首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A reaction-transport model was used to infer the long-term evolution of anaerobic organic matter degradation in Cretaceous black shales from the distribution of authigenic barite in sediments drilled at Demerara Rise (ODP Leg 207, Site 1258). In these sediments, sulfate-reduction and methanogenesis are the major pathways of organic matter decomposition and the depth-distribution of authigenic barite serves as an indicator for the temporal evolution of the sulfate-methane transition zone (SMTZ), the strength of the biogenic methane flux and, ultimately, the organic matter reactivity in the black shales over geological timescales. Organic matter degradation is described according to the reactive continuum model approach and parameters values are determined by inverse modeling, based on present-day porewater and authigenic barite profiles. Fully transient simulations were performed over a period of 100 Myrs and indicate that important features of the biogeochemical dynamics are associated to changes in the boundary forcing. Hiatuses in sediment accumulation rate result in quasi-steady-state conditions and lead to distinct accumulations of authigenic barites in the SMTZ. The inversely determined parameters reveal that the reactivity of the organic matter was already low (apparent first order rate constant ) at the time of its deposition in the Cretaceous. The geochemical characteristics of sediments drilled at Demerara Rise, as well as the presence of specific biomarkers, suggest that this low reactivity is most likely due to the euxinic palaeo-conditions which favored the sulfurization of the organic matter. Simulation results predict average initial organic carbon contents between 8.1 and 9.5 wt%, implying a high preservation efficiency of the organic matter (between 79% and 89%). Calculated mass accumulation rates (between 0.43 and 0.5 ) compare well with estimations for the western basin of the Cretaceous southern North Atlantic. Simulation results thus indicate that the enhanced preservation of organic matter under euxinic conditions may have been the main cause for the formation of organic-rich Cretaceous black shales at Demerara Rise.  相似文献   

2.
3.
4.
A two-dimensional (2D) reactive transport model is used to investigate the controls on nutrient (, , PO4) dynamics in a coastal aquifer. The model couples density-dependent flow to a reaction network which includes oxic degradation of organic matter, denitrification, iron oxide reduction, nitrification, Fe2+ oxidation and sorption of PO4 onto iron oxides. Porewater measurements from a well transect at Waquoit Bay, MA, USA indicate the presence of a reducing plume with high Fe2+, , DOC (dissolved organic carbon) and PO4 concentrations overlying a more oxidizing -rich plume. These two plumes travel nearly conservatively until they start to overlap in the intertidal coastal sediments prior to discharge into the bay. In this zone, the aeration of the surface beach sediments drives nitrification and allows the precipitation of iron oxide, which leads to the removal of PO4 through sorption. Model simulations suggest that removal of through denitrification is inhibited by the limited overlap between the two freshwater plumes, as well as by the refractory nature of terrestrial DOC. Submarine groundwater discharge is a significant source of to the bay.  相似文献   

5.
6.
This study provides new estimates for the global offshore methane hydrate inventory formed due to microbial CH4 production under Quaternary and Holocene boundary conditions. A multi-1D model for particular organic carbon (POC) degradation, gas hydrate formation and dissolution is presented. The novel reaction-transport model contains an open three-phase system of two solid compounds (organic carbon, gas hydrates), three dissolved species (methane, sulfates, inorganic carbon) and one gaseous phase (free methane). The model computes time-resolved concentration profiles for all compounds by accounting for chemical reactions as well as diffusive and advective transport processes. The reaction module builds upon a new kinetic model of POC degradation which considers a down-core decrease in reactivity of organic matter. Various chemical reactions such as organic carbon decay, anaerobic oxidation of methane, methanogenesis, and sulfate reduction are resolved using appropriate kinetic rate laws and constants. Gas hydrates and free gas form if the concentration of dissolved methane exceeds the pressure, temperature, and salinity-dependent solubility limits of hydrates and/or free gas, with a rate given by kinetic parameters. Global input grids have been compiled from a variety of oceanographic, geological and geophysical data sets including a new parameterization of sedimentation rates in terms of water depth.We find prominent gas hydrate provinces offshore Central America where sediments are rich in organic carbon and in the Arctic Ocean where low bottom water temperatures stabilize methane hydrates. The world’s total gas hydrate inventory is estimated at (at STP conditions) or, equivalently, 4.18-995 Gt of methane carbon. The first value refers to present day conditions estimated using the relatively low Holocene sedimentation rates; the second value corresponds to a scenario of higher Quaternary sedimentation rates along continental margins.Our results clearly show that in-situ POC degradation is at present not an efficient hydrate forming process. Significant hydrate deposits in marine settings are more likely to have formed at times of higher sedimentation during the Quaternary or as a consequence of upward fluid transport at continental margins.  相似文献   

7.
8.
9.
10.
The influence of solution complexation on the sorption of yttrium and the rare earth elements (YREEs) by amorphous ferric hydroxide was investigated at 25 °C over a range of pH (4.0-7.1) and carbonate concentrations . Distribution coefficients, defined as , where [MSi]T is the total concentration of sorbed YREE, MT is the total YREE concentration in solution, and [Si] is the concentration of amorphous ferric hydroxide, initially increased in magnitude with increasing carbonate concentration, and then decreased. The initial increase of is due to sorption of YREE carbonate complexes , in addition to sorption of free YREE ions (M3+). The subsequent decrease of , which is more extensive for the heavy REEs, is due to the increasing intensity of YREE solution complexation by carbonate ions. The competition for YREEs between solution complexation and surface complexation was modeled via the equation:
  相似文献   

11.
A new and empirical viscosity equation for anhydrous and hydrous natural silicate melts has been developed using the following formulation:
  相似文献   

12.
13.
The effect of pH on the kinetics of smectite (K-montmorillonite) dissolution was investigated at 25 °C in batch and stirred flow-through reactors over the pH range of 1-13.5, in KNO3 solutions. Dissolution rates were obtained based on the release of Si and Al at steady-state under far from equilibrium conditions. Dissolution was non-stoichiometric between pH 5 and 10, due to adsorption/precipitation of Al. Dissolution rates computed from batch and flow-through experiments were consistent, irrespective of the Si and Al concentrations. Sample pre-treatment and the interlayer cation do not affect the steady-state dissolution rate or stoichiometry of cation release. The rate dependence on pH can be described by:
  相似文献   

14.
15.
16.
The formation constants of neodymium complexes in sulfate solutions have been determined spectrophotometrically at temperatures of 30-250 °C and a pressure of 100 bars. The dominant species in the solution are NdSO4+ and Nd(SO4)2, with the latter complex being more important at higher temperature. Equilibrium constants were calculated for the following reactions:
  相似文献   

17.
18.
Potentiometric measurements of the stoichiometric constants for the dissociation of carbonic acid in NaCl solutions ( and ) have been made as a function of molality (0-6 m) and temperature (0-50 °C). The results have been fitted to the equations
  相似文献   

19.
20.
Gypsum precipitation kinetics were examined from a wide range of chemical compositions , ionic strengths (4.75-10 m) and saturation state with respect to gypsum (1.16-1.74) in seeded batch experiments of mixtures of Ca2+-rich Dead Sea brine and -rich seawater. Despite the variability in the experimental solutions, a single general rate law was formulated to describe the heterogeneous precipitation rate of gypsum from these mixtures:
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号