indicating the presence of multi-model interaction and non-Langmuirean behavior. When the Scatchard plot showed a deviation from linearity, greater emphasis was placed on the analysis of the adsorption data in terms of the Freundlich model, in order to construct the adsorption isotherms of the metal(s) at particular concentration(s) in solutions. The adsorption behavior of these metal ions on spilite soil zones is expressed by the Freundlich isotherms. Adsorption constants and correlation coefficients for the Cd, Pb, and Cu on spilite soil zones were calculated from Freundlich plots.  相似文献   

14.
Heavy metal ions (Pb2+, Cd2+, Ni2+, and Zn2+) were biosorbed by brown seaweed (Hizikia fusiformis), which was collected from Jeju Island of South Korea. The metal adsorption capacity of H. fusiformis improved significantly by washing with water or by base or acid treatments. The maximum sorption by NaOH-pretreated biomass was observed near a slightly acidic pH (pH 4?6) for Pb2+, Cd2+, Ni2+, and Zn2+. This result suggests that the treatment of H. fusiformis biomass with NaOH helped increase the functional forms of carboxylate ester units. Kinetic data showed that the biosorption occurred rapidly during the first 60 min, and most of the heavy metals were bound to the seaweed within 180 min. The maximum metal adsorption capacities assumed by a Langmuir model were on the order of Pb2+ > Cd2+ > Ni2+ > Zn2+. Equilibrium adsorption data for the heavy metal ions could fit well in the Langmuir model with regression coefficients R 2 > 0.97.  相似文献   

15.
Nile Rose Plant was used to study adsorption of several cations (Cu2+, Zn2+, Cd2+ and Pb2+) from wastewater within various experimental conditions. The dried leaves of Nile Rose Plant were used at different adsorbent/ metal ion ratios. The influence of pH, contact time, metal concentration, and adsorbent loading weight on the removal process was investigated. Batch adsorption studies were carried out at room temperature. The adsorption efficiencies were found to be pH dependent, increasing by increasing the pH in the range from 2.5 to 8.5 exept for Pb. The equilibrium time was attained within 60 to 90 min. and the maximum removal percentage was achieved at an adsorbent loading weight of 1.5 g/50 mL mixed ions solution. Isothermal studies showed that the data were best fitted to the Temkin isotherm model. The removal order was found to be Pb2+> Zn2+> Cu2+> Cd2+. The surface IR-characterization of Nile rose plant showed the presence of many functional groups capable of binding to the metal cations.  相似文献   

16.
The adsorption capacity of seven organic wastes/by-products (slash pine, red gum and western cypress bark, composted green waste, prawn exoskeletons, spent brewery yeast and mill mud from a sugar mill) for transition metals were determined at two metal concentrations (10 and 100 mg L−1) and three equilibrium pH values (4.0, 6.0 and 8.0) in batch adsorption experiments. All tested materials indicate a positive affinity to adsorb metal cations from aqueous solution and spent yeast was the least effective. Adsorption generally increased with increasing pH and the order of selectivity of metals was: Cr3+ > Cu2+ > Pb2+ > Zn2+ ≥ Cd2+. For pine bark, compost, spent yeast and prawn shell, quantities of previously adsorbed Pb and Cd desorbed in 0.01 M NaNO3 electrolyte were negligible. However, 0.01 M HNO3, and more particularly 0.10 and 0.50 M HNO3 were effective at removing both adsorbed Pb and Cd. Using 0.10 M HNO3 as the regenerating agent, pine bark and compost maintained their Pb and Cd adsorption capacity over eight successive adsorption/regeneration cycles. For mill mud and prawn shell, there was a pronounced decrease in adsorption capacity after only one regeneration cycle. A subsidiary experiment confirmed that acid pre-treatment of the latter two materials appreciably reduced their Pb and Cd adsorption capacity. This was ascribed to the metal adsorption capacity of prawn shell and mill mud being partially attributable to their significant CaCO3 content and acid treatment induces dissolution of the CaCO3. It was shown that in relation to both adsorption capacity and desorption/regeneration capability, composted green waste showed the greatest potential.  相似文献   

17.
The rate of Cd2+ sorption by calcite was determined as a function of pH and Mg2+ in aqueous solutions saturated with respect to calcite but undersaturated with respect to CdCO3. The sorption is characterized by two reaction steps, with the first reaching completion within 24 hours. The second step proceeded at a slow and nearly constant rate for at least 7 days. The rate of calcite recrystallization was also studied, using a Ca2+ isotopic exchange technique. Both the recrystallization rate of calcite and the rate of slow Cd2+ sorption decrease with increasing pH or with increasing Mg2+. The recrystallization rate could be predicted from the number of moles of Ca present in the hydrated surface layer.A model is presented which is consistent with the rates of Cd2+ sorption and Ca2+ isotopic exchange. In the model, the first step in Cd2+ sorption involves a fast adsorption reaction that is followed by diffusion of Cd2+ into a surface layer of hydrated CaCO3 that overlies crystalline calcite. Desorption of Cd2+ from the hydrated layer is slow. The second step is solid solution formation in new crystalline material, which grows from the disordered mixture of Cd and Ca carbonate in the hydrated surface layer. Calculated distribution coefficients for solid solutions formed at the surface are slightly greater than the ratio of equilibrium constants for dissolution of calcite and CdCO3, which is the value that would be expected for an ideal solid solution in equilibrium with the aqueous solution.  相似文献   

18.
A new organic–inorganic composite cation exchanger polyaniline Sn(IV) silicate has been synthesized. The physicochemical properties of this ion exchanger were determined using different analytical techniques including fourier transform infrared spectroscopy, simultaneous thermogravimetry–differential thermogravimetry analyses, X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy and elemental analysis studies. Ion exchange capacity and effect of heating temperature on ion exchange capacity were also carried out on this ion exchange material. Adsorption properties for different metal ions have been investigated and the results revealed that polyaniline Sn(IV) silicate had the highest adsorption capacity for Cd2+ ion. It’s selectivity was tested by achieving some important binary separations. Dependence of adsorption on contact time, temperature, pH of the solution and exchanger dose had been studied to achieve the optimum conditions. Adsorption kinetic study showed that the adsorption process followed the first order kinetics. Adsorption data were fitted to linearly transformed Langmuir isotherm with R 2 (correlation coefficient) >0.99. The maximum removal of Cd2+ was found at pH 9. The adsorption was fast and the equilibrium established within 40 min. Thermodynamic parameters viz- entropy change, enthalpy change and Gibb’s free energy change were also calculated.  相似文献   

19.
The objective of the present study is to evaluate the absorption efficacy of H. fusiformis biochar (HFB) for the removal of phenol and heavy metals from single and mixed solute systems of these species under different experimental conditions. The effects of contact time, pH change, initial phenol concentration, and heavy metal concentration on the adsorption capacity of HFB were investigated. The kinetics and equilibrium models of sorption of the components of the single and mixed solute systems on HFB were also studied. The experimental data were fitted to kinetic and equilibrium models. The batch experiments revealed that 360 min of contact time was sufficient to achieve equilibrium for the adsorption of both phenol and heavy metals. The adsorption of phenol and nickel by HFB followed the pseudo-second-order kinetic model, which was quite adequate for describing the adsorption mechanism. The equilibrium data for the adsorption of phenol and heavy metals fit well to the Langmuir model with regression coefficients of R 2 > 0.819. The maximum Langmuir adsorption capacities were 10.39, 12.13, 22.25, 2.24, 2.89, and 22.03 mg/g for phenol, Ni2+, Zn2+, Cu2+, Pb2+, and Cd2+, respectively. Moreover, HFB exhibited optimal sorption under slightly acidic conditions at pH 6. The HFB used in the present study exhibited higher adsorption capacity for the removal of phenol and heavy metals from aqueous solutions compared to documented sorbents. These results demonstrate that HFB is potentially useful for alleviating the harmful effects of phenol and heavy metal in wastewater treatment systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号