首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Numerous studies have utilized surface complexation theory to model proton adsorption behaviour onto mesophilic bacteria. However, few experiments, to date, have investigated the effects of pH and ionic strength on proton interactions with thermophilic bacteria. In this study, we characterize proton adsorption by the thermophile Anoxybacillus flavithermus by performing acid-base titrations and electrophoretic mobility measurements in NaNO3 (0.001-0.1 M). Equilibrium thermodynamics (Donnan model) were applied to describe the specific chemical reactions that occur at the water-bacteria interface. Acid-base titrations were used to determine deprotonation constants and site concentrations for the important cell wall functional groups, while electrophoretic mobility data were used to further constrain the model. We observe that with increasing pH and ionic strength, the buffering capacity increases and the electrophoretic mobility decreases. We develop a single surface complexation model to describe proton interactions with the cells, both as a function of pH and ionic strength. Based on the model, the acid-base properties of the cell wall of A. flavithermus can best be characterized by invoking three distinct types of cell wall functional groups, with pKa values of 4.94, 6.85, and 7.85, and site concentrations of 5.33, 1.79, and 1.42 × 10−4 moles per gram of dry bacteria, respectively. A. flavithermus imparts less buffering capacity than pure mesophilic bacteria studied to date because the thermophile possesses a lower total site density (8.54 × 10−4 moles per dry gram bacteria).  相似文献   

2.
《Geochimica et cosmochimica acta》1999,63(19-20):3059-3067
In order to test the ability of a surface complexation approach to account for metal-bacteria interactions in near surface fluid-rock systems, we have conducted experiments that measure the extent of adsorption in mixed metal, mixed bacteria systems. This study tests the surface complexation approach by comparing estimated extents of adsorption based on surface complexation modeling to those we observed in the experimental systems. The batch adsorption experiments involved Ca, Cd, Cu, and Pb adsorption onto the surfaces of 2 g positive bacteria: Bacillus subtilis and Bacillus licheniformis. Three types of experiments were performed: 1. Single metal (Ca, Cu, Pb) adsorption onto a mixture of B. licheniformis and B. subtilis; 2. mixed metal (Cd, Cu, and Pb; Ca and Cd) adsorption onto either B. subtilis or B. licheniformis; and 3. mixed or single metal adsorption onto B. subtilis and B. licheniformis. %Independent of the experimental results, and based on the site specific stability constants for Ca, Cd, Cu, and Pb interactions with the carboxyl and phosphate sites on B. licheniformis and B. subtilis determined by Fein et al. (1997), by Daughney et al. (1998) and in this study, we estimate the extent of adsorption that is expected in the above experimental systems.Competitive cation adsorption experiments in both single and double bacteria systems exhibit little adsorption at pH values less than 4. With increasing pH above 4.0, the extent of Ca, Cu, Pb and Cd adsorption also increases due to the increased deprotonation of bacterial surface functional groups. In all cases studied, the estimated adsorption behavior is in excellent agreement with the observations, with only slight differences that were within the uncertainties of the estimation and experimental procedures. Therefore, the results indicate that the use of chemical equilibrium modeling of aqueous metal adsorption onto bacterial surfaces yields accurate predictions of the distribution of metals in complex multicomponent systems.  相似文献   

3.
Bulk Cd adsorption isotherm experiments, thermodynamic equilibrium modeling, and Cd K edge EXAFS were used to constrain the mechanisms of proton and Cd adsorption to bacterial cells of the commonly occurring Gram-positive and Gram-negative bacteria, Bacillus subtilis and Shewanella oneidensis, respectively. Potentiometric titrations were used to characterize the functional group reactivity of the S. oneidensis cells, and we model the titration data using the same type of non-electrostatic surface complexation approach as was applied to titrations of B. subtilis suspensions by Fein et al. (2005). Similar to the results for B. subtilis, the S. oneidensis cells exhibit buffering behavior from approximately pH 3-9 that requires the presence of four distinct sites, with pKa values of 3.3 ± 0.2, 4.8 ± 0.2, 6.7 ± 0.4, and 9.4 ± 0.5, and site concentrations of 8.9(±2.6) × 10−5, 1.3(±0.2) × 10−4, 5.9(±3.3) × 10−5, and 1.1(±0.6) × 10−4 moles/g bacteria (wet mass), respectively. The bulk Cd isotherm adsorption data for both species, conducted at pH 5.9 as a function of Cd concentration at a fixed biomass concentration, were best modeled by reactions with a Cd:site stoichiometry of 1:1. EXAFS data were collected for both bacterial species as a function of Cd concentration at pH 5.9 and 10 g/L bacteria. The EXAFS results show that the same types of binding sites are responsible for Cd sorption to both bacterial species at all Cd loadings tested (1-200 ppm). Carboxyl sites are responsible for the binding at intermediate Cd loadings. Phosphoryl ligands are more important than carboxyl ligands for Cd binding at high Cd loadings. For the lowest Cd loadings studied here, a sulfhydryl site was found to dominate the bound Cd budgets for both species, in addition to the carboxyl and phosphoryl sites that dominate the higher loadings. The EXAFS results suggest that both Gram-positive and Gram-negative bacterial cell walls have a low concentration of very high-affinity sulfhydryl sites which become masked by the more abundant carboxyl and phosphoryl sites at higher metal:bacteria ratios. This study demonstrates that metal loading plays a vital role in determining the important metal-binding reactions that occur on bacterial cell walls, and that high affinity, low-density sites can be revealed by spectroscopy of biomass samples. Such sites may control the fate and transport of metals in realistic geologic settings, where metal concentrations are low.  相似文献   

4.
We used titration calorimetry to measure the bulk heats of proton and Cd adsorption onto a common Gram positive soil bacterium Bacillus subtilis at 25.0 °C. Using the 4-site non-electrostatic model of Fein et al. [Fein, J.B., Boily, J.-F., Yee, N., Gorman-Lewis, D., Turner, B.F., 2005. Potentiometric titrations of Bacillus subtilis cells to low pH and a comparison of modeling approaches. Geochim. Cosmochim. Acta69 (5), 1123-1132.] to describe the bacterial surface reactivity to protons, our bulk enthalpy measurements can be used to determine the following site-specific enthalpies of proton adsorption for Sites 1-4, respectively: −3.5 ± 0.2, −4.2 ± 0.2, −15.4 ± 0.9, and −35 ± 2 kJ/mol, and these values yield the following third law entropies of proton adsorption onto Sites 1-4, respectively: +51 ± 4, +78 ± 4, +79 ± 5, and +60 ± 20 J/mol K. An alternative data analysis using a 2-site Langmuir-Freundlich model to describe proton binding to the bacterial surface (Fein et al., 2005) resulted in the following site-specific enthalpies of proton adsorption for Sites 1 and 2, respectively: −3.6 ± 0.2 and −35.1 ± 0.3 kJ/mol. The thermodynamic values for Sites 1-3 for the non-electrostatic model and Site 1 of the Langmuir-Freundlich model of proton adsorption onto the bacterial surface are similar to those associated with multifunctional organic acid anions, such as citrate, suggesting that the protonation state of a bacterial surface site can influence the energetics of protonation of neighboring sites. Our bulk Cd enthalpy data, interpreted using the 2-site non-electrostatic Cd adsorption model of Borrok et al. [Borrok, D., Fein, J.B., Tischler, M., O’Loughlin, E., Meyer, H., Liss, M., Kemner, K.M., 2004b. The effect of acidic solutions and growth conditions on the adsorptive properties of bacterial surfaces. Chem. Geol.209 (1-2), 107-119.] to account for Cd adsorption onto B. subtilis, yield the following site-specific enthalpies of Cd adsorption onto bacterial surface Sites 2 and 3, respectively: −0.2 ± 0.4 and +14.4 ± 0.9 kJ/mol, and the following third law entropies of Cd adsorption onto Sites 2 and 3, respectively: +57 ± 4 and +128 ± 5 J/mol K. The calculated enthalpies of Cd adsorption are typical of those associated with Cd complexation with anionic oxygen ligands, and the entropies are indicative of inner sphere complexation by multiple ligands. The experimental approach described in this study not only yields constraints on the molecular-scale mechanisms involved in proton and Cd adsorption reactions, but also provides new thermodynamic data that enable quantitative estimates of the temperature dependence of proton and Cd adsorption reactions.  相似文献   

5.
In this study, we measure proton, Pb, and Cd adsorption onto the bacteria Deinococcus radiodurans, Thermus thermophilus, Acidiphlium angustum, Flavobacterium aquatile, and Flavobacterium hibernum, and we calculate the thermodynamic stability constants for the important surface complexes. These bacterial species represent a wide genetic diversity of bacteria, and they occupy a wide range of habitats. All of the species, except for A. angustum, exhibit similar proton and metal uptake. The only species tested that exhibits significantly different protonation behavior is A. angustum, an acidophile that grows at significantly lower pH than the other species of this study. We demonstrate that a single, metal-specific, surface complexation model can be used to reasonably account for the acid/base and metal adsorption behaviors of each species. We use a four discrete site non-electrostatic model to describe the protonation of the bacterial functional groups, with averaged pKa values of 3.1 ± 0.3, 4.8 ± 0.2, 6.7 ± 0.1, and 9.2 ± 0.3, and site concentrations of (1.0 ± 0.17) × 10−4, (9.0 ± 3.0) × 10−5, (4.6 ± 1.8) × 10−5, and (6.1 ± 2.3) × 10−5 mol of sites per gram wet mass of bacteria, respectively. Adsorption of Cd and Pb onto the bacteria can be accounted for by the formation of complexes with each of the bacterial surface sites. The average log stability constants for Cd complexes with Sites 1-4 are 2.4 ± 0.4, 3.2 ± 0.1, 4.4 ± 0.1, and 5.3 ± 0.1, respectively. The average log stability constants for Pb complexes with Sites 1-4 are 3.3 ± 0.2, 4.5 ± 0.3, 6.5 ± 0.1, and 7.9 ± 0.5, respectively. This study demonstrates that a wide range of bacteria exhibit similar proton and metal adsorption behaviors, and that a single set of averaged acidity constants, site concentrations, and stability constants for metal-bacterial surface complexes yields a reasonable model for the adsorption behavior of many of these species. The differences in adsorption behavior that we observed for A. angustum demonstrate that genetic differences do exist between the cell wall functional group chemistries of some bacterial species, and that significant exceptions to the typical bacterial adsorption behavior do exist.  相似文献   

6.
The adsorption of five toxic metallic cations, Cd(II), Cu(II), Ni(II), Pb(II) and Zn(II), onto montmorillonite was investigated as a function of pH and ionic strength and a two-site surface complexation model was used to predict the adsorption data. The results showed that in the lower pH range, 3∼6 for Cd, Cu, Ni and Zn, and 3∼4.5 for Pb, the adsorption was greatly affected by ionic strength, while in the higher pH range, the adsorption was not. In the lower pH range, the metallic cations were mainly bound through the formation of outer-sphere surface on the permanently charged basal surface sites (≡X), while in the higher pH range the adsorption occurred mainly on the variably charged edge sites (≡SOH) through the formation of inner-sphere surface complexes. Acid-base surface constants and metal binding constants for the two sites were optimized using FITEQL. The adsorption affinity of the five metallic cations to the permanently charged sites of montmorillonite was Pb > Cu > Ni ≈ Zn ≈ Cd, while that to the variable charged sites was Pb ? Cu > Zn > Cd > Ni.  相似文献   

7.
This work is devoted to the physico-chemical study of cadmium and lead interaction with diatom-water interfaces for two marine planktonic (Thalassiosira weissflogii, TW; Skeletonema costatum, SC) and two freshwater periphytic species (Achnanthidium minutissimum, AMIN; Navicula minima, NMIN) by combining adsorption measurements with surface complexation modeling. Adsorption kinetics was studied as a function of pH and initial metal concentration in sodium nitrate solution and in culture media. Kinetic data were consistent with a two-step mechanism in which the loss of a water molecule from the inner coordination sphere of the metal is rate limiting. Reversible adsorption experiments, with 3 h of exposure to metal, were performed as a function of pH (2-9), metal concentration in solution (10−9-10−3 M), and ionic strength (10−3-1.0 M). While the shape of pH-dependent adsorption edge is similar among all four diatom species, the constant-pH adsorption isotherm and maximal binding capacities differ. Measurements of electrophoretic mobilities (μ) revealed negative surface potential for AMIN diatom, however, the absolute value of μ decreases with increase of [Pb2+]aq suggesting the metal adsorption on negative surface sites. These observations allowed us to construct a surface complexation model (SCM) for cadmium and lead binding by diatom surfaces that postulates the Constant Capacitance of the electric double layer and considers Cd and Pb complexation with mainly carboxylic and, partially, silanol groups. In the full range of investigated Cd concentration, the SCM is able to describe the concentration of adsorbed metal as a function of [Cd2+]aq without implying the presence of high affinity, low abundance sites, that are typically used to model the metal interactions with natural multi-component organic substances. At the same time, Cd fast initial reaction requires the presence of “highly reactive sites” those concentration represents only 2.5-3% of the total amount of carboxylic sites. For reversible adsorption experiments, the dominating carboxylic groups, whose concentration is allowed to vary within the uncertainty of experimental acid-base titrations, are sufficient to reproduce the metal adsorption isotherms. Results of this study strongly suggest that laboratory experiments performed in a wide range of metal to biomass ratios, represent robust and relatively simple method for assessing the distribution of metals between aqueous solution and planktonic and periphytic biomass in natural settings.  相似文献   

8.
Bacterial surface adsorption can control metal distributions in some natural systems, yet it is unclear whether natural bacterial consortia differ in their adsorption behaviors. In this study, we conduct potentiometric titration and metal adsorption experiments to measure proton and Cd adsorption onto a range of bacterial consortia. We model the experimental data using a surface complexation approach to determine thermodynamic stability constants. Our results indicate that these consortia adsorb similar extents of protons and Cd and that the adsorption onto all of the consortia can be modeled using a single set of stability constants. Consortia of bacteria cultured from natural environments also adsorb metals to lesser extents than individual strains of laboratory-cultivated species. This study suggests that a wide range of bacterial species exhibit similar adsorption behaviors, potentially simplifying the task of modeling the distribution and speciation of metals in bacteria-bearing natural systems. Current models for bacteria-metal adsorption that rely on pure strains of laboratory-cultivated species likely overpredict the amount of bacteria-metal adsorption in natural systems.  相似文献   

9.
Adsorption of copper, cadmium and nickel at low concentrations on goethite was studied in the presence of the simple organic ligands oxalate, salicylate, and pyromellitate. The experimental metal adsorption behavior was compared to calculations with a surface complexation model to evaluate the most important interactions. Oxalate mostly decreased Cu and Ni adsorption at high pH-values by competition between solution and surface complexation but had no effect on Cd adsorption. Cu adsorption in the presence of oxalate below pH 6 could best be described by defining a ternary complex of type A (surface-metal-ligand). Salicylate had only minor effects on metal adsorption. The adsorption of Cu in the presence of salicylate above pH 5 could be explained by a ternary complex of type A. Pyromellitate increased the adsorption of Cu and Cd in the acidic pH-range, likely by formation of ternary surface complexes of type B (surface-ligand-metal).  相似文献   

10.
Humic acid adsorption onto the bacterial surface of Bacillus subtilis was measured with and without Cd, as a function of pH and humic–bacteria–Cd ratios. These experiments tested for the existence of ternary interactions in a bacteria–humic–metal system. We determine both the effects of humic acid on the bacterial adsorption of Cd, as well as the effects of the aqueous metal cation on the bacterial adsorption of humic acid. The presence of Cd does not affect the extent of humic acid adsorption onto the bacterial surface, indicating that there is no competition for sorption sites between humic acid and Cd under the experimental conditions, and that changes in the charging properties of the bacterial surface, as a result of the Cd adsorption, are not significant enough to affect humic acid adsorption.

The presence of humic acid does diminish Cd adsorption onto the bacterial surface, suggesting the presence of an aqueous Cd–humate complex under mid to high pH conditions. However, we also observe that the solubility of humic acid is unaffected by the presence of aqueous Cd. This apparently inconsistent behavior of an aqueous Cd–humate complex affecting Cd adsorption but not affecting humic acid solubility is not observed with simpler ionizable organic molecules. We propose that the solubility of humic acid is controlled by the solubility of a less soluble fraction of the acid. Cd forms an aqueous complex with the more soluble fraction of humic acid and there is no interdependence between the aqueous activities of the more and less soluble fractions. That is, the solubility of one humic acid fraction is unaffected by the presence of an aqueous Cd–humate complex involving another humic acid fraction. These experimental results constrain the relative importance of surface ternary and aqueous metal–humate complexes on the bacterial adsorption of both humic acid and metal cations.  相似文献   


11.
Understanding bacterial surface reactivity requires many different lines of investigation. Toward this end, we used isothermal titration calorimetry to measure heats of proton adsorption onto a Gram positive thermophile Bacillus licheniformis at 25, 37, 50, and 75 °C. Proton adsorption under all conditions exhibited exothermic heat production. Below pH 4.5, exothermic heats decreased as temperature increased above 37 °C; above pH 4.5, there was no significant difference in heats evolved at the temperatures investigated. Total proton uptake did not vary significantly with temperature. Site-specific enthalpies and entropies were calculated by applying a 4-site, non-electrostatic surface complexation model to the calorimetric data. Interpretation of site-specific enthalpies and entropies of proton adsorption for site L1, L2, and L4 are consistent with previous interpretations of phosphoryl, carboxyl, and hydroxyl/amine site-identities, respectively, and with previous calorimetric measurements of proton adsorption onto mesophilic species. Enthalpies and entropies for surface site L3 are not consistent with the commonly inferred phosphoryl site-identity and are more consistent with sulfhydryl functional groups. These results reveal intricacies of surface reactivity that are not detectable by other methods.  相似文献   

12.
Fractionation of Cu and Zn isotopes during adsorption onto amorphous ferric oxyhydroxide is examined in experimental mixtures of metal-rich acid rock drainage and relatively pure river water and during batch adsorption experiments using synthetic ferrihydrite. A diverse set of Cu- and Zn-bearing solutions was examined, including natural waters, complex synthetic acid rock drainage, and simple NaNO3 electrolyte. Metal adsorption data are combined with isotopic measurements of dissolved Cu (65Cu/63Cu) and Zn (66Zn/64Zn) in each of the experiments. Fractionation of Cu and Zn isotopes occurs during adsorption of the metal onto amorphous ferric oxyhydroxide. The adsorption data are modeled successfully using the diffuse double layer model in PHREEQC. The isotopic data are best described by a closed system, equilibrium exchange model. The fractionation factors (αsoln-solid) are 0.99927 ± 0.00008 for Cu and 0.99948 ± 0.00004 for Zn or, alternately, the separation factors (Δsoln-solid) are −0.73 ± 0.08‰ for Cu and −0.52 ± 0.04‰ for Zn. These factors indicate that the heavier isotope preferentially adsorbs onto the oxyhydroxide surface, which is consistent with shorter metal-oxygen bonds and lower coordination number for the metal at the surface relative to the aqueous ion. Fractionation of Cu isotopes also is greater than that for Zn isotopes. Limited isotopic data for adsorption of Cu, Fe(II), and Zn onto amorphous ferric oxyhydroxide suggest that isotopic fractionation is related to the intrinsic equilibrium constants that define aqueous metal interactions with oxyhydroxide surface sites. Greater isotopic fractionation occurs with stronger metal binding by the oxyhydroxide with Cu > Zn > Fe(II).  相似文献   

13.
This study was designed to combine surface complexation modelling of macroscopic adsorption data with X-ray Absorption Spectroscopic (XAS) measurements to identify lanthanide sorption sites on the bacterial surface. The adsorption of selected representatives for light (La and Nd), middle (Sm and Gd) and heavy (Er and Yb) lanthanides was measured as a function of pH, and biomass samples exposed to 4 mg/L lanthanide at pH 3.5 and 6 were analysed using XAS. Surface complexation modelling was consistent with the light lanthanides adsorbing to phosphate sites, whereas the adsorption of middle and heavy lanthanides could be modelled equally well by carboxyl and phosphate sites. The existence of such mixed mode coordination was confirmed by Extended X-ray Absorption Fine Structure (EXAFS) analysis, which was also consistent with adsorption to phosphate sites at low pH, with secondary involvement of carboxyl sites at high adsorption density (high pH). Thus, the two approaches yield broadly consistent information with regard to surface site identity and lanthanide coordination environment. Furthermore, spectroscopic analysis suggests that coordination to phosphate sites is monodentate at the metal/biomass ratios used. Based on the best-fitting pKa site, we infer that the phosphate sites are located on N-acetylglucosamine phosphate, the most likely polymer on gram-negative cells with potential phosphate sites that deprotonate around neutral pH.  相似文献   

14.
This work is aimed at quantifying the main environmental factors controlling isotope fractionation of Cu during its adsorption from aqueous solutions onto common organic (bacteria, algae) and inorganic (oxy(hydr)oxide) surfaces. Adsorption of Cu on aerobic rhizospheric (Pseudomonas aureofaciens CNMN PsB-03) and phototrophic aquatic (Rhodobacter sp. f-7bl, Gloeocapsa sp. f-6gl) bacteria, uptake of Cu by marine (Skeletonema costatum) and freshwater (Navicula minima, Achnanthidium minutissimum and Melosira varians) diatoms, and Cu adsorption onto goethite (FeOOH) and gibbsite (AlOOH) were studied using a batch reaction as a function of pH, copper concentration in solution and time of exposure. Stable isotopes of copper in selected filtrates were measured using Neptune multicollector ICP-MS. Irreversible incorporation of Cu in cultured diatom cells at pH 7.5-8.0 did not produce any isotopic shift between the cell and solution (Δ65/63Cu(solid-solution)) within ±0.2‰. Accordingly, no systematic variation was observed during Cu adsorption on anoxygenic phototrophic bacteria (Rhodobacter sp.), cyanobacteria (Gloeocapsa sp.) or soil aerobic exopolysaccharide (EPS)-producing bacteria (P. aureofaciens) in circumneutral pH (4-6.5) and various exposure times (3 min to 48 h): Δ65Cu(solid-solution) = 0.0 ± 0.4‰. In contrast, when Cu was adsorbed at pH 1.8-3.5 on the cell surface of soil the bacterium P. aureofacienshaving abundant or poor EPS depending on medium composition, yielded a significant enrichment of the cell surface in the light isotope (Δ65Cu (solid-solution) = −1.2 ± 0.5‰). Inorganic reactions of Cu adsorption at pH 4-6 produced the opposite isotopic offset: enrichment of the oxy(hydr)oxide surface in the heavy isotope with Δ65Cu(solid-solution) equals 1.0 ± 0.25‰ and 0.78 ± 0.2‰ for gibbsite and goethite, respectively. The last result corroborates the recent works of Mathur et al. [Mathur R., Ruiz J., Titley S., Liermann L., Buss H. and Brantley S. (2005) Cu isotopic fractionation in the supergene environment with and without bacteria. Geochim. Cosmochim. Acta69, 5233-5246] and Balistrieri et al. [Balistrieri L. S., Borrok D. M., Wanty R. B. and Ridley W. I. (2008) Fractionation of Cu and Zn isotopes during adsorption onto amorhous Fe(III) oxyhydroxide: experimental mixing of acid rock drainage and ambient river water. Geochim. Cosmochim. Acta72, 311-328] who reported heavy Cu isotope enrichment onto amorphous ferric oxyhydroxide and on metal hydroxide precipitates on the external membranes of Fe-oxidizing bacteria, respectively.Although measured isotopic fractionation does not correlate with the relative thermodynamic stability of surface complexes, it can be related to their structures as found with available EXAFS data. Indeed, strong, bidentate, inner-sphere complexes presented by tetrahedrally coordinated Cu on metal oxide surfaces are likely to result in enrichment of the heavy isotope on the surface compared to aqueous solution. The outer-sphere, monodentate complex, which is likely to form between Cu2+ and surface phosphoryl groups of bacteria in acidic solutions, has a higher number of neighbors and longer bond distances compared to inner-sphere bidentate complexes with carboxyl groups formed on bacterial and diatom surfaces in circumneutral solutions. As a result, in acidic solution, light isotopes become more enriched on bacterial surfaces (as opposed to the surrounding aqueous medium) than they do in neutral solution.Overall, the results of the present study demonstrate important isotopic fractionation of copper in both organic and inorganic systems and provide a firm basis for using Cu isotopes for tracing metal transport in earth-surface aquatic systems. It follows that both adsorption on oxides in a wide range of pH values and adsorption on bacteria in acidic solutions are capable of producing a significant (up to 2.5-3‰ (±0.1-0.15‰)) isotopic offset. At the same time, Cu interaction with common soil and aquatic bacteria, as well as marine and freshwater diatoms, at 4 < pH < 8 yields an isotopic shift of only ±0.2-0.3‰, which is not related to Cu concentration in solution, surface loading, the duration of the experiment, or the type of aquatic microorganisms.  相似文献   

15.
The mobility of toxic metals in soils or sediments is of great concern to scientists and environmentalists since it directly affects the bioavailability of metals and their movement to surface and ground waters. In this study, a multi-surface soil speciation model for Cd (II) and Pb (II) was developed to predict the partition of metals on various soil solid components (e.g. soil organic matter (SOM), oxide mineral, and clay mineral). In previous study, the sorption of metal cations on SOM and oxide minerals has been evaluated by thermodynamically based surface complexation model. However, metal binding to soil clay fractions was normally treated in a simplistic manner: only cation exchange reactions were considered and exchange coefficient was assumed unity. In this study, the binding of metals onto clays was described by a two-site surface sorption model (a basal surface site and an edge site). The model was checked by predicting the adsorption behavior of Cd (II) and Pb (II) onto three selected Chinese soils as a function of pH and ionic strengths. Results showed that the proposed model more accurately predicted the metal adsorption on soils under studied condition, especially in low ionic strength condition, suggesting that adsorption of metals to soil clay fractions need to be considered more carefully when modeling the partition of trace elements in soils. The developed soil speciation model will be useful when evaluating the movement and bioavailability of toxic metals in soil environment.  相似文献   

16.
Macro- and molecular-scale knowledge of uranyl (U(VI)) partitioning reactions with soil/sediment mineral components is important in predicting U(VI) transport processes in the vadose zone and aquifers. In this study, U(VI) reactivity and surface speciation on a poorly crystalline aluminosilicate mineral, synthetic imogolite, were investigated using batch adsorption experiments, X-ray absorption spectroscopy (XAS), and surface complexation modeling. U(VI) uptake on imogolite surfaces was greatest at pH ∼7-8 (I = 0.1 M NaNO3 solution, suspension density = 0.4 g/L [U(VI)]i = 0.01-30 μM, equilibration with air). Uranyl uptake decreased with increasing sodium nitrate concentration in the range from 0.02 to 0.5 M. XAS analyses show that two U(VI) inner-sphere (bidentate mononuclear coordination on outer-wall aluminol groups) and one outer-sphere surface species are present on the imogolite surface, and the distribution of the surface species is pH dependent. At pH 8.8, bis-carbonato inner-sphere and tris-carbonato outer-sphere surface species are present. At pH 7, bis- and non-carbonato inner-sphere surface species co-exist, and the fraction of bis-carbonato species increases slightly with increasing I (0.1-0.5 M). At pH 5.3, U(VI) non-carbonato bidentate mononuclear surface species predominate (69%). A triple layer surface complexation model was developed with surface species that are consistent with the XAS analyses and macroscopic adsorption data. The proton stoichiometry of surface reactions was determined from both the pH dependence of U(VI) adsorption data in pH regions of surface species predominance and from bond-valence calculations. The bis-carbonato species required a distribution of surface charge between the surface and β charge planes in order to be consistent with both the spectroscopic and macroscopic adsorption data. This research indicates that U(VI)-carbonato ternary species on poorly crystalline aluminosilicate mineral surfaces may be important in controlling U(VI) mobility in low-temperature geochemical environments over a wide pH range (∼5-9), even at the partial pressure of carbon dioxide of ambient air (pCO2 = 10−3.45 atm).  相似文献   

17.
《Chemical Geology》2002,182(2-4):265-273
Si adsorption onto Bacillus subtilis and Fe and Al oxide coated cells of B. subtilis was measured both as a function of pH and of bacterial concentration in suspension in order to gain insight into the mechanism of association between silica and silicate precipitates and bacterial cell walls. All experiments were conducted in undersaturated solutions with respect to silicate mineral phases in order to isolate the important adsorption reactions from precipitation kinetics effects of bacterial surfaces. The experimental results indicate that there is little association between aqueous Si and the bacterial surface, even under low pH conditions where most of the organic acid functional groups that are present on the bacterial surface are fully protonated and neutrally charged. Conversely, Fe and Al oxide coated bacteria, and Fe oxide precipitates only, all bind significant concentrations of aqueous Si over a wide range of pH conditions. Our results are consistent with those of Konhauser et al. [Geology 21 (1993) 1103; Environ. Microbiol. 60 (1994) 49] and Konhauser and Urrutia [Chem. Geol. 161 (1999) 399] in that they suggest that the association between silicate minerals and bacterial surfaces is not caused by direct Si–bacteria interactions. Rather, the association is most likely caused by the adsorption of Si onto Fe and Al oxides which are electrostatically bound to the bacterial surface. Therefore, the role of bacteria in silica and silicate mineralization is to concentrate Fe and Al through adsorption and/or precipitation reactions. Bacteria serve as bases, or perhaps templates, for Fe and Al oxide precipitation, and it is these oxide mineral surfaces (and perhaps other metal oxide surfaces as well) that are reactive with aqueous Si, forming surface complexes that are the precursors to the formation of silica and silicate minerals.  相似文献   

18.
A combination of macroscopic experiments and in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy was used to study Cd(II)-sulfate interactions on the goethite-water interface. The presence of SO4 dramatically promoted Cd adsorption at lower pH (pH 5.5-6.5) and had a smaller effect at higher pH. ATR-FTIR studies indicated sulfate adsorption on goethite occurred via both outer- and inner-sphere complexation. The relative importance of both complexes was a function of pH and sulfate concentration. ATR-FTIR spectra provided direct evidence of the formation of Cd-SO4 ternary surface complexes on goethite. In addition to ternary complexes, Cd specifically sorbed on goethite promoted SO4 adsorption via changing the surface charge, and caused additional SO4 adsorption as both inner- and outer-sphere complexes. The relative importance of ternary complexes versus electrostatic effects depended upon pH values and Cd concentration. Ternary complex formation was promoted by low pH and high Cd levels, whereas electrostatic effects were more pronounced at high pH and low Cd levels. A portion of SO4 initially sorbed in inner-sphere complexes in the absence of Cd was transformed into Cd-SO4 ternary complexes with increased Cd concentration.  相似文献   

19.
Samples of authigenic material, sediment overlying water and oxic surface sediment (0–0.5-cm depth) from a perennially oxygenated lacustrine basin were analysed to investigate which solid phases are important for binding a suite of trace elements (Ag, As, Ca, Cd, Cu, Hg, In, methylmercury (MeHg), Mg, Mo, Pb, Sb and Zn). The authigenic material, which was collected with inert Teflon sheets deployed for several years across the sediment–water interface, contained mainly poorly crystallized Fe oxyhydroxides and natural organic matter, presumably humic substances derived from the watershed. Manganese oxyhydroxides were not present in the collected authigenic material due to the slightly acidic condition (pH = 5.6) of the lake that prevents the formation and recycling of these compounds. Conditional equilibrium constants for the adsorption of cationic (KFe–M) and anionic (KFe–A) trace elements onto the authigenic Fe oxyhydroxides were estimated from their concentrations in the authigenic material and in bottom water samples. These field-derived values of KFe–M and KFe–A were compared with those predicted by the surface complexation model, using laboratory-derived intrinsic adsorption constants and the water composition at the study site. Equilibrium constants (KPOM–M) were also calculated for the adsorption of the cationic trace elements onto the humic substances contained in the diagenetic material. The field-derived values of KPOM–M were compared to those predicted by the speciation code WHAM 6 for the complexation of the trace elements by dissolved humic substances in the lake. Combining the results of the present study with those on the distributions of trace elements in the porewater and solid-phase sediments reported in previous studies at the same site, it was determined whether the trace elements bind preferentially to Fe oxyhydroxides or natural organic matter in oxic sediments. The main inferences are that the anionic trace elements As, Mo and Sb, as well as the cationic metal Pb are preferentially bound to the authigenic Fe oxyhydroxides whereas the other trace elements, and especially Hg and MeHg, are preferentially bound to the humic substances.  相似文献   

20.
The purpose of the present work is to extend our knowledge of metal–cyanobacteria interactions and to contribute to the database on adsorption parameters of aquatic microorganisms with respect to metal pollutants. To this end, the surface properties of the cyanobacteria (Gloeocapsa sp. f-6gl) were studied using potentiometric acid–base titration methods and ATR-FTIR (attenuated total reflection infrared) spectroscopy. The electrophoretic mobility of viable cells was measured as a function of pH and ionic strength (0.01 and 0.1 M). Surface titrations at 0.01–1.0 M NaCl were performed using limited residence time reactors (discontinuous titration) with analysis of Ca, Mg and dissolved organic C for each titration point in order to account for alkali-earth metal–proton exchange and cell degradation, respectively. Results demonstrate that the cell-wall bound Ca and Mg from the culture media contribute to the total proton uptake via surface ion-exchange reactions. This has been explicitly taken into account for net proton balance calculations. Adsorption of Zn, Cd, Pb and Cu was studied at 25 °C in 0.01 M NaNO3 as a function of pH and metal concentration. The proportion of adsorbed metal increases as a function of culture age with cells of 44 days old having the largest adsorption capacities. A competitive Langmuir sorption isotherm in conjunction with a linear programming method (LPM) was used to fit experimental data and assess the number of surface sites and adsorption reaction constants involved in the binding of metals to the cyanobacteria surface. These observations allowed the determination of the identity and concentration of the major surface functional groups (carboxylate, amine, phosphoryl/phosphodiester and hydroxyl) responsible for the amphoteric behavior of cyanobacterial cell surfaces in aqueous solutions and for metal adsorption. Results of this work should allow better optimizing of metal bioremediation/biosequestration processes as they help to define the most efficient range of pH, cell biomass and duration of exposure necessary for controlled metal adsorption on cyanobacteria cultures. It follows from comparison of adsorption model parameters between different bacteria that technological application of cyanobacteria in wastewater bioremediation can be as efficient as other biological sorbents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号