首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
U-series disequilibria measured in waters and rocks from a chalk aquifer in France have been used as an analog for long-term radionuclide migration. Drill core samples from a range of depths in the vadose zone and in the saturated zone, as well as groundwater samples were analyzed for 238U, 234U, 232Th and 230Th to determine transport mechanisms at the water/rock interface and to quantify parameters controlling the migration of radionuclides. Isotope measurements in rocks were done by TIMS, whereas (234U/238U) and (230Th/232Th) activity ratios in water samples were measured by multi-collector-ICP-MS. Both depletion and enrichment in 234U relative to 238U were observed in carbonate rock samples resulting from chemical weathering in the unsaturated zone and calcite precipitation in the zone of water-table oscillation, respectively. The correlation between (230Th/232Th) activity ratios and 87Sr/86Sr ratios found in the chalk samples indicates that thorium is mainly contained in a minor silicate phase whose abundance is variable in chalk samples. Water samples are all characterized by (234U/238U) > 1 resulting from α-recoil effect of 234Th. Groundwaters are characterized by a more radiogenic signature in 87Sr/86Sr than the rocks. Moreover, (230Th/232Th) activity ratios in the waters are lower than in the rocks, and increase with distance from the water divide, which suggests that Th transport is controlled by colloids formed during water infiltration in the soil. A 1-D transport model has been developed in order to constrain the U-series nuclide transport considering a transient behavior of radionuclides in the aquifer and a time-dependent composition for the solid phase. This model permits a prediction of the time scale of equilibration of the system, and an estimation of parameters such as weathering rate, distribution coefficients and α-recoil fractions. Retardation factors of 10-35 and from 1 × 104 to 2 × 105 were predicted for U and Th, respectively, and can be used to predict the migration of radionuclides released as contaminants in the environment. At the scale of our watershed (∼32 km2), a characteristic migration time from recharge to riverine discharge of 200-600 yr for U and 0.2-3.7 Myr for Th was obtained.  相似文献   

2.
Bulk dissolution rates for sediment from ODP Site 984A in the North Atlantic are determined using the 234U/238U activity ratios of pore water, bulk sediment, and leachates. Site 984A is one of only several sites where closely spaced pore water samples were obtained from the upper 60 meters of the core; the sedimentation rate is high (11-15 cm/ka), hence the sediments in the upper 60 meters are less than 500 ka old. The sediment is clayey silt and composed mostly of detritus derived from Iceland with a significant component of biogenic carbonate (up to 30%).The pore water 234U/238U activity ratios are higher than seawater values, in the range of 1.2 to 1.6, while the bulk sediment 234U/238U activity ratios are close to 1.0. The 234U/238U of the pore water reflects a balance between the mineral dissolution rate and the supply rate of excess 234U to the pore fluid by α-recoil injection of 234Th. The fraction of 238U decays that result in α-recoil injection of 234U to pore fluid is estimated to be 0.10 to 0.20 based on the 234U/238U of insoluble residue fractions. The calculated bulk dissolution rates, in units of g/g/yr are in the range of 4 × 10−7 to 2 × 10−6 yr−1. There is significant down-hole variability in pore water 234U/238U activity ratios (and hence dissolution rates) on a scale of ca. 10 m. The inferred bulk dissolution rate constants are 100 to 104 times slower than laboratory-determined rates, 100 times faster than rates inferred for older sediments based on Sr isotopes, and similar to weathering rates determined for terrestrial soils of similar age. The results of this study suggest that U isotopes can be used to measure in situ dissolution rates in fine-grained clastic materials.The rate estimates for sediments from ODP Site 984 confirm the strong dependence of reactivity on the age of the solid material: the bulk dissolution rate (Rd) of soils and deep-sea sediments can be approximately described by the expression Rd ≈ 0.1 Age−1 for ages spanning 1000 to 5 × 108 yr. The age of the material, which encompasses the grain size, surface area, and other chemical factors that contribute to the rate of dissolution, appears to be a much stronger determinant of dissolution rate than any single physical or chemical property of the system.  相似文献   

3.
Extreme U and Pb isotope variations produced by disequilibrium in decay chains of 238U and 232Th are found in calcite, opal/chalcedony, and Mn-oxides occurring as secondary mineral coatings in the unsaturated zone at Yucca Mountain, Nevada. These very slowly growing minerals (mm my−1) contain excess 206Pb and 208Pb formed from excesses of intermediate daughter isotopes and cannot be used as reliable 206Pb/238U geochronometers. The presence of excess intermediate daughter isotopes does not appreciably affect 207Pb/235U ages of U-enriched opal/chalcedony, which are interpreted as mineral formation ages.Opal and calcite from outer (younger) portions of coatings have 230Th/U ages from 94.6 ± 3.7 to 361.3 ± 9.8 ka and initial 234U/238U activity ratios (AR) from 4.351 ± 0.070 to 7.02 ± 0.12, which indicate 234U enrichment from percolating water. Present-day 234U/238U AR is ∼1 in opal/chalcedony from older portions of the coatings. The 207Pb/235U ages of opal/chalcedony samples range from 0.1329 ± 0.0080 to 9.10 ± 0.21 Ma, increase with microstratigraphic depth, and define slow long-term average growth rates of about 1.2-2.0 mm my−1, in good agreement with previous results. Measured 234U/238U AR in Mn-oxides, which pre-date the oldest calcite and opal/chalcedony, range from 0.939 ± 0.006 to 2.091 ± 0.006 and are >1 in most samples. The range of 87Sr/86Sr ratios (0.71156-0.71280) in Mn-oxides overlaps that in the late calcite. These data indicate that Mn-oxides exchange U and Sr with percolating water and cannot be used as a reliable dating tool.In the U-poor calcite samples, measured 206Pb/207Pb ratios have a wide range, do not correlate with Ba concentration as would be expected if excess Ra was present, and reach a value of about 1400, the highest ever reported for natural Pb. Calcite intergrown with opal contains excesses of both 206Pb and 207Pb derived from Rn diffusion and from direct α-recoil from U-rich opal. Calcite from coatings devoid of opal/chalcedony contains 206Pb and 208Pb excesses, but no appreciable 207Pb excesses. Observed Pb isotope anomalies in calcite are explained by Rn-produced excess Pb. The Rn emanation may strongly affect 206Pb-238U ages of slow-growing U-poor calcite, but should be negligible for dating fast-growing U-enriched speleothem calcite.  相似文献   

4.
Pore water chemistry and 234U/238U activity ratios from fine-grained sediment cored by the Ocean Drilling Project at Site 984 in the North Atlantic were used as constraints in modeling in situ rates of plagioclase dissolution with the multicomponent reactive transport code Crunch. The reactive transport model includes a solid-solution formulation to enable the use of the 234U/238U activity ratios in the solid and fluid as a tracer of mineral dissolution. The isotopic profiles are combined with profiles of the major element chemistry (especially alkalinity and calcium) to determine whether the apparent discrepancy between laboratory and field dissolution rates still exists when a mechanistic reactive transport model is used to interpret rates in a natural system. A suite of reactions, including sulfate reduction and methane production, anaerobic methane oxidation, CaCO3 precipitation, dissolution of plagioclase, and precipitation of secondary clay minerals, along with diffusive transport and fluid and solid burial, control the pore fluid chemistry in Site 984 sediments. The surface area of plagioclase in intimate contact with the pore fluid is estimated to be 6.9 m2/g based on both grain geometry and on the depletion of 234U/238U in the sediment via α-recoil loss. Various rate laws for plagioclase dissolution are considered in the modeling, including those based on (1) a linear transition state theory (TST) model, (2) a nonlinear dependence on the undersaturation of the pore water with respect to plagioclase, and (3) the effect of inhibition by dissolved aluminum. The major element and isotopic methods predict similar dissolution rate constants if additional lowering of the pore water 234U/238U activity ratio is attributed to isotopic exchange via recrystallization of marine calcite, which makes up about 10-20% of the Site 984 sediment. The calculated dissolution rate for plagioclase corresponds to a rate constant that is about 102 to 105 times smaller than the laboratory-measured value, with the value depending primarily on the deviation from equilibrium. The reactive transport simulations demonstrate that the degree of undersaturation of the pore fluid with respect to plagioclase depends strongly on the rate of authigenic clay precipitation and the solubility of the clay minerals. The observed discrepancy is greatest for the linear TST model (105), less substantial with the Al-inhibition formulation (103), and decreases further if the clay minerals precipitate more slowly or as highly soluble precursor minerals (102). However, even several orders of magnitude variation in either the clay solubility or clay precipitation rates cannot completely account for the entire discrepancy while still matching pore water aluminum and silica data, indicating that the mineral dissolution rate conundrum must be attributed in large part to the gradual loss of reactive sites on silicate surfaces with time. The results imply that methods of mineral surface characterization that provide direct measurements of the bulk surface reactivity are necessary to accurately predict natural dissolution rates.  相似文献   

5.
We have developed an 87Sr/86Sr, 234U/238U, and δ18O data set from carbonates associated with late Quaternary paleolake cycles on the southern Bolivian Altiplano as a tool for tracking and understanding the causes of lake-level fluctuations. Distinctive groupings of 87Sr/86Sr ratios are observed. Ratios are highest for the Ouki lake cycle (120-95 ka) at 0.70932, lowest for Coipasa lake cycle (12.8-11.4 ka) at 0.70853, and intermediate at 0.70881 to 0.70884 for the Salinas (95-80 ka), Inca Huasi (~ 45 ka), Sajsi (24-20.5 ka), and Tauca (18.1-14.1 ka) lake cycles. These Sr ratios reflect variable contributions from the eastern and western Cordilleras. The Laca hydrologic divide exerts a primary influence on modern and paleolake 87Sr/86Sr ratios; waters show higher 87Sr/86Sr ratios north of this divide. Most lake cycles were sustained by slightly more rainfall north of this divide but with minimal input from Lake Titicaca. The Coipasa lake cycle appears to have been sustained mainly by rainfall south of this divide. In contrast, the Ouki lake cycle was an expansive lake, deepest in the northern (Poópo) basin, and spilling southward. These results indicate that regional variability in central Andean wet events can be reconstructed using geochemical patterns from this lake system.  相似文献   

6.
The goal of this study is to explain the origin of 234U–238U fractionation in groundwater from sedimentary aquifers of the St. Lawrence Lowlands (Quebec, Canada), and its relationship with 3He/4He ratios, to gain insight regarding the evolution of groundwater in the region. (234U/238U) activity ratios, or (234U/238U)act, were measured in 23 groundwater samples from shallow Quaternary unconsolidated sediments and from the deeper fractured regional aquifer of the Becancour River watershed. The lowest (234U/238U)act, 1.14 ± 0.01, was measured in Ca–HCO3-type freshwater from the Quaternary Shallower Aquifer, where bulk dissolution of the carbonate allows U to migrate into water with little 234U–238U isotopic fractionation. The (234U/238U)act increases to 6.07 ± 0.14 in Na–HCO3–Cl-type groundwater. Preferential migration of 234U into water by α-recoil is the underlying process responsible for this isotopic fractionation. An inverse relationship between (234U/238U)act and 3He/4He ratios has been observed. This relationship reflects the mixing of newly recharged water, with (234U/238U)act close to the secular equilibrium and containing atmospheric/tritiogenic helium, and mildly-mineralized older water (14C ages of 6.6 kyrs), with (234U/238U)act of ≥6.07 and large amounts of radiogenic 4He, in excess of the steady-state amount produced in situ. The simultaneous fractionation of (234U/238U)act and the addition of excess 4He could be locally controlled by stress-induced rock fracturing. This process increases the surface area of the aquifer matrix exposed to pore water, from which produced 4He and 234U can be released by α-recoil and diffusion. This process would also facilitate the release of radiogenic helium at rates greater than those supported by steady-state U–Th production in the rock. Consequently, sources internal to the aquifers could cause the radiogenic 4He excesses measured in groundwater.  相似文献   

7.
The daughter to parent (234U/238U) activity ratio in natural waters is often out of secular radioactive equilibrium. The major reason for this disequilibrium is related to the energetic α-decay of 238U and differential release of 234U relative to 238U. This disequilibrium originates from (1) preferential release of more loosely bound 234U from damaged mineral lattice sites or; (2) direct recoil of 234Th into surrounding media from near mineral surface boundaries, however, it is unclear which of the two mechanisms is most important in nature. To better quantify the effects of preferential release of 234U, two continuous laboratory granite leaching experiments conducted over 1100 h were performed. The leachates were characterized by declining U concentrations with time and (234U/238U) initially greater than unity (up to 1.15), which changed to below unity during leaching (∼0.95). The early elevated (234U/238U) suggests that additional 234U is released into solution by preferential release of 234U from mineral phases. However, the excess 234U constitutes a finite pool of easy leachable 234U and the (234U/238U) values become lower than unity when this pool is used up. A model based on first-order kinetics, dissolution rates and preferential release of 234U from damaged lattice sites was developed and is able to quantitatively predict the observed pattern of (234U/238U) values and U concentrations for the two granite leaching experiments. Extending the modeling to longer time scales more comparable to natural systems shows that the production of waters with high (234U/238U) ratios can be achieved in two distinct regimes (1) slow weathering where the rate of directly recoiled 234U near mineral surfaces into waters is high; (2) fast weathering where the role of incipient chemical weathering and preferential release of loosely bound 234U are important. The model is able to explain apparent opposite correlations between physical erosion rates and (234U/238U) in waters and it provides a new framework that will be useful for examining weathering regimes, their timescales and their coupling with physical erosion.  相似文献   

8.
To examine the petrogenesis and sources of basalts from the Kolbeinsey Ridge, one of the shallowest locations along the global ridge system, we present new measurements of Nd, Sr, Hf, and Pb isotopes and U-series disequilibria on 32 axial basalts. Young Kolbeinsey basalts (full-spreading rate = 1.8 cm/yr; 67°05′-70°26′N) display (230Th/238U) < 1 and (230Th/238U) > 1 with (230Th/238U) from 0.95 to 1.30 and have low U (11.3-65.6 ppb) and Th (33.0 ppb-2.40 ppm) concentrations. Except for characteristic isotopic enrichment near the Jan Mayen region, the otherwise depleted Kolbeinsey basalts (e.g. 87Sr/86Sr = 0.70272-0.70301, εNd = 8.4-10.5, εHf = 15.4-19.6 (La/Yb)N = 0.28-0.84) encompass a narrow range of (230Th/232Th) (1.20-1.32) over a large range in (238U/232Th) (0.94-1.32), producing a horizontal array on a (230Th/232Th) vs. (238U/232Th) diagram and a large variation in (230Th/238U). However, the (230Th/238U) of the Kolbeinsey Ridge basalts (0.96-1.30) are inversely correlated with (234U/238U) (1.001-1.031). Samples with low (230Th/238U) and elevated (234U/238U) reflect alteration by seawater or seawater-derived materials. The unaltered Kolbeinsey lavas with equilibrium 234U/238U have high (230Th/238U) values (?1.2), which are consistent with melting in the presence of garnet. This is in keeping with the thick crust and anomalously shallow axial depth for the Kolbeinsey Ridge, which is thought to be the product of large degrees of melting in a long melt column. A time-dependent, dynamic melting scenario involving a long, slowly upwelling melting column that initiates well within the garnet peridotite stability zone can, in general, reproduce the (230Th/238U) and (231Pa/235U) ratios in uncontaminated Kolbeinsey lavas, but low (231Pa/235U) ratios in Eggvin Bank samples suggest eclogite involvement in the source for that ridge segment.  相似文献   

9.
This paper presents results of hydrochemical and isotopic analyses of groundwater (fracture water) and porewater, and physical property and water content measurements of bedrock core at the Chalk River Laboratories (CRL) site in Ontario. Density and water contents were determined and water-loss porosity values were calculated for core samples. Average and standard deviations of density and water-loss porosity of 50 core samples from four boreholes are 2.73 ± 12 g/cc and 1.32 ± 1.24 percent. Respective median values are 2.68 and 0.83 indicating a positive skewness in the distributions. Groundwater samples from four deep boreholes were analyzed for strontium (87Sr/86Sr) and uranium (234U/238U) isotope ratios. Oxygen and hydrogen isotope analyses and selected solute concentrations determined by CRL are included for comparison. Groundwater from borehole CRG-1 in a zone between approximately +60 and −240 m elevation is relatively depleted in δ18O and δ2H perhaps reflecting a slug of water recharged during colder climatic conditions. Porewater was extracted from core samples by centrifugation and analyzed for major dissolved ions and for strontium and uranium isotopes. On average, the extracted water contains 15 times larger concentration of solutes than the groundwater. 234U/238U and correlation of 87Sr/86Sr with Rb/Sr values indicate that the porewater may be substantially older than the groundwater. Results of this study show that the Precambrian gneisses at Chalk River are similar in physical properties and hydrochemical aspects to crystalline rocks being considered for the construction of nuclear waste repositories in other regions.  相似文献   

10.
Forty-one metric tons of the mineral wollastonite (CaSiO3) was applied to an 11.8 hectare watershed at the Hubbard Brook Experimental Forest (HBEF; White Mountains, New Hampshire, USA) with the goal of restoring the Ca estimated to have been depleted from the soil exchange complex by acid deposition. This experiment provided an opportunity to gain qualitative information on whole watershed hydrologic flow paths by studying the response of stream water chemistry to the addition of Ca. Because the Ca/Sr and 87Sr/86Sr ratios of wollastonite strongly contrast that of other Ca sources in the watershed, the wollastonite-derived Ca can be identified and its amount estimated in various ecosystem components. Stream water chemistry at the HBEF varies seasonally due to shifts in the proportion of base flow and interflow. Prior to the wollastonite application, seasonal variations in 87Sr/86Sr ratios indicated that 87Sr/86Sr was higher during base flow than interflow, due largely to greater amounts of biotite weathering along deeper flow paths. After the application, Ca/Sr and 87Sr/86Sr changed markedly as the high Ca/Sr and low 87Sr/86Sr wollastonite dissolved and mixed with stream water. The Ca addition provided information on the response times of various flow paths and ion exchange processes to Ca addition in this small upland watershed. During the first year after the addition, wollastonite applied to the near stream zone dissolved and was partially immobilized by cation exchange sites in the hyporheic zone. In the second and third years after the addition we infer that much of this Ca and Sr was subsequently desorbed from the hyporheic zone and was exported from the watershed in stream flow. In the fourth through ninth years after the addition, Ca and Sr from wollastonite that had dissolved in upland soils was transported to the stream by interflow during wet periods when the ground water table was elevated. Between years three and nine the minimum annual Ca/Sr ratio (in late summer base flow) increased, providing evidence that Ca and Sr had increasingly infiltrated to the deepest flow paths. Strong seasonal variations in Ca/Sr and 87Sr/86Sr ratios of stream water resulted from the wollastonite addition to upland forest soils, and these ratios have become sensitive to changing flow paths during the annual cycle. Most notably, high flow events now produce large excursions in stream geochemistry toward the high Ca/Sr and low 87Sr/86Sr ratios of wollastonite. Nine years after the application we estimate that ∼360 kg of Ca from wollastonite has been exported from the watershed in stream flow. The rate of export of Ca from wollastonite dissolution has stabilized at about 11 kg of Ca per year, which accounts for ∼30% of the dissolved Ca in the stream water. Given that 19 metric tons of Ca were applied to the watershed, and assuming this current rate of loss, it should take over 1000 years for this added Ca to be transported from the watershed.  相似文献   

11.
Current models using U- and Th-series disequilibria to study radioisotope transport in groundwater systems mostly consider a steady-state situation. These models have limited applicability to the vadose zone (UZ) where the concentration and migratory behavior of radioisotopes in fluid are often transitory. We present here, as a first attempt of its kind, a model simulating the non-steady state, intermittent fluid transport in vadose layers. It provides quantitative constraints on in-situ migration of dissolved and colloidal radioisotopes in terms of retardation factor and rock-water interaction (or water transit) time. For uranium, the simulation predicts that intermittent flushing in the UZ leads to a linear relationship between reciprocal U concentration and 234U/238U ratio in percolating waters, with the intercept and slope bearing information on the rates of dissolution and α-recoil of U isotopes, respectively. The general validity of the model appears to be borne out by the measurement of uranium isotopes in UZ waters collected at various times over a period during 1995-2006 from a site in the Peña Blanca mining district, Mexico, where the Nopal I uranium deposit is located. Enhanced 234U/238U ratios in vadose-zone waters resulting from lengthened non-flushing time as prescribed by the model provide an interpretative basis for using 234U/238U in cave calcites to reconstruct the regional changes in hydrology and climate. We also provide a theoretical account of the model’s potential applications using radium isotopes.  相似文献   

12.
The influence of the pedogenic and climatic contexts on the formation and preservation of pedogenic carbonates in a climosequence in the Western Ghats (Karnataka Plateau, South West India) has been studied. Along the climosequence, the current mean annual rainfall (MAR) varies within a 80 km transect from 6000 mm at the edge of the Plateau to 500 mm inland. Pedogenic carbonates occur in the MAR range of 500-1200 mm. In the semi-arid zone (MAR: 500-900 mm), carbonates occur (i) as thick hardpan calcretes on pediment slopes and (ii) as nodular horizons in polygenic black soils (i.e. vertisols). In the sub-humid zone (MAR: 900-1500 mm), pedogenic carbonates are disseminated in the black soil matrices either as loose, irregular and friable nodules of millimetric size or as indurated botryoidal nodules of centimetric to pluricentimetric size. They also occur at the top layers of the saprolite either as disseminated pluricentimetric indurated nodules or carbonate-cemented lumps of centimetric to decimetric size.Chemical and isotopic (87Sr/86Sr) compositions of the carbonate fraction were determined after leaching with 0.25 N HCl. The corresponding residual fractions containing both primary minerals and authigenic clays were digested separately and analyzed. The trend defined by the 87Sr/86Sr signatures of both labile carbonate fractions and corresponding residual fractions indicates that a part of the labile carbonate fraction is genetically linked to the local soil composition. Considering the residual fraction of each sample as the most likely lithogenic source of Ca in carbonates, it is estimated that from 24% to 82% (55% on average) of Ca is derived from local bedrock weathering, leading to a consumption of an equivalent proportion of atmospheric CO2. These values indicate that climatic conditions were humid enough to allow silicate weathering: MAR at the time of carbonate formation likely ranged from 400 to 700 mm, which is 2- to 3-fold less than the current MAR at these locations.The Sr, U and Mg contents and the (234U/238U) activity ratio in the labile carbonate fraction help to understand the conditions of carbonate formation. The relatively high concentrations of Sr, U and Mg in black soil carbonates may indicate fast growth and accumulation compared to carbonates in saprolite, possibly due to a better confinement of the pore waters which is supported by their high (234U/238U) signatures, and/or to higher content of dissolved carbonates in the pore waters. The occurrence of Ce, Mn and Fe oxides in the cracks of carbonate reflects the existence of relatively humid periods after carbonate formation. The carbonate ages determined by the U-Th method range from 1.33 ± 0.84 kyr to 7.5 ± 2.7 kyr and to a cluster of five ages around 20 kyr, i.e. the Last Glacial Maximum period. The young occurrences are only located in the black soils, which therefore constitute sensitive environments for trapping and retaining atmospheric CO2 even on short time scales. The maximum age of carbonates depends on their location in the climatic gradient: from about 20 kyr for centimetric nodules at Mule Hole (MAR = 1100 mm/yr) to 200 kyr for the calcrete at Gundlupet (MAR = 700 mm/yr, Durand et al., 2007). The intensity of rainfall during wet periods would indeed control the lifetime of pedogenic carbonates and thus the duration of inorganic carbon storage in soils.  相似文献   

13.
The uneven character of the distribution of 18O/16O and 234U/238U values was established in the vertical cross section of the productive sequence of the Dybryn uranium deposit (Vitim uranium-ore region, Buryatia). Both a deficiency and an excess of 234U in relation to the equilibrium 234U/238U ratio in the vertical sequence may provide evidence for the extremely low rate of the infiltration water flow. The behavior of oxygen isotope characteristics for different size fractions of terrigenous rocks provides evidence for active uranium redistribution and openness of the isotope system of this element during interaction of terrigenous–sedimentary rocks with infiltration waters.  相似文献   

14.
Stilbite from Malmberget and Svappavara is part of hydrothermal mineral assemblages occupying regionally occurring open Palaeoproterozoic fractures in northern Sweden. At these locations, stilbite is characterized by Pbrad excess relative to U and by activity ratios of [234U]/[238U] > 1 and [230Th]/[238U] > 1. The activity disequilibrium requires a disturbance of the U-Th systematics within the last one million years. Leaching and infiltration experiments on Malmberget stilbite demonstrate: (i) preferential leaching in the order Pb >U >Th and uptake in the order Pb > U, and (ii) isotopic fractionation of U by preferential mobilization of 238U and 235U relative to 234U. Stepwise-leaching further indicates that the bulk of U is hosted in the channel sites of stilbite. The Th-U disequilibrium systematics observed in untreated Malmberget and Svappavara stilbite can be explained by: (1) addition of U with [234U]/[238U] > 1 from a fluid, or alternatively (2) loss of U from a two-component system, consisting of a component that is “open” or accessible and a component that is “closed” or inaccessible to mobilization. U addition requires a multistage history involving multiple gain or loss of U and/or Pb. In contrast, U loss does not necessarily require multistage processes but can also be explained by preferential removal of 238U (and 235U) relative to recoiled daughter isotopes such as 234U, 230Th, and 206Pb (and 207Pb) during a single event. Such a behavior could be obtained if the recoiled daughter isotopes of channel-sited uranium are implanted into the crystal lattice and, in such a way, become less mobile than their parent isotopes. This case implies an open-system behavior for ions in the channel sites and a closed-system behavior for ions in the silicate framework of stilbite. Each α-recoil directly or indirectly, i.e., through its recoil cascade, damages the silicate framework. Subsequent (continuous) low-temperature annealing of the damaged stilbite lattice could trap the recoiled daughter isotopes in the repaired crystal lattice or sealed-off channels. Such immobile recoiled material can, in part, represent the “closed” component of the system. This model can account for all observations regarding the Th-U-Pb systematics, including the Th-U disequilibrium systematics, the similarity in Th/U as deduced from Th-U disequilibrium and Pb isotope data, and the excess of radiogenic Pb (208Pb-parents also had been multiply recoiled). These two contrasting explanations involve either multistage or multicomponent systems. They do not permit the derivation of an accurate age.  相似文献   

15.
《Applied Geochemistry》2002,17(6):751-779
Uranium concentrations and 234U/238U ratios in saturated-zone and perched ground water were used to investigate hydrologic flow and downgradient dilution and dispersion in the vicinity of Yucca Mountain, a potential high-level radioactive waste disposal site. The U data were obtained by thermal ionization mass spectrometry on more than 280 samples from the Death Valley regional flow system. Large variations in both U concentrations (commonly 0.6–10 μg l−1) and 234U/238U activity ratios (commonly 1.5–6) are present on both local and regional scales; however, ground water with 234U/238U activity ratios from 7 up to 8.06 is restricted largely to samples from Yucca Mountain. Data from ground water in the Tertiary volcanic and Quaternary alluvial aquifers at and adjacent to Yucca Mountain plot in 3 distinct fields of reciprocal U concentration versus 234U/238U activity ratio correlated to different geographic areas. Ground water to the west of Yucca Mountain has large U concentrations and moderate 234U/238U whereas ground water to the east in the Fortymile flow system has similar 234U/238U, but distinctly smaller U concentrations. Ground water beneath the central part of Yucca Mountain has intermediate U concentrations but distinctive 234U/238U activity ratios of about 7–8. Perched water from the lower part of the unsaturated zone at Yucca Mountain has similarly large values of 234U/238U. These U data imply that the Tertiary volcanic aquifer beneath the central part of Yucca Mountain is isolated from north-south regional flow. The similarity of 234U/238U in both saturated- and unsaturated-zone ground water at Yucca Mountain further indicates that saturated-zone ground water beneath Yucca Mountain is dominated by local recharge rather than regional flow. The distinctive 234U/238U signatures also provide a natural tracer of downgradient flow. Elevated 234U/238U in ground water from two water-supply wells east of Yucca Mountain are interpreted as the result of induced flow from 40 a of ground-water withdrawal. Elevated 234U/238U in a borehole south of Yucca Mountain is interpreted as evidence that natural downgradient flow is more likely to follow southerly paths in the structurally anisotropic Tertiary volcanic aquifer where it becomes diluted by regional flow in the Fortymile system.  相似文献   

16.
The Nandong Underground River System (NURS) is located in a typical karst area dominated by agriculture in SE Yunnan Province, China. Groundwater plays an important role in the social and economical development in the area. The effects of human activities (agriculture and sewage effluents) on the Sr isotope geochemistry were investigated in the NURS. Seventy-two representative groundwater samples, which were collected from different aquifers (calcite and dolomite), under varying land-use types, both in summer and winter, showed significant spatial differences and slight seasonal variations in Sr concentrations and 87Sr/86Sr ratios. Agricultural fertilizers and sewage effluents significantly modified the natural 87Sr/86Sr ratios signature of groundwater that was otherwise dominated by water-rock interaction. Three major sources of Sr could be distinguished by 87Sr/86Sr ratios and Sr concentrations in karst groundwater. Two sources of Sr are the Triassic calcite and dolomite aquifers, where waters have low Sr concentrations (0.1-0.2 mg/L) and low 87Sr/86Sr ratios (0.7075-0.7080 and 0.7080-0.7100, respectively); the third source is anthropogenic Sr from agricultural fertilizers and sewage effluents with waters affected having radiogenic 87Sr/86Sr ratios (0.7080-0.8352 for agricultural fertilizers and 0.7080-0.7200 for sewage effluents, respectively), with higher Sr concentrations (0.24-0.51 mg/L). Due to the overlapping 87Sr/86Sr ratios, it is difficult to distinguish the sources of Sr in groundwater samples contaminated by agricultural fertilizers or sewage effluents based only on their 87Sr/86Sr ratios. However, 87Sr/86Sr ratios do provide key information for natural and anthropogenic sources in karst groundwater.  相似文献   

17.
The uranium (U) content and 234U/238U activity ratio were determined for water samples collected from Korea's Han River in spring, summer, and winter 2006 to provide data that might constrain the origin of U isotope fractionation in river water and the link between U isotope systematics in river waters and the lithological nature of the corresponding bedrock. The large difference in the major dissolved loads between the two major branches of the Han River, the North Han River (NHR) and South Han River (SHR), is reflected in the contrasting U content and 234U/238U activity ratio between the tributaries: low U content (0.08–0.75 nM; average, 0.34 nM) and small 234U/238U activity ratio (1.03–1.22; average, 1.09) in the NHR; and high U content (0.65–1.98 nM; average, 1.44 nM) and large 234U/238U activity ratio (1.05–1.45; average, 1.24) in the SHR. The large spatial differences in U content and 234U/238U activity ratio are closely related to both lithological differences between the two tributaries and groundwater input. The low U content and small 234U/238U activity ratio in the NHR arise mainly from a combination of surface and meteoric weathering of the dominant silicate rocks in this branch and congruent dissolution of already weathered (secular equilibrium) materials. In contrast, the high U content and large 234U/238U activity ratio in the SHR are ascribed to the dissolution of carbonates and black shales along with significant inputs of deep groundwater.  相似文献   

18.
We present strontium (Sr) isotope ratios that, unlike traditional 87Sr/86Sr data, are not normalized to a fixed 88Sr/86Sr ratio of 8.375209 (defined as δ88/86Sr = 0 relative to NIST SRM 987). Instead, we correct for isotope fractionation during mass spectrometry with a 87Sr-84Sr double spike. This technique yields two independent ratios for 87Sr/86Sr and 88Sr/86Sr that are reported as (87Sr/86Sr∗) and (δ88/86Sr), respectively. The difference between the traditional radiogenic (87Sr/86Sr normalized to 88Sr/86Sr = 8.375209) and the new 87Sr/86Sr∗ values reflect natural mass-dependent isotope fractionation. In order to constrain glacial/interglacial changes in the marine Sr budget we compare the isotope composition of modern seawater ((87Sr/86Sr∗, δ88/86Sr)Seawater) and modern marine biogenic carbonates ((87Sr/86Sr∗, δ88/86Sr)Carbonates) with the corresponding values of river waters ((87Sr/86Sr∗, δ88/86Sr)River) and hydrothermal solutions ((87Sr/86Sr∗, δ88/86Sr)HydEnd) in a triple isotope plot. The measured (87Sr/86Sr∗, δ88/86Sr)River values of selected rivers that together account for ∼18% of the global Sr discharge yield a Sr flux-weighted mean of (0.7114(8), 0.315(8)‰). The average (87Sr/86Sr∗, δ88/86Sr)HydEnd values for hydrothermal solutions from the Atlantic Ocean are (0.7045(5), 0.27(3)‰). In contrast, the (87Sr/86Sr∗, δ88/86Sr)Carbonates values representing the marine Sr output are (0.70926(2), 0.21(2)‰). We estimate the modern Sr isotope composition of the sources at (0.7106(8), 0.310(8)‰). The difference between the estimated (87Sr/86Sr∗, δ88/86Sr)input and (87Sr/86Sr∗, δ88/86Sr)output values reflects isotope disequilibrium with respect to Sr inputs and outputs. In contrast to the modern ocean, isotope equilibrium between inputs and outputs during the last glacial maximum (10-30 ka before present) can be explained by invoking three times higher Sr inputs from a uniquely “glacial” source: weathering of shelf carbonates exposed at low sea levels. Our data are also consistent with the “weathering peak” hypothesis that invokes enhanced Sr inputs resulting from weathering of post-glacial exposure of abundant fine-grained material.  相似文献   

19.
A mathematical model to calculate the234U/238U activity ratio (AR) in an aqueous phase in contact with rock/soil is presented. The model relies on the supply of238U by dissolution and that of234U by dissolution and preferential release from radiation damaged regions (recoil tracks). The model predicts that values of234U/238U AR>1 in the aqueous phase can be obtained only from weathering “virgin” surfaces. Thus, to account for the observed steady-state supply of234U excess to the oceans by the preferential leaching model, ‘virgin’ rock/soil surfaces would have to be continually exposed and weathered. The238U concentration and234U/238U AR in continental waters allow us to estimate the exposure rates of “virgin” rock/soil surfaces.  相似文献   

20.
Strontium isotopes and other geochemical signatures are used to determine the relationships between CO2-rich thermal (Chaves: 76 °C) and mineral (Vilarelho da Raia, Vidago and Pedras Salgadas: 17 °C) waters discharging along one of the major NNE–SSW trending faults in the northern part of mainland Portugal. The regional geology consists of Hercynian granites (syn-tectonic-310 Ma and post-tectonic-290 Ma) intruding Silurian metasediments (quartzites, phyllites and carbonaceous slates). Thermal and mineral waters have 87Sr/86Sr isotopic ratios between 0.716713 and 0.728035. 87Sr/86Sr vs. 1/Sr define three end-members (Vilarelho da Raia/Chaves, Vidago and Pedras Salgadas thermal and mineral waters) trending from rainfall composition towards that of the CO2-rich thermal and mineral waters, indicating different underground flow paths. Local granitic rocks have 87Sr/86Sr ratios of 0.735697–0.789683. There is no indication that equilibrium was reached between the CO2-rich thermal and mineral waters and the granitic rocks. The mean 87Sr/86Sr ratio of the thermal and mineral waters (0.722419) is similar to the Sr isotopic ratios of the plagioclases of the granitic rocks (0.71261–0.72087). The spatial distribution of Sr isotope and geochemical signatures of waters and the host rocks suggests that the thermal and mineral waters circulate in similar but not the same hydrogeological system. Results from this study could be used to evaluate the applicability of this isotope approach in other hydrogeologic investigations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号