首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report the abundances and hydrogen-isotopic compositions (D/H ratios) of fatty acids extracted from hot-spring microbial mats in Yellowstone National Park. The terrestrial hydrothermal environment provides a useful system for studying D/H fractionations because the numerous microbial communities in and around the springs are visually distinct, separable, and less complex than those in many other aquatic environments. D/H fractionations between lipids and water ranged from −374‰ to +41‰ and showed systematic variations between different types of microbial communities. Lipids produced by chemoautotrophic hyperthermophilic bacteria, such as icosenoic acid (20:1), generally exhibited the largest and most variable fractionations from water (−374‰ to −165‰). This was in contrast to lipids characteristic of heterotrophs, such as branched, odd chain-length fatty acids, which had the smallest fractionations (−163‰ to +41‰). Mats dominated by photoautotrophs exhibited intermediate fractionations similar in magnitude to those expressed by higher plants. These data support the hypothesis that variations in lipid D/H are strongly influenced by central metabolic pathways. Shifts in the isotopic compositions of individual fatty acids across known ecological boundaries show that the isotopic signature of specific metabolisms can be recognized in modern environmental samples, and potentially recorded in ancient ones. Considering all sampled springs, the total range in D/H ratios is similar to that observed in marine sediments, suggesting that the trends observed here are not exclusive to the hydrothermal environment.  相似文献   

2.
Iron isotope compositions in marine pore fluids and sedimentary solid phases were measured at two sites along the California continental margin, where isotope compositions range from δ56Fe = −3.0‰ to +0.4‰. At one site near Monterey Canyon off central California, organic matter oxidation likely proceeds through a number of diagenetic pathways that include significant dissimilatory iron reduction (DIR) and bacterial sulfate reduction, whereas at our other site in the Santa Barbara basin DIR appears to be comparatively small, and production of sulfides (FeS and pyrite) was extensive. The largest range in Fe isotope compositions is observed for Fe(II)aq in porewaters, which generally have the lowest δ56Fe values (minimum: −3.0‰) near the sediment surface, and increase with burial depth. δ56Fe values for FeS inferred from HCl extractions vary between ∼−0.4‰ and +0.4‰, but pyrite is similar at both stations, where an average δ56Fe value of −0.8 ± 0.2‰ was measured. We interpret variations in dissolved Fe isotope compositions to be best explained by open-system behavior that involves extensive recycling of Feflux. This study is the first to examine Fe isotope variations in modern marine sediments, and the results show that Fe isotopes in the various reactive Fe pools undergo isotopic fractionation during early diagenesis. Importantly, processes dominated by sulfide formation produce high-δ56Fe values for porewaters, whereas the opposite occurs when Fe(III)-oxides are present and DIR is a major pathway of organic carbon respiration. Because shelf pore fluids may carry a negative δ56Fe signature it is possible that the Fe isotope composition of ocean water reflects a significant contribution of shelf-derived iron to the open ocean. Such a signature would be an important means for tracing iron sources to the ocean and water mass circulation.  相似文献   

3.
Tri-octahedral Li-Mg smectites (hectorites) were synthesized at temperatures ranging from 25 to 250 °C, in the presence of solutions highly enriched in lithium. After removing all the exchangeable lithium from the synthesized clays, Li isotope fractionation (Δ7Liclay-solution) was determined. This fractionation was linked to Li incorporation into the structural octahedral site, substituting for Mg2+. As predicted, experimental Δ7Liclay-solution inversely correlates with temperature, and ranges from −1.6‰ ± 1.3‰ at 250 °C to −10.0‰ ± 1.3‰ at 90 °C, and then stays relatively constant down to 25 °C. The relatively constant isotope fractionation factor below 90 °C may be due to high concentrations of edge octahedra in low crystallinity smectites. The isotopic fractionation factor (α), for a given temperature, does not depend on the solution matrix, nor on the amount of structural Li incorporated into the clay. Empirical linear laws for α as a function of 1/T (K) were inferred. Smectite Li contents and smectite-solution distribution coefficients (DLi/Mg) increase with temperature, as expected for a substitution process. The fractions of dissolved Li incorporated into the smectite octahedral sites are small and do not depend on the duration of the experiment. In a seawater-like matrix solution, less Li is incorporated into the smectites, probably as a result of competition with dissolved Mg2+ ions for incorporation into the octahedral sites. The high Li contents observed in marine smectites are therefore best explained either by a significant contribution from basalts, by adsorption processes, or by the influence of seawater chemical composition on distribution coefficients. We also calculate, using present-day estimates of hydrothermal water and river fluxes, that a steady-state ocean would require a relatively large global clay-water Li isotope fractionation (−12‰ to −21‰). This study demonstrates the ability of laboratory experiments to quantify the impact of secondary phases on the Li geochemical cycle and associated isotope fractionations.  相似文献   

4.
Sulfur isotope effects produced by microbial dissimilatory sulfate reduction are used to reconstruct the coupled cycling of carbon and sulfur through geologic time, to constrain the evolution of sulfur-based metabolisms, and to track the oxygenation of Earth’s surface. In this study, we investigate how the coupling of carbon and sulfur metabolisms in batch and continuous cultures of a recently isolated marine sulfate reducing bacterium DMSS-1, a Desulfovibrio sp., influences the fractionation of sulfur isotopes.DMSS-1 grown in batch culture on seven different electron donors (ethanol, glycerol, fructose, glucose, lactate, malate and pyruvate) fractionates 34S/32S ratio from 6‰ to 44‰, demonstrating that the fractionations by an actively growing culture of a single incomplete oxidizing sulfate reducing microbe can span almost the entire range of previously reported values in defined cultures. The magnitude of isotope effect correlates well with cell specific sulfate reduction rates (from 0.7 to 26.1 fmol/cell/day). DMSS-1 grown on lactate in continuous culture produces a larger isotope effect (21-37‰) than the lactate-grown batch culture (6‰), indicating that the isotope effect also depends on the supply rate of the electron donor and microbial growth rate. The largest isotope effect in continuous culture is accompanied by measurable changes in cell length and cellular yield that suggest starvation. The use of multiple sulfur isotopes in the model of metabolic fluxes of sulfur shows that the loss of sulfate from the cell and the intracellular reoxidation of reduced sulfur species contribute to the increase in isotope effects in a correlated manner. Isotope fractionations produced during sulfate reduction in the pure culture of DMSS-1 expand the previously reported range of triple sulfur isotope effects (32S, 33S, and 34S) by marine sulfate reducing bacteria, implying that microbial sulfur disproportionation may have a smaller 33S isotopic fingerprint than previously thought.  相似文献   

5.
We report hydrogen isotopic fractionations between water and fatty acids of the sulfate-reducing bacterium Desulfobacterium autotrophicum. Pure cultures were grown in waters with deuterium (D) contents that were systematically varied near the level of natural abundance (−37‰ ? δD ? 993‰). H2 of constant hydrogen isotope (D/H) ratio was supplied to the cultures. The D/H ratios of water, H2, and specific fatty acids were measured by isotope-ratio mass spectrometry. The results demonstrate that D. autotrophicum catalyzes hydrogen isotopic exchange between water and H2, and this reaction is conclusively shown to approach isotopic equilibrium. In addition, variation in the D/H ratio of growth water accounts for all variation in the hydrogen isotopic composition of fatty acids. The D/H ratios of fatty acids from cultures grown on H2/CO2 are compared with those from a separate set of cultures grown on D-enriched formate, an alternative electron donor. This comparison rules out H2 as a significant source of fatty acid hydrogen. Grown on either H2/CO2 or formate, D. autotrophicum produces fatty acids in which all hydrogen originates from water. For specific fatty acids, biosynthetic fractionation factors are mostly in the range 0.60 ? αFA-water ? 0.70; the 18:0 fatty acid exhibits a lower fractionation factor of 0.52. The data show that αFA-water generally increases with length of the carbon chain from C14 to C17 among both saturated and unsaturated fatty acids. These results indicate a net fractionation associated with fatty acid biosynthesis in D. autotrophicum that is slightly smaller than in another H2-consuming bacterium (Sporomusa sp.), but much greater than in most photoautotrophs.  相似文献   

6.
We present high-precision measurements of Mg and Fe isotopic compositions of olivine, orthopyroxene (opx), and clinopyroxene (cpx) for 18 lherzolite xenoliths from east central China and provide the first combined Fe and Mg isotopic study of the upper mantle. δ56Fe in olivines varies from 0.18‰ to −0.22‰ with an average of −0.01 ± 0.18‰ (2SD, n = 18), opx from 0.24‰ to −0.22‰ with an average of 0.04 ± 0.20‰, and cpx from 0.24‰ to −0.16‰ with an average of 0.10 ± 0.19‰. δ26Mg of olivines varies from −0.25‰ to −0.42‰ with an average of −0.34 ± 0.10‰ (2SD, n = 18), opx from −0.19‰ to −0.34‰ with an average of −0.25 ± 0.10‰, and cpx from −0.09‰ to −0.43‰ with an average of −0.24 ± 0.18‰. Although current precision (∼±0.06‰ for δ56Fe; ±0.10‰ for δ26Mg, 2SD) limits the ability to analytically distinguish inter-mineral isotopic fractionations, systematic behavior of inter-mineral fractionation for both Fe and Mg is statistically observed: Δ56Feol-cpx = −0.10 ± 0.12‰ (2SD, n = 18); Δ56Feol-opx = −0.05 ± 0.11‰; Δ26Mgol-opx = −0.09 ± 0.12‰; Δ26Mgol-cpx = −0.10 ± 0.15‰. Fe and Mg isotopic composition of bulk rocks were calculated based on the modes of olivine, opx, and cpx. The average δ56Fe of peridotites in this study is 0.01 ± 0.17‰ (2SD, n = 18), similar to the values of chondrites but slightly lower than mid-ocean ridge basalts (MORB) and oceanic island basalts (OIB). The average δ26Mg is −0.30 ± 0.09‰, indistinguishable from chondrites, MORB, and OIB. Our data support the conclusion that the bulk silicate Earth (BSE) has chondritic δ56Fe and δ26Mg.The origin of inter-mineral fractionations of Fe and Mg isotopic ratios remains debated. δ56Fe between the main peridotite minerals shows positive linear correlations with slopes within error of unity, strongly suggesting intra-sample mineral-mineral Fe and Mg isotopic equilibrium. Because inter-mineral isotopic equilibrium should be reached earlier than major element equilibrium via chemical diffusion at mantle temperatures, Fe and Mg isotope ratios of coexisting minerals could be useful tools for justifying mineral thermometry and barometry on the basis of chemical equilibrium between minerals. Although most peridotites in this study exhibit a narrow range in δ56Fe, the larger deviations from average δ56Fe for three samples likely indicate changes due to metasomatic processes. Two samples show heavy δ56Fe relative to the average and they also have high La/Yb and total Fe content, consistent with metasomatic reaction between peridotite and Fe-rich and isotopically heavy melt. The other sample has light δ56Fe and slightly heavy δ26Mg, which may reflect Fe-Mg inter-diffusion between peridotite and percolating melt.  相似文献   

7.
The 13C/12C ratio of carbon compounds is used to identify sources and sinks in the global carbon cycle. However, the relatively enriched 13C content observed for marine organic carbon remains enigmatic. The majority of oceanic carbon is fixed by algae and cyanobacteria via the Calvin-Benson-Bassham cycle, yet isotopic discrimination by the CO2 fixation enzyme, RubisCO (ribulose 1,5-bisphosphate carboxylase/oxygenase), has only been measured for a single marine cyanobacterium. Different forms of RubisCO occur in different phytoplankton species (overall amino acid identity varying by as much as ∼75%) and thus may vary in the degree to which they fractionate carbon. Here we measured isotope discrimination by RubisCO from the coccolithophore Emiliania huxleyi, a cosmopolitan species used as a marine algal model.E. huxleyi RubisCO discriminated substantially less (ε = 11.1‰) against 13CO2 than other RubisCO enzymes (18-29‰), despite having Michaelis-Menten kinetic parameters (KCO2 = 72 μM; Vmax = 0.66 μmol min−1 mg−1 protein) similar to those measured for RubisCO enzymes from different organisms. If widespread, decreased isotope discrimination of 13C by phytoplankton RubisCO may be a major factor influencing the enriched 13C content of marine organic carbon. This finding emphasizes the necessity of (a) determining ε values for RubisCOs of other marine phytoplankton and (b) re-evaluation of δ13C values from physiological, environmental, and geological studies.  相似文献   

8.
Unraveling the factors controlling the carbon chemistry and transport of carbon within extant karst systems has important implications concerning the assessment of time-series δ13C records of speleothems. Here we report the results of a 3-year study of total dissolved inorganic carbon [DIC] and δ13CDIC from cave waters at DeSoto Caverns (Southeastern USA) that offer valuable insight on carbon transport and the accompanied isotope fractionations from end-member sources to speleothems.[DIC] and δ13CDIC values of cave waters range from 0.2 to 6.0 mM and 2.7 to −12.9 (‰ VPDB), respectively. [DIC] and δ13CDIC of “seasonal drips” show seasonal, albeit noisy, variability and are inversely related (δ13CDIC = −2.49[DIC] + 0.64, r2 = 0.84). A shallow pool fed by multiple drips shows a bimodal δ13CDIC distribution with an isotopically heavier mode during winter (−4‰ to −5‰ VPDB) relative to summer months (−9‰ to −10‰ VPDB). A multi-year trend of decreasing water availability during the study period is not reflected in a response of cave water carbon chemistry suggesting that rainfall amount may not be a significant controlling factor of the carbon chemistry. Coupled cave air winter ventilation/summer stagnation and varying CO2 fluxes through the soil horizon and epikarst exert the strongest influence on seasonal [DIC] and δ13CDIC variability. Measured values of high [DIC] and low δ13CDIC from cave waters collected during the summer/early fall closely approximate isotopic equilibrium conditions. Conversely, low [DIC] and high δ13CDIC values during winter/early months indicate kinetically enhanced isotopic fractionations within the cave waters. The kinetically enhanced isotopic fractionation of partitioned between degassed CO2 and precipitated CaCO3(1000lnα[(CO2-HCO3)+(CaCO3(AR)-HCO3)]/2) is greater by about a factor of two (−6.7 ± 0.3‰) relative to the same isotopic fractionation under equilibrium conditions (−3.1‰).On the basis of 14C mass balance and paired 14C-U/Th measurements we estimate that on average about ∼23% of C delivered annually by the drips to the aragonite stalagmites is derived from 14C-dead dolomite cap while the remainder of ∼77% is derived from 14C-live biomass. δ13C measurements of aragonite (n = 12) sampled from the tips of active speleothems during the summer months are consistent with theoretical aragonite δ13C values calculated using the shallow pool summer/early fall data thus confirming the δ13C seasonality in both drips and coeval aragonite. δ13C values of an active stalagmite section spanning the last 200 years show a normal distribution with a mean of −7.1 ± 1.2‰ (n = 81) and a mode of −7‰ to −8‰ that are statistically indistinguishable from the annual mean and mode of all dripwaters. Thus secular time-series δ13C records of stalagmites at DeSoto Caverns with resolving power >10−1 year will likely carry the imprints of drip annual means that record climate-driven δ13C seasonal biases.  相似文献   

9.
The isotopic compositions of commercially available herbicides were analyzed to determine their respective 15N, 13C and 37Cl signatures for the purposes of developing a discrete tool for tracing and identifying non-point source contaminants in agricultural watersheds. Findings demonstrate that of the agrochemicals evaluated, chlorine stable isotopes signatures range between δ37Cl = −4.55‰ and +3.40‰, whereas most naturally occurring chlorine stable isotopes signatures, including those of road salt, sewage sludge and fertilizers, vary in a narrow range about the Standard Mean Ocean Chloride (SMOC) between −2.00‰ and +1.00‰. Nitrogen stable isotope values varied widely from δ15N = −10.86‰ to +1.44‰ and carbon stable isotope analysis gave an observed range between δ13C = −37.13‰ and −21.35‰ for the entire suite of agro-chemicals analyzed. When nitrogen, carbon and chlorine stable isotope analyses were compared in a cross-correlation analysis, statistically independent isotopic signatures exist suggesting a new potential tracer tool for identifying herbicides in the environment.  相似文献   

10.
The experiments were conducted in the open CO2 system to find out the equilibrium fractionation between the carbonate ion and CO2(g). The existence of isotopic equilibrium was checked using the two-direction approach by passing the CO2−N2 gases with different δ13C compositions (− 1.5‰ and − 23‰) through the carbonate solution with δ13C = − 4.2‰. The ΔCO3T2−−CO2(g) equilibrium fractionation is given as 6.03 ± 0.17‰ at 25 °C. Discussion is provided about the significance of carbonate complexing in determination of ΔCO3T2−−CO2(g) and ΔHCO3T−CO2(g) fractionations. Finally, an isotope numerical model of flow and kinetics of hydration and dehydroxylation is built to predict the isotopic behaviour of the system with time.  相似文献   

11.
We determined the stable carbon and hydrogen isotope fractionation factors for methane oxidation under oxic conditions using strains with known degradation pathways. The aerobic oxidation of methane can be initiated by two different forms of enzymes known as methane monooxygenases (MMO). The expression of these enzymes is type-specific and dependent upon the adjusted copper concentration in the medium (or environment). In this study, the expression of either the soluble MMO or the particulate MMO was supported by adjusting the copper concentrations in the growth medium. Taxonomically different aerobic methanotrophic strains, mainly belonging to the alpha- and gamma- classes of Proteobacteria, produced methane isotope enrichment factors (εbulk) ranging from −14.8 to −27.9‰ for carbon, and from −110.0 to −231.5‰ for hydrogen. The ratio of hydrogen versus carbon discrimination (Λ = (αH−1 − 1)/(αC−1 − 1) ≈ Δ(δ2H)/Δ(δ13C)) were similar for all tested cultures, and are also identical to values calculated from previously published enrichment factors for aerobic and anaerobic methane degradation. In contrast, Λ-values for the abiotic oxidation of methane with OH radicals (this process is considered as the main removal process for methane from the atmosphere) were significantly higher than the values derived from biotic oxidation. Due to the low variability of microbial methane isotope fractionation patterns, we propose that combined carbon and hydrogen isotope fractionation analyses can be used to monitor and assess the occurrence of microbial methane oxidation in marine or terrestrial environments. However, it is not possible to distinguish distinct aerobic or anaerobic methane-oxidation pathways by this approach.  相似文献   

12.
This survey of magnesium stable isotope compositions in marine biogenic aragonite and calcite includes samples from corals, sclerosponges, benthic porcelaneous and planktonic perforate foraminifera, coccolith oozes, red algae, and an echinoid and brachiopod test. The analyses were carried out using MC-ICP-MS with an external repeatability of ±0.22‰ (2SD for δ26Mg; n = 37), obtained from a coral reference sample (JCp-1).Magnesium isotope fractionation in calcitic corals and sclerosponges agrees with published data for calcitic speleothems with an average Δ26Mgcalcite-seawater = −2.6 ± 0.3‰ that appears to be weakly related to temperature. With one exception (Vaceletia spp.), aragonitic corals and sclerosponges also display uniform Mg isotope fractionations relative to seawater with Δ26Mgbiogenic aragonite-seawater = −0.9 ± 0.2.Magnesium isotopes in high-Mg calcites from red algae, echinoids and perhaps some porcelaneous foraminifera as well as in all low-Mg calcites (perforate foraminifera, coccoliths and brachiopods) display significant biological influences. For planktonic foraminifera, the Mg isotope data is consistent with the fixation of Mg by organic material under equilibrium conditions, but appears to be inconsistent with Mg removal from vacuoles. Our preferred model, however, suggests that planktonic foraminifera synthesize biomolecules that increase the energetic barrier for Mg incorporation. In this model, the need to remove large quantities of Mg from vacuole solutions is avoided. For the high-Mg calcites from echinoids, the precipitation of amorphous calcium carbonate may be responsible for their weaker Mg isotope fractionation.Disregarding superimposed biological effects, it appears that cation light isotope enrichments in CaCO3 principally result from a chemical kinetic isotope effect, related to the incorporation of cations at kink sites. In this model, the systematics of cation isotope fractionations in CaCO3 relate to the activation energy required for cation incorporation, which probably reflects the dehydration of the cation and the crystal surface and bond formation at the incorporation site. This kinetic incorporation model predicts (i) no intrinsic dependence on growth rate, unless significant back reaction upon slow growth reduces the isotope fractionation towards that characteristic for equilibrium isotope partitioning (this may be observed for Ca isotopes in calcites), (ii) a small decrease of isotope fractionation with increasing temperature that may be amplified if higher temperatures promote back reaction and (iii) a sensitivity to changes in the activation barrier caused by additives such as anions or biomolecules or by the initial formation of amorphous CaCO3.  相似文献   

13.
Lipid biomarkers and 13C fractionation patterns were used to understand the dynamics of carbon cycling during microbial metabolisms in different environments of travertine precipitation (called facies) at Spring AT-1 on Angel Terrace in the Mammoth Hot Springs complex of Yellowstone National Park, USA. Microbial mats that encrust travertine deposits were collected for analyses of lipid biomarkers and carbon isotopes along the continuous drainage outflow system of Spring AT-1. The spring water exhibits a continuous temperature drop from 71°C in the vent at top to 24°C in the distal slope at bottom. Phospholipid fatty acids (PLFA) and glycolipid fatty acids (GLFA) exhibit distinctly different compositions in each of the facies, which are consistent with partitioning of the bacterial 16S rRNA gene sequences in the Spring AT-1 travertine facies (Fouke et al., 2003).The δ13C composition of total biomass within the microbial mats decreases from −16.1‰ in the vent to −23.5‰ in the distal slope. However, lower values occur in the pond (−26.0‰) and the proximal slope (−28.0‰) between the vent and the distal slope. Isotopic compositions of PLFA and GLFA have variations similar to those of total biomass. The average δ13C values of PLFA are −12.4 ± 5.2‰ (n = 10 individual fatty acids, same below) in the vent, −33.0 ± 3.1‰ (n = 11) in the pond, −33.7 ± 3.8‰ (n = 16) in the proximal slope, and −22.4 ± 3.4‰ (n = 10) in the distal slope; the average δ13C values of GLFA are −19.6 ± 3.0‰ (n = 3) in the vent, −30.4 ± 4.7‰ (n = 8) in the pond, −36.9 ± 2.8‰ (n = 12) in the proximal slope, and −27.9 ± 3.1‰ (n = 13) in the distal slope. In particular, fatty acids in the vent are enriched in 13C relative to the total biomass, which is consistent with the notion that the biosynthetic pathways of the extant microbial community in the vent may be dominated by Aquificales using the reversed tricarboxylic acid cycle. Fractionations between fatty acids and total biomass in the pond, the proximal slope and the distal slope suggest the involvement of other biosynthetic pathways for CO2 fixation by extant microbial populations. The results indicate that lipid biomarkers provide valuable information on the changing diversity and activity of microbial communities in different depositional environments. Carbon-isotope fractionations, on the other hand, can provide insight into the operating biosynthetic pathways associated with different organisms in the changing environment. This integrated approach may serve as a powerful tool for identifying functional metabolism within a community and identify shifts in microbial community structure in modern hot-spring systems.  相似文献   

14.
Two higher plant species (rye grass and clover) were cultivated under laboratory conditions on two substrates (solution, phlogopite) in order to constrain the corresponding Mg isotope fractionations during plant growth and Mg uptake. We show that bulk plants are systematically enriched in heavy isotopes relative to their nutrient source. The Δ26Mgplant-source range from 0.72‰ to 0.26‰ for rye grass and from 1.05‰ to 0.41‰ for clover. Plants grown on phlogopite display Mg isotope signatures (relative to the Mg source) ∼0.3‰ lower than hydroponic plants. For a given substrate, rye grass display lower δ26Mg (by ∼0.3‰) relative to clover. Magnesium desorbed from rye grass roots display a δ26Mg greater than the nutrient solution. Adsorption experiments on dead and living rye grass roots also indicate a significant enrichment in heavy isotopes of the Mg adsorbed on the root surface. Our results indicate that the key processes responsible for heavy isotope enrichment in plants are located at the root level. Both species also exhibit an enrichment in light isotopes from roots to shoots (Δ26Mgleaf-root = −0.65‰ and −0.34‰ for rye grass and clover grown on phlogopite respectively, and Δ26Mgleaf-root of −0.06‰ and −0.22‰ for the same species grown hydroponically). This heavy isotope depletion in leaves can be explained by biological processes that affect leaves and roots differently: (1) organo-Mg complex (including chlorophyll) formation, and (2) Mg transport within plant. For both species, a positive correlation between δ26Mg and K/Mg was observed among the various organs. This correlation is consistent with the link between K and Mg internal cycles, as well as with formation of organo-magnesium compounds associated with enrichment in heavy isotopes. Considering our results together with the published range for δ26Mg of natural plants and rivers, we estimate that a significant change in continental vegetation would induce a change of the mean river δ26Mg that is comparable to analytical uncertainties.  相似文献   

15.
Transition metal stable isotope signatures can be useful for tracing both natural and anthropogenic signals in the environment, but only if the mechanisms responsible for fractionation are understood. To investigate isotope fractionations due to electrochemistry (or redox processes), we examine the stable isotope behavior of iron and zinc during the reduction reaction  + 2e = Mmetal as a function of electrochemical driving force, temperature, and time. In all cases light isotopes are preferentially electroplated, following a mass-dependent law. Generally, the extent of fractionation is larger for higher temperatures and lower driving forces, and is roughly insensitive to amount of charge delivered. The maximum fractionations are δ56/54Fe = −4.0‰ and δ66/64Zn = −5.5‰, larger than observed fractionations in the natural environment and larger than those predicted due to changes in speciation. All the observed fractionation trends are interpreted in terms of three distinct processes that occur during an electrochemical reaction: mass transport to the electrode, chemical speciation changes adjacent to the electrode, and electron transfer at the electrode. We show that a large isotope effect adjacent the electrode surface arises from the charge-transfer kinetics, but this effect is attenuated in cases where diffusion of ions to the electrode surface becomes the rate-limiting step. Thus while a general increase in fractionation is observed with increasing temperature, this appears to be a result of thermally enhanced mass transport to the reacting interface rather than an isotope effect associated with the charge-transfer kinetics. This study demonstrates that laboratory experiments can successfully distinguish isotopic signatures arising from mass transport, chemical speciation, and electron transfer. Understanding how these processes fractionate metal isotopes under laboratory conditions is the first step towards discovering what role these processes play in fractionating metal isotopes in natural systems.  相似文献   

16.
Ocean drilling has revealed the existence of vast microbial populations in the deep subseafloor, but to date little is known about their metabolic activities. To better understand the biogeochemical processes in the deep biosphere, we investigate the stable carbon isotope chemistry of acetate and other carbon-bearing metabolites in sediment pore-waters. Acetate is a key metabolite in the cycling of carbon in anoxic sediments. Its stable carbon isotopic composition provides information on the metabolic processes dominating acetate turnover in situ. This study reports our findings for a methane-rich site at the northern Cascadia Margin (NE Pacific) where Expedition 311 of the Integrated Ocean Drilling Program (IODP) sampled the upper 190 m of sediment. At Site U1329, δ13C values of acetate span a wide range from −46.0‰ to −11.0‰ vs. VPDB and change systematically with sediment depth. In contrast, δ13C values of both the bulk dissolved organic carbon (DOC) (−21.6 ± 1.3‰ vs. VPDB) and the low-molecular-weight compound lactate (−20.9 ± 1.8‰ vs. VPDB) show little variability. These species are interpreted to represent the carbon isotopic composition of fermentation products. Relative to DOC, acetate is up to 23.1‰ depleted and up to 9.1‰ enriched in 13C. Broadly, 13C-depletions of acetate relative to DOC indicate flux of carbon from acetogenesis into the acetate pool while 13C-enrichments of pore-water acetate relative to DOC suggest consumption of acetate by acetoclastic methanogenesis. Isotopic relationships between acetate and lactate or DOC provide new information on the carbon flow and the presence and activity of specific functional microbial communities in distinct biogeochemical horizons of the sediment. In particular, they suggest that acetogenic CO2-reduction can coexist with methanogenic CO2-reduction, a notion contrary to the hypothesis that hydrogen levels are controlled by the thermodynamically most favorable electron-accepting process. Further, the isotopic relationship suggests a relative increase in acetate flow to acetoclastic methanogenesis with depth although its contribution to total methanogenesis is probably small. Our study demonstrates how the stable carbon isotope biogeochemistry of acetate can be used to identify pathways of microbial carbon turnover in subsurface environments. Our observations also raise new questions regarding the factors controlling acetate turnover in marine sediments.  相似文献   

17.
Molybdenum (Mo) isotope studies in black shales can provide information about the redox evolution of the Earth’s oceans, provided the isotopic consequences of Mo burial into its major sinks are well understood. Previous applications of the Mo isotope paleo-ocean redox proxy assumed quantitative scavenging of Mo when buried into sulfidic sediments. This paper contains the first complete suite of Mo isotope fractionation observations in a sulfidic water column and sediment system, the meromictic Lake Cadagno, Switzerland, a small alpine lake with a pronounced oxygen-sulfide transition reaching up to H2S ∼ 200 μM in the bottom waters (or about 300 μM total sulfide: ΣS2− = H2S + HS + S2−). We find that Mo behaves conservatively in the oxic zone and non-conservatively in the sulfidic zone, where dissolved Mo concentrations decrease from 14 nM to 2-8 nM across this transition. Dissolved Mo in the upper oxic waters has a δ98Mooxic = 0.9 ± 0.1‰, which matches that of the riverine input, δ98Moriver = 0.9 ± 0.1‰. In the deeper sulfidic waters, a subaquatic source delivers Mo at 1.55 ± 0.1‰, but the dissolved Mo is even heavier at δ98Mosulfidic = 1.8‰. Sediment traps in the sulfidic zone of the lake collect particles increasingly enriched in Mo with depth, with δ98Mo values significantly fractionated at −0.8‰ to −1.2‰ both near the chemocline and in the deepest trap. Suspended particulates in the sulfidic waters carry lighter Mo than the ambient dissolved Mo pool by ∼0.3-1.5‰. Sedimentary Mo concentrations correlate with total organic carbon and yield Mo levels which are two orders of magnitude higher than typical crustal values found in rocks from the catchment area. Solid-phase Mo in the sediment shows a slightly positive δ98Mo trend with depth, from δ98Mo = 1.2‰ to 1.4‰ while the pore waters show dramatic enrichments of Mo (>2000 nM) with a relatively light isotope signature of δ98Mo = 0.9-1.0‰.These data are explained if Mo is converted to particle-reactive oxythiomolybdates in the sulfidic waters and is fractionated during removal from solution onto particles. Isotope fractionation is expressed in the water column, despite the high sulfide concentrations, because the rate of Mo removal is fast compared to the slow reaction kinetics of thiomolybdate formation. However, elemental and isotopic mass balances show that Mo is indeed quantitatively removed to the lake sediments and thus the isotopic composition of the sediments reflects sources to the sulfidic water. This efficient Mo drawdown is expected to occur in settings where H2S is very much in excess over Mo or in a restricted setting where the water renewal rate is slow compared to the Mo burial rate. We present a model for the Mo isotope fractionation in sulfidic systems associated with the slow reaction kinetics and conclude that quantitative removal will occur in highly sulfidic and restricted marine systems.  相似文献   

18.
The well-studied Paleozoic Cooma metamorphic complex in southeastern Australia is characterized by a uniform siliciclastic protolith, of uniform age, with a continuous range of metamorphic grade from subgreenschist- to upper amphibolite-facies, and migmatite-grade in an annular pattern around the Cooma granodiorite. Those conditions are optimal for investigating variations of N concentrations and δ15N values during progressive metamorphism. Nitrogen concentrations decrease and δ15N increases with increasing metamorphic grade (sub-chlorite zone: 120 ppm N, δ15N = 2.3‰; chlorite zone: 110 ppm N, δ15N = 3.0‰; biotite and andalusite zone: 85 ppm N, δ15N = 3.8 ‰; sillimanite and migmatite zones: 40 ppm N, δ15N = 10.7‰). Covariation of K and N contents is consistent with N substituting for K as NH4+ in micas. Observed trends of increasing δ15N values with decreasing nitrogen concentrations can be explained by a continuous release of nitrogen depleted in 15N with progressive metamorphism, which causes an enrichment of 15N in the residual nitrogen of the rock. Equilibrium models for Rayleigh distillation and batch volatilisation for data of the greenschist and amphibolite facies metasedimentary rocks can be explained by N2-NH4+ exchange at temperatures of 300-600 °C, whereas observed large fractionations for the upper amphibolite-facies and melt products in the migmatite-grade samples may be interpreted as NH3-NH4+ exchanges at temperature of 650-730 °C. Lower values in the highest grade zones may also stem in part from input of 15N-depleted fluids from the granodiorite.The magnitude of isotope fractionation of nitrogen is about 1-2‰ during progressive metamorphism of metasedimentary rocks from sub-chlorite zone to biotite-andalusite zone, which is consistent with previous studies. Consequently, the large spread of δ15N values in Archean greenschist-facies metasedimentary rocks of −6‰ to 30‰ can be accounted for by variable mixtures of mantle plume-dominated volatiles with a δ15N of −5‰, and a 15N-enriched marine sedimentary kerogen component inherited from a CI chondrite veneer having δ15N of 30‰ to 42‰.  相似文献   

19.
We evaluate anaerobic oxidation of methane (AOM) in the Black Sea water column by determining distributions of archaea-specific glyceryl dialkyl glyceryl tetraethers (GDGTs) and 13C isotopic compositions of their constituent biphytanes in suspended particulate matter (SPM), sinking particulate matter collected in sediment traps, and surface sediments. We also determined isotopic compositions of fatty acids specific to sulfate-reducing bacteria to test for biomarker and isotopic evidence of a syntrophic relationship between archaea and sulfate-reducing bacteria in carrying out AOM. Bicyclic and tricyclic GDGTs and their constituent 13C-depleted monocyclic and bicyclic biphytanes (down to −67‰) indicative of archaea involved in AOM were present in SPM in the anoxic zone below 700 m depth. In contrast, GDGT-0 and crenarchaeol derived from planktonic crenarchaeota dominated the GDGT distributions in the oxic surface and shallow anoxic waters. Fatty acids indicative of sulfate-reducing bacteria (i.e., iso- and anteiso-C15) were not strongly isotopically depleted (e.g., −32 to −25‰), although anteiso-C15 was 5‰ more depleted in 13C than iso-C15. Our results suggest that either AOM is carried out by archaea independent of sulfate-reducing bacteria or those sulfate-reducing bacteria involved in a syntrophy with methane-oxidizing archaea constitute a small enough fraction of the total sulfate-reducing bacterial community that an isotope depletion in their fatty acids is not readily detected. Sinking particulate material collected in sediment traps and the underlying sediments in the anoxic zone contained the biomarker and isotope signature of upper-water column archaea. AOM-specific GDGTs and 13C-depleted biphytanes characteristic of the SPM in the deep anoxic zone are not incorporated into sinking particles and are not efficiently transported to the sediments. This observation suggests that sediments may not always record AOM in overlying euxinic water columns and helps explain the absence of AOM-derived biomarkers in sediments deposited during past periods of elevated levels of methane in the ocean.  相似文献   

20.
We investigate the Logatchev Hydrothermal Field at the Mid-Atlantic Ridge, 14°45′N to constrain the calcium isotope hydrothermal flux into the ocean. During the transformation of seawater to a hydrothermal solution, the Ca concentration of pristine seawater ([Ca]SW) increases from about 10 mM to about 32 mM in the hydrothermal fluid endmember ([Ca]HydEnd) and thereby adopts a δ44/40CaHydEnd of −0.95 ± 0.07‰ relative to seawater (SW) and a 87Sr/86Sr isotope ratio of 0.7034(4). We demonstrate that δ44/40CaHydEnd is higher than that of the bedrock at the Logatchev field. From mass balance calculations, we deduce a δ44/40Ca of −1.17 ± 0.04‰ (SW) for the host-rocks in the reaction zone and −1.45 ± 0.05‰ (SW) for the isotopic composition of the entire hydrothermal cell of the Logatchev field. The values are isotopically lighter than the currently assumed δ44/40Ca for Bulk Earth of −0.92 ± 0.18‰ (SW) [Skulan J., DePaolo D. J. and Owens T. L. (1997) Biological control of calcium isotopic abundances in the global calcium cycle. Geochim. Cosmochim. Acta61,(12) 2505-2510] and challenge previous assumptions of no Ca isotope fractionation between hydrothermal fluid and the oceanic crust [Zhu P. and Macdougall J. D. (1998) Calcium isotopes in the marine environment and the oceanic calcium cycle. Geochim. Cosmochim. Acta62,(10) 1691-1698; Schmitt A. -D., Chabeaux F. and Stille P. (2003) The calcium riverine and hydrothermal isotopic fluxes and the oceanic calcium mass balance. Earth Planet. Sci. Lett. 6731, 1-16]. Here we propose that Ca isotope fractionation along the fluid flow pathway of the Logatchev field occurs during the precipitation of anhydrite. Two anhydrite samples from the Logatchev Hydrothermal Field show an average fractionation of about Δ44/40Ca = −0.5‰ relative to their assumed parental solutions. Ca isotope ratios in aragonites from carbonate veins from ODP drill cores indicate aragonite precipitation directly from seawater at low temperatures with an average δ44/40Ca of −1.54 ± 0.08‰ (SW). The relatively large fractionation between the aragonite precipitates and seawater in combination with their frequent abundance in weathered mafic and ultramafic rocks suggest a reconsideration of the marine Ca isotope budget, in particular with regard to ocean crust alteration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号