首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The decay of a wide range of organic monomers (short-chain volatile fatty acids (VFA’s), amino acids, glucose and a pyrimidine) was studied in marine sediments using experimental plug flow-through reactors. The reactions were followed in the presence and absence of 10 mM SO42−. Degradation stoichiometry of individual monomers (inflow concentration of 6 mM organic C) was traced by measuring organic (VFA’s, amino acids) and inorganic (CO2, NH4+, SO42−) compounds in the outflow. Fermentation of amino acids was efficient and complete during passage through anoxic sediment reactors. Aliphatic amino acids (alanine, serine and glutamate) were primarily recovered as CO2 (24-34%), formate (3-22%) and acetate (41-83%), whereas only ∼1/3 of the aromatic amino acid (tyrosine) was recovered as CO2 (13%) and acetate (20%). Fermentation of glucose and cytosine was also efficient (78-86%) with CO2 (30-35%), formate (3%) and acetate (28-33%) as the primary products. Fermentation of VFA’s (acetate, propionate and butyrate), on the other hand, appeared to be product inhibited. The presence of SO42− markedly stimulated VFA degradation (29-45% efficiency), and these compounds were recovered as CO2 (17% for butyrate to 100% for acetate) and acetate (51% and 82% for propionate and butyrate, respectively). When reaction stoichiometry during fermentation is compared with compound depletion during sulfate reduction, the higher proportion CO2 recovery is consistent with lower acetate and formate accumulation. Our results therefore suggest that fermentation reactions mediate the initial degradation of added organic compounds, even during active sulfate reduction. Fermentative degradation stoichiometry also suggested significant H2 production, and >50% of sulfate reduction appeared to be fuelled by H2. Furthermore, our results suggest that fermentation was the primary deamination step during degradation of the amino acids and cytosine.  相似文献   

2.
Rice fields are an important source for the greenhouse gas methane. In Italian rice field soil CH4 is produced either by hydrogenotrophic and acetoclastic methanogenesis, or by hydrogenotrophic methanogenesis and syntrophic acetate oxidation when temperatures are below and above about 40-45 °C, respectively. In order to see whether these acetate consumption pathways differently discriminate the stable carbon isotopes of acetate, we measured the δ13C of total acetate and acetate-methyl as well as the δ13C of CO2 and CH4 in rice field soil that had been pre-incubated at 45 °C and then shifted to different temperatures between 25 and 50 °C. Acetate transiently accumulated to about 6 mM, which is about one-third of the amount of CH4 produced, irrespective of the incubation temperature and the CH4 production pathway involved. However, the patterns of δ13C of the CH4 and CO2 produced were different at low (25, 30, 35 °C) versus high (40, 45, 50 °C) temperatures. These patterns were consistent with CH4 being exclusively formed by hydrogenotrophic methanogenesis at high temperatures, and by a combination of acetoclastic and hydrogenotrophic methanogenesis at low temperatures. The patterns of δ13C of total acetate and acetate-methyl were also different at high versus low temperatures, indicating the involvement of different pathways of production and consumption of acetate at the two temperature regimes. Isotope fractionation during consumption of the methyl group of acetate was more pronounced at low (α = 1.010-1.025) than at high (α = 1.0-1.01) temperatures indicating that acetoclastic methanogenesis exhibits a stronger isotope effect than syntrophic acetate oxidation. Small amounts of propionate also transiently accumulated and were analyzed for δ13C. The δ13C values slightly increased (by about 10‰) during production and consumption of propionate, but were not affected by incubation temperature. Collectively, our results showed distinct isotope discrimination for different paths of acetate (and propionate) production and consumption, albeit differences were only small, and discrimination between methanogenic and syntrophic acetate consumption in nature may be difficult to detect.  相似文献   

3.
In many anoxic environments propionate is, after acetate, the second most important fermentation product, being degraded further to finally result in CH4 production. In principle, isotope discrimination can be used to assess the path of organic matter degradation to acetate, CO2 and CH4. However, nothing is known about the isotope fractionation in primary and secondary fermentation steps involving propionate, although it is an important precursor of acetate. We therefore studied the degradation of propionate with a syntrophic coculture of Syntrophobacter fumaroxidans and Methanobacterium formicicum. The isotope enrichment factor for propionate degradation to acetate, CO2 and CH4 was almost negligible (εprop 0.9‰). The fermentative production of propionate was studied in cultures with Opitutus terrae growing on pectin, xylan and starch. These polysaccharides were fermented to acetate, succinate, propionate, H2 and CO2. While the δ13C value of the initially produced propionate was similar to that of the organic substrates (ca. −28 to −25‰), the δ13C value of the other fermentation products was higher. The δ13C values of all products generally decreased during the course of fermentation. Finally, a small depletion in 13C (ca. 6‰) with respect to the organic substrate was observed for propionate, while the other fermentation products where slightly enriched. Overall, stable carbon isotope discrimination was small during both fermentative production and consumption of propionate in the anaerobic microbial cultures, so that propionate turnover probably only marginally affects isotope fractionation during anaerobic degradation of organic matter.  相似文献   

4.
Traditionally, the application of stable isotopes in Carbon Capture and Storage (CCS) projects has focused on δ13C values of CO2 to trace the migration of injected CO2 in the subsurface. More recently the use of δ18O values of both CO2 and reservoir fluids has been proposed as a method for quantifying in situ CO2 reservoir saturations due to O isotope exchange between CO2 and H2O and subsequent changes in δ18OH2O values in the presence of high concentrations of CO2. To verify that O isotope exchange between CO2 and H2O reaches equilibrium within days, and that δ18OH2O values indeed change predictably due to the presence of CO2, a laboratory study was conducted during which the isotope composition of H2O, CO2, and dissolved inorganic C (DIC) was determined at representative reservoir conditions (50 °C and up to 19 MPa) and varying CO2 pressures. Conditions typical for the Pembina Cardium CO2 Monitoring Pilot in Alberta (Canada) were chosen for the experiments. Results obtained showed that δ18O values of CO2 were on average 36.4 ± 2.2‰ (1σ, n = 15) higher than those of water at all pressures up to and including reservoir pressure (19 MPa), in excellent agreement with the theoretically predicted isotope enrichment factor of 35.5‰ for the experimental temperatures of 50 °C. By using 18O enriched water for the experiments it was demonstrated that changes in the δ18O values of water were predictably related to the fraction of O in the system sourced from CO2 in excellent agreement with theoretical predictions. Since the fraction of O sourced from CO2 is related to the total volumetric saturation of CO2 and water as a fraction of the total volume of the system, it is concluded that changes in δ18O values of reservoir fluids can be used to calculate reservoir saturations of CO2 in CCS settings given that the δ18O values of CO2 and water are sufficiently distinct.  相似文献   

5.
The mechanism of thermochemical sulfate reduction (TSR) was investigated by separately heating n-C24 with three different sulfates (CaSO4, Na2SO4, MgSO4) in sealed gold tubes at 420 °C and measuring the stable carbon isotope values of hydrocarbon (C1-C5) and non-hydrocarbon (CO2) products. Extensive TSR was observed with the MgSO4 reactant as reflected by increasing concentrations of H2S, 13C depleted CO2 and relatively low concentrations of H2 (compared to the control). H2S yields were already very high at the first monitoring time (12 h) when the temperature had just reached 420 °C, suggesting that TSR had commenced well prior to this temperature. Only trace amounts of n-C24 and secondary C3-C5 alkanes were detected at 12 h, reflecting the efficient TSR utilization of the reactant and lower molecular weight alkane products. Ethane levels were still relatively high at 12 h, but declined thereafter as it was subject to TSR in the absence of higher molecular weight alkanes which had already been utilized. Methane yields were consistently high throughout the 48 h MgSO4 treatment. The temporal decrease in the concentrations of alkanes available for TSR may also contribute to the sharp enhancement of CO2 after 36 h. Absence or dampening of the molecular and isotopic trends of MgSO4 TSR was observed with Na2SO4 and CaSO4 respectively, directly reflecting the levels of TSR reached using these sulfate treatments.For all treatments, the δ13C values of C1-5n-alkanes showed an increase with both molecular weight and treatment time. MgSO4 TSR led to a 5-10‰ increase in the δ13C values of the C1-C5 hydrocarbons and a 20‰ decrease in the δ13C value of CO2. The significant 13C depletion of the CO2 may be due to co-production of 13C enriched MgCO3, although this remains unproven as the δ13C of MgCO3 was not measured. The difference in the δ13C values of ethane and propane (Δδ13CEP) increased in magnitude with the degree of TSR, and this trend could be used to help evaluate the occurrence and extent of TSR in subsurface gas reservoirs.  相似文献   

6.
The 13C/12C ratio of carbon compounds is used to identify sources and sinks in the global carbon cycle. However, the relatively enriched 13C content observed for marine organic carbon remains enigmatic. The majority of oceanic carbon is fixed by algae and cyanobacteria via the Calvin-Benson-Bassham cycle, yet isotopic discrimination by the CO2 fixation enzyme, RubisCO (ribulose 1,5-bisphosphate carboxylase/oxygenase), has only been measured for a single marine cyanobacterium. Different forms of RubisCO occur in different phytoplankton species (overall amino acid identity varying by as much as ∼75%) and thus may vary in the degree to which they fractionate carbon. Here we measured isotope discrimination by RubisCO from the coccolithophore Emiliania huxleyi, a cosmopolitan species used as a marine algal model.E. huxleyi RubisCO discriminated substantially less (ε = 11.1‰) against 13CO2 than other RubisCO enzymes (18-29‰), despite having Michaelis-Menten kinetic parameters (KCO2 = 72 μM; Vmax = 0.66 μmol min−1 mg−1 protein) similar to those measured for RubisCO enzymes from different organisms. If widespread, decreased isotope discrimination of 13C by phytoplankton RubisCO may be a major factor influencing the enriched 13C content of marine organic carbon. This finding emphasizes the necessity of (a) determining ε values for RubisCOs of other marine phytoplankton and (b) re-evaluation of δ13C values from physiological, environmental, and geological studies.  相似文献   

7.
Ocean drilling has revealed the existence of vast microbial populations in the deep subseafloor, but to date little is known about their metabolic activities. To better understand the biogeochemical processes in the deep biosphere, we investigate the stable carbon isotope chemistry of acetate and other carbon-bearing metabolites in sediment pore-waters. Acetate is a key metabolite in the cycling of carbon in anoxic sediments. Its stable carbon isotopic composition provides information on the metabolic processes dominating acetate turnover in situ. This study reports our findings for a methane-rich site at the northern Cascadia Margin (NE Pacific) where Expedition 311 of the Integrated Ocean Drilling Program (IODP) sampled the upper 190 m of sediment. At Site U1329, δ13C values of acetate span a wide range from −46.0‰ to −11.0‰ vs. VPDB and change systematically with sediment depth. In contrast, δ13C values of both the bulk dissolved organic carbon (DOC) (−21.6 ± 1.3‰ vs. VPDB) and the low-molecular-weight compound lactate (−20.9 ± 1.8‰ vs. VPDB) show little variability. These species are interpreted to represent the carbon isotopic composition of fermentation products. Relative to DOC, acetate is up to 23.1‰ depleted and up to 9.1‰ enriched in 13C. Broadly, 13C-depletions of acetate relative to DOC indicate flux of carbon from acetogenesis into the acetate pool while 13C-enrichments of pore-water acetate relative to DOC suggest consumption of acetate by acetoclastic methanogenesis. Isotopic relationships between acetate and lactate or DOC provide new information on the carbon flow and the presence and activity of specific functional microbial communities in distinct biogeochemical horizons of the sediment. In particular, they suggest that acetogenic CO2-reduction can coexist with methanogenic CO2-reduction, a notion contrary to the hypothesis that hydrogen levels are controlled by the thermodynamically most favorable electron-accepting process. Further, the isotopic relationship suggests a relative increase in acetate flow to acetoclastic methanogenesis with depth although its contribution to total methanogenesis is probably small. Our study demonstrates how the stable carbon isotope biogeochemistry of acetate can be used to identify pathways of microbial carbon turnover in subsurface environments. Our observations also raise new questions regarding the factors controlling acetate turnover in marine sediments.  相似文献   

8.
Lakes worldwide are commonly oversaturated with CO2, however the source of this CO2 oversaturation is not well understood. To examine the magnitude of the C flux to the atmosphere and determine if an excess of respiration (R) over gross primary production (GPP) is sufficient to account for this C flux, metabolic parameters and stable isotopes of dissolved O2 and C were measured in 23 Québec lakes. All of the lakes sampled were oversaturated with CO2 over the sampling period, on average 221 ± 25%. However, little evidence was found to conclude that this CO2 oversaturation was the result of an excess of pelagic R over GPP. In lakes Croche and à l’Ours, where CO2 flux, R and GPP were measured weekly, the annual difference between pelagic GPP and R, or net primary production (NPP), was not sufficient to account for the size of the CO2 flux to the atmosphere. In Lac Croche average annual NPP was 14.4 mg C m−2 d−1 while the average annual flux of CO2 to the atmosphere was 34 mg C m−2 d−1. In Lac à l’Ours average annual NPP was −9.1 mg C m−2 d−1 while the average annual flux of CO2 to the atmosphere was 55 mg C m−2 d−1. In all of the lakes sampled, O2 saturation averaged 104.0 ± 1.7% during the ice-free season and the isotopic composition of dissolved O218ODO) was 22.9 ± 0.3‰, lower than atmospheric values and indicative of net autotrophy. Carbon evasion was not a function of R, nor did the isotopic signature of dissolved CO2 in the lakes present evidence of excess R over GPP. External inputs of C must therefore subsidize the lake to explain the continued CO2 oversaturation. The isotopic composition of dissolved inorganic C (δ13CDIC) indicates that the CO2 oversaturation cannot be attributed to in situ aerobic respiration. δ13CDIC reveals a source of excess C enriched in 13C, which may be accounted for by anaerobic sediment respiration or groundwater inputs followed by kinetic isotope fractionation during degassing under open system conditions.  相似文献   

9.
The yields and stable C and H isotopic composition of gaseous products from the reactions of pure n-C24 with (1) MgSO4; and (2) elemental S in sealed Au-tubes at a series of temperatures over the range 220–600 °C were monitored to better resolve the reaction mechanisms. Hydrogen sulfide formation from thermochemical sulfate reduction (TSR) of n-C24 with MgSO4 was initiated at 431 °C, coincident with the evolution of C2–C5 hydrocarbons. Whereas the yields of H2S increased progressively with pyrolysis temperature, the hydrocarbon yields decreased sharply above 490 °C due to subsequent S consumption. Ethane and propane were initially very 13C depleted, but became progressively heavier with pyrolysis temperature and were more 13C enriched than the values of a control treatment conducted on just n-C24 above 475 °C. TSR of MgSO4 also led to progressively higher concentrations of CO2 showing relatively low δ13C values, possibly due to input of isotopically light CO2 derived from gaseous hydrocarbon oxidation (e.g., more depleted CH4).  相似文献   

10.
A suite of natural gases from the northern Songliao Basin in NE China were characterized for their molecular and carbon isotopic composition. Gases from shallow reservoirs display clear geochemical evidence of alteration by biodegradation, with very high dryness (C1/C2+ > 100), high C2/C3 and i-C4/n-C4 ratios, high nitrogen content and variable carbon dioxide content. Isotopic values show wide range variations (δ13CCH4 from −79.5‰ to −45.0‰, δ13CC2H6 from −53.7‰ to −32.2‰, δ13CC3H8 from −36.5‰ to −20.1‰, δ13CnC4H10 from −32.7‰ to −24.5‰, and δ13CCO2 from −21.6‰ to +10.5‰). A variety of genetic types can be recognized on the basis of chemical and isotopic composition together with their geological occurrence. Secondary microbial gas generation was masked by primary microbial gas and the mixing of newly generated methane with thermogenic methane already in place in the reservoir can cause very complicated isotopic signatures. System openness also was considered for shallow biodegraded gas accumulations. Gases from the Daqing Anticline are relatively wet with 13C enriched methane and 13C depleted CO2, representing typically thermogenic origin. Gases within the Longhupao-Da’an Terrace have variable dryness, 13C enriched methane and variable δ13C of CO2, suggesting dominant thermogenic origin and minor secondary microbial methane augment. The Puqian-Ao’nan Uplift contains relatively dry gas with 13C depleted methane and 13C enriched CO2, typical for secondary microbial gas with a minor part of thermogenic methane. Gas accumulations in the Western Slope are very dry with low carbon dioxide concentrations. Some gases contain 13C depleted methane, ethane and propane, indicating low maturity/primary microbial origin. Recognition of varying genetic gas types in the Songliao Basin helps explain the observed dominance of gas in the shallow reservoir and could serve as an analogue for other similar shallow gas systems.  相似文献   

11.
Atmospheric carbon dioxide is widely studied using records of CO2 mixing ratio, δ13C and δ18O. However, the number and variability of sources and sinks prevents these alone from uniquely defining the budget. Carbon dioxide having a mass of 47 u (principally 13C18O16O) provides an additional constraint. In particular, the mass 47 anomaly (Δ47) can distinguish between CO2 produced by high temperature combustion processes vs. low temperature respiratory processes. Δ47 is defined as the abundance of mass 47 isotopologues in excess of that expected for a random distribution of isotopes, where random distribution means that the abundance of an isotopologue is the product of abundances of the isotopes it is composed of and is calculated based on the measured 13C and 18O values. In this study, we estimate the δ13C (vs. VPDB), δ18O (vs. VSMOW), δ47, and Δ47 values of CO2 from car exhaust and from human breath, by constructing ‘Keeling plots’ using samples that are mixtures of ambient air and CO2 from these sources. δ47 is defined as , where is the R47 value for a hypothetical CO2 whose δ13CVPDB = 0, δ18OVSMOW = 0, and Δ47 = 0. Ambient air in Pasadena, CA, where this study was conducted, varied in [CO2] from 383 to 404 μmol mol−1, in δ13C and δ18O from −9.2 to −10.2‰ and from 40.6 to 41.9‰, respectively, in δ47 from 32.5 to 33.9‰, and in Δ47 from 0.73 to 0.96‰. Air sampled at varying distances from a car exhaust pipe was enriched in a combustion source having a composition, as determined by a ‘Keeling plot’ intercept, of −24.4 ± 0.2‰ for δ13C (similar to the δ13C of local gasoline), δ18O of 29.9 ± 0.4‰, δ47 of 6.6 ± 0.6‰, and Δ47 of 0.41 ± 0.03‰. Both δ18O and Δ47 values of the car exhaust end-member are consistent with that expected for thermodynamic equilibrium at∼200 °C between CO2 and water generated by combustion of gasoline-air mixtures. Samples of CO2 from human breath were found to have δ13C and δ18O values broadly similar to those of car exhaust-air mixtures, −22.3 ± 0.2 and 34.3 ± 0.3‰, respectively, and δ47 of 13.4 ± 0.4‰. Δ47 in human breath was 0.76  ± 0.03‰, similar to that of ambient Pasadena air and higher than that of the car exhaust signature.  相似文献   

12.
We report hydrogen isotopic fractionations between water and fatty acids of the sulfate-reducing bacterium Desulfobacterium autotrophicum. Pure cultures were grown in waters with deuterium (D) contents that were systematically varied near the level of natural abundance (−37‰ ? δD ? 993‰). H2 of constant hydrogen isotope (D/H) ratio was supplied to the cultures. The D/H ratios of water, H2, and specific fatty acids were measured by isotope-ratio mass spectrometry. The results demonstrate that D. autotrophicum catalyzes hydrogen isotopic exchange between water and H2, and this reaction is conclusively shown to approach isotopic equilibrium. In addition, variation in the D/H ratio of growth water accounts for all variation in the hydrogen isotopic composition of fatty acids. The D/H ratios of fatty acids from cultures grown on H2/CO2 are compared with those from a separate set of cultures grown on D-enriched formate, an alternative electron donor. This comparison rules out H2 as a significant source of fatty acid hydrogen. Grown on either H2/CO2 or formate, D. autotrophicum produces fatty acids in which all hydrogen originates from water. For specific fatty acids, biosynthetic fractionation factors are mostly in the range 0.60 ? αFA-water ? 0.70; the 18:0 fatty acid exhibits a lower fractionation factor of 0.52. The data show that αFA-water generally increases with length of the carbon chain from C14 to C17 among both saturated and unsaturated fatty acids. These results indicate a net fractionation associated with fatty acid biosynthesis in D. autotrophicum that is slightly smaller than in another H2-consuming bacterium (Sporomusa sp.), but much greater than in most photoautotrophs.  相似文献   

13.
This study used batch reactors to quantify the mechanisms and rates of calcite dissolution in the presence and absence of a single heterotrophic bacterial species (Burkholderia fungorum). Experiments were conducted at T = 28°C and ambient pCO2 over time periods spanning either 21 or 35 days. Bacteria were supplied with minimal growth media containing either glucose or lactate as a C source, NH4+ as an N source, and H2PO4 as a P source. Combining stoichiometric equations for microbial growth with an equilibrium mass-balance model of the H2O-CO2-CaCO3 system demonstrates that B. fungorum affected calcite dissolution by modifying pH and alkalinity during utilization of ionic N and C species. Uptake of NH4+ decreased pH and alkalinity, whereas utilization of lactate, a negatively charged organic anion, increased pH and alkalinity. Calcite in biotic glucose-bearing reactors dissolved by simultaneous reaction with H2CO3 generated by dissolution of atmospheric CO2 (H2CO3 + CaCO3 → Ca2+ + 2HCO3) and H+ released during NH4+ uptake (H+ + CaCO3 → Ca2+ + HCO3). Reaction with H2CO3 and H+ supplied ∼45% and 55% of the total Ca2+ and ∼60% and 40% of the total HCO3, respectively. The net rate of microbial calcite dissolution in the presence of glucose and NH4+ was ∼2-fold higher than that observed for abiotic control experiments where calcite dissolved only by reaction with H2CO3. In lactate bearing reactors, most H+ generated by NH4+ uptake reacted with HCO3 produced by lactate oxidation to yield CO2 and H2O. Hence, calcite in biotic lactate-bearing reactors dissolved by reaction with H2CO3 at a net rate equivalent to that calculated for abiotic control experiments. This study suggests that conventional carbonate equilibria models can satisfactorily predict the bulk fluid chemistry resulting from microbe-calcite interactions, provided that the ionic forms and extent of utilization of N and C sources can be constrained. Because the solubility and dissolution rate of calcite inversely correlate with pH, heterotrophic microbial growth in the presence of nonionic organic matter and NH4+ appears to have the greatest potential for enhancing calcite weathering relative to abiotic conditions.  相似文献   

14.
Carbon and hydrogen concentrations and isotopic compositions were measured in 19 samples from altered oceanic crust cored in ODP/IODP Hole 1256D through lavas, dikes down to the gabbroic rocks. Bulk water content varies from 0.32 to 2.14 wt% with δD values from −64‰ to −25‰. All samples are enriched in water relative to fresh basalts. The δD values are interpreted in terms of mixing between magmatic water and another source that can be either secondary hydrous minerals and/or H contained in organic compounds such as hydrocarbons. Total CO2, extracted by step-heating technique, ranges between 564 and 2823 ppm with δ13C values from −14.9‰ to −26.6‰. As for water, these altered samples are enriched in carbon relative to fresh basalts. The carbon isotope compositions are interpreted in terms of a mixing between two components: (1) a carbonate with δ13C = −4.5‰ and (2) an organic compound with δ13C = −26.6‰. A mixing model calculation indicates that, for most samples (17 of 19), more than 75% of the total C occurs as organic compounds while carbonates represent less than 25%. This result is also supported by independent estimates of carbonate content from CO2 yield after H3PO4 attack. A comparison between the carbon concentration in our samples, seawater DIC (Dissolved Inorganic Carbon) and DOC (Dissolved Organic Carbon), and hydrothermal fluids suggests that CO2 degassed from magmatic reservoirs is the main source of organic C addition to the crust during the alteration process. A reduction step of dissolved CO2 is thus required, and can be either biologically mediated or not. Abiotic processes are necessary for the deeper part of the crust (>1000 mbsf) because alteration temperatures are greater than any hyperthermophilic living organism (i.e. T > 110 °C). Even if not required, we cannot rule out the contribution of microbial activity in the low-temperature alteration zones. We propose a two-step model for carbon cycling during crustal alteration: (1) when “fresh” oceanic crust forms at or close to ridge axis, alteration starts with hot hydrothermal fluids enriched in magmatic CO2, leading to the formation of organic compounds during Fischer-Tropsch-type reactions; (2) when the crust moves away from the ridge axis, these interactions with hot hydrothermal fluids decrease and are replaced by seawater interactions with carbonate precipitation in fractures. Taking into account this organic carbon, we estimate C isotope composition of mean altered oceanic crust at ∼ −4.7‰, similar to the δ13C of the C degassed from the mantle at ridge axis, and discuss the global carbon budget. The total flux of C stored in the altered oceanic crust, as carbonate and organic compound, is 2.9 ± 0.4 × 1012 molC/yr.  相似文献   

15.
From July to November 2009, concentrations of CO2 in 78 samples of ambient air collected in 18 different interior spaces on a university campus in Dallas, Texas (USA) ranged from 386 to 1980 ppm. Corresponding δ13C values varied from −8.9‰ to −19.4‰. The CO2 from 22 samples of outdoor air (also collected on campus) had a more limited range of concentrations from 385 to 447 ppm (avg. = 408 ppm), while δ13C values varied from −10.1‰ to −8.4‰ (avg.=-9.0‰). In contrast to ambient indoor and outdoor air, the concentrations of CO2 exhaled by 38 different individuals ranged from 38,300 to 76,200 ppm (avg. = 55,100 ppm), while δ13C values ranged from −24.8‰ to −17.7‰ (avg. = −21.8‰). The residence times of the total air in the interior spaces of this study appear to have been on the order of 10 min with relatively rapid approaches (∼30 min) to steady-state concentrations of ambient CO2 gas. Collectively, the δ13C values of the indoor CO2 samples were linearly correlated with the reciprocal of CO2 concentration, exhibiting an intercept of −21.8‰, with r2 = 0.99 and p < 0.001 (n = 78). This high degree of linearity for CO2 data representing 18 interior spaces (with varying numbers of occupants), and the coincidence of the intercept (−21.8‰) with the average δ13C value for human-exhaled CO2 demonstrates simple mixing between two inputs: (1) outdoor CO2 introduced to the interior spaces by ventilation systems, and (2) CO2 exhaled by human occupants of those spaces. If such simple binary mixing is a common feature of interior spaces, it suggests that the intercept of a mixing line defined by two data points (CO2 input from the local ventilation system and CO2 in the ambient air of the room) could be a reasonable estimate of the average δ13C value of the CO2 exhaled by the human occupants. Thus, such indoor spaces appear to constitute effective “sample vessels” for collection of CO2 that can be used to determine the average proportions of C3 and C4-derived C in the diets of the occupants. For the various groups occupying the rooms sampled in this study, C4-derived C appears to have constituted ∼40% of the average diet.  相似文献   

16.
The experiments were conducted in the open CO2 system to find out the equilibrium fractionation between the carbonate ion and CO2(g). The existence of isotopic equilibrium was checked using the two-direction approach by passing the CO2−N2 gases with different δ13C compositions (− 1.5‰ and − 23‰) through the carbonate solution with δ13C = − 4.2‰. The ΔCO3T2−−CO2(g) equilibrium fractionation is given as 6.03 ± 0.17‰ at 25 °C. Discussion is provided about the significance of carbonate complexing in determination of ΔCO3T2−−CO2(g) and ΔHCO3T−CO2(g) fractionations. Finally, an isotope numerical model of flow and kinetics of hydration and dehydroxylation is built to predict the isotopic behaviour of the system with time.  相似文献   

17.
The abundance of the doubly substituted CO2 isotopologue, 13C18O16O, in CO2 produced by phosphoric acid digestion of synthetic, inorganic calcite and natural, biogenic aragonite is proportional to the concentration of 13C-18O bonds in reactant carbonate, and the concentration of these bonds is a function of the temperature of carbonate growth. This proportionality can be described between 1 and 50 °C by the function: Δ47 = 0.0592 · 106 · T−2 − 0.02, where Δ47 is the enrichment, in per mil, of 13C18O16O in CO2 relative to the amount expected for a stochastic (random) distribution of isotopes among all CO2 isotopologues, and T is the temperature in Kelvin. This relationship can be used for a new kind of carbonate paleothermometry, where the temperature-dependent property of interest is the state of ordering of 13C and 18O in the carbonate lattice (i.e., bound together vs. separated into different CO32− units), and not the bulk δ18O or δ13C values. Current analytical methods limit precision of this thermometer to ca. ± 2 °C, 1σ. A key feature of this thermometer is that it is thermodynamically based, like the traditional carbonate-water paleothermometer, and so is suitable for interpolation and even modest extrapolation, yet is rigorously independent of the δ18O of water and δ13C of DIC from which carbonate grew. Thus, this technique can be applied to parts of the geological record where the stable isotope compositions of waters are unknown. Moreover, simultaneous determinations of Δ47 and δ18O for carbonates will constrain the δ18O of water from which they grew.  相似文献   

18.
19.
Silica phytoliths, which are deposits of opal-A that precipitate in the intra- and intercellular spaces of plant tissues during transpiration, commonly contain small amounts of occluded organic matter. In this paper, we investigate whether the δ13C values of phytoliths from a C4 grass, Calamovilfa longifolia, vary in response to climatic variables that can affect the carbon-isotope composition of plant tissues. There is no significant correlation (r2 < 0.3) between climate variables and the δ13C values of C. longifolia tissues (average δ13Ctissue = −13.1 ± 0.6 ‰; n = 70) across the North American prairies. However, plant tissue δ13C values are lower for grasses collected in populated areas where the δ13C value of atmospheric CO2 is expected to be lower because of fossil fuel burning. Phytolith δ13C values are more variable (δ13C = −27.3 to −23.0‰; average = −25.1 ± 1.3‰; n = 34) and more sensitive to changes in aridity than whole tissue δ13C values. The strongest correlations are obtained between the δ13C values of stem or sheath phytoliths and humidity (r2 = 0.3), latitude (r2 = 0.4) and amount of precipitation (r2 = 0.5). However, use of these relationships is limited by the wide spread in δ13C values of phytoliths from different plant tissues at the same location. We have been unable to infer any relationship between δ13C values of phytoliths and expected variations in the δ13C values of atmospheric CO2. The C. longifolia phytoliths are depleted of 13C relative to tissue carbon by 10-14‰. This means that the phytoliths examined in this study have carbon isotopic compositions within the range reported previously for phytoliths from C3 plants. This observation may further limit the usefulness of soil-phytolith assemblage δ13C values for identifying shifts in grassland C3:C4 ratios.  相似文献   

20.
Carbon isotopic composition was measured for products of the Fischer-Tropsch synthesis: catalytic reaction between CO and H2 to produce CO, CO2, light hydrocarbons C1-C4 and “oil” fraction. Hydrogen isotopes were also measured in the oil fraction and the produced water. Experimental runs were conducted in the flow-through reactor at 260-310 °C and 30 bar using the synthesis gas composed of 5N2 + 3H2 + 2CO, on Fe-catalyst mixed with ZSM-5 synthetic zeolite. In the two of seven runs a Fe + Co-catalyst was used that gives a lower yield of unsaturated hydrocarbons in reaction products. The isotopic effects depended on the conversion of the carbon monoxide. Under steady-state conditions (CO conversion more than 90%) a strong kinetic fractionation was observed between CO and CO2 (∼−10‰) and CO and hydrocarbons (∼+38‰). At low conversion a clear “inverse” isotopic trend of the depletion in 13C of longer hydrocarbon chains was observed. On average, Δ12 = δ13C(CH4) − δ13C(C2H6) correlates well with the CO conversion: the C2H6 is ∼6‰ isotopically lighter than CH4 at low conversion and ∼2‰ heavier at steady-state regime. Under steady-state conditions there almost no difference was observed in the isotopic composition of methane and ethane and higher hydrocarbons. The chemical composition of light hydrocarbons in the products of flow-through, dynamic FTS is different from that found in the static FTS-type experiments with Fe-catalyst, but isotopic effects are similar. Our results suggest that the isotopic distribution of carbon found in so-called “abiogenic” hydrocarbons from some natural gases (δ13C1 > δ13C2 > δ13C3  >?) is somewhat similar to that at low conversion of CO, but do not resemble the distribution characteristic for the high conversion products, at least, on Fe-catalyst. Other processes (a simple mixing of two or more endmembers) or other P-T conditions of the carbon reduction could be responsible for the “inverse” isotopic trend found in meteorites and some natural gases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号