首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
The solubility of natural, near-end-member wollastonite-I (>99.5% CaSiO3) has been determined at temperatures from 400 to 800 °C and pressures between 0.8 and 5 GPa in piston-cylinder apparatus with the weight-loss method. Chemical analysis of quench products and optical monitoring in a hydrothermal diamond anvil cell demonstrates that no additional phases form during dissolution. Wollastonite-I, therefore, dissolves congruently in the pressure-temperature range investigated. The solubility of CaSiO3 varies between 0.175 and 13.485 wt% and increases systematically with both temperature and pressure up to 3.0 GPa. Above 3.0 GPa wollastonite-I reacts rapidly to the high-pressure modification wollastonite-II. No obvious trends are evident in the solubility of wollastonite-II, with values between 1.93 and 10.61 wt%. The systematics of wollastonite-I solubility can be described well by a composite polynomial expression that leads to isothermal linear correlation with the density of water. The molality of dissolved wollastonite-I in pure water is then
log(mwoll)=2.2288-3418.23×T-1+671386.84×T-2+logρH2O×(5.4578+2359.11×T-1).  相似文献   

2.
High-purity synthetic barite powder was added to pure water or aqueous solutions of soluble salts (BaCl2, Na2SO4, NaCl and NaHCO3) at 23 ± 2 °C and atmospheric pressure. After a short pre-equilibration time (4 h) the suspensions were spiked either with 133Ba or 226Ra and reacted under constant agitation during 120-406 days. The pH values ranged from 4 to 8 and solid to liquid (S/L) ratios varied from 0.01 to 5 g/l. The uptake of the radiotracers by barite was monitored through repeated sampling of the aqueous solutions and radiometric analysis. For both 133Ba and 226Ra, our data consistently showed a continuous, slow decrease of radioactivity in the aqueous phase.Mass balance calculations indicated that the removal of 133Ba activity from aqueous solution cannot be explained by surface adsorption only, as it largely exceeded the 100% monolayer coverage limit. This result was a strong argument in favor of recrystallization (driven by a dissolution-precipitation mechanism) as the main uptake mechanism. Because complete isotopic equilibration between aqueous solution and barite was approached or even reached in some experiments, we concluded that during the reaction all or substantial fractions of the initial solid had been replaced by newly formed barite.The 133Ba data could be successfully fitted assuming constant recrystallization rates and homogeneous distribution of the tracer into the newly formed barite. An alternative model based on partial equilibrium of 133Ba with the mineral surface (without internal isotopic equilibration of the solid) could not reproduce the measured activity data, unless multistage recrystallization kinetics was assumed. Calculated recrystallization rates in the salt solutions ranged from 2.8 × 10−11 to 1.9 × 10−10 mol m−2 s−1 (2.4-16 μmol m−2 d−1), with no specific trend related to solution composition. For the suspensions prepared in pure water, significantly higher rates (∼5.7 × 10−10 mol m−2 s−1 or ∼49 μmol m−2 d−1) were determined.Radium uptake by barite was determined by monitoring the decrease of 226Ra activity in the aqueous solution with alpha spectrometry, after filtration of the suspensions and sintering. The evaluation of the Ra uptake experiments, in conjunction with the recrystallization data, consistently indicated formation of non-ideal solid solutions, with moderately high Margules parameters (WAB = 3720-6200 J/mol, a0 = 1.5-2.5). These parameters are significantly larger than an estimated value from the literature (WAB = 1240 J/mol, a0 = 0.5).In conclusion, our results confirm that radium forms solid solutions with barite at fast kinetic rates and in complete thermodynamic equilibrium with the aqueous solutions. Moreover, this study provides quantitative thermodynamic data that can be used for the calculation of radium concentration limits in environmentally relevant systems, such as radioactive waste repositories and uranium mill tailings.  相似文献   

3.
The solubilities of the assemblages albite + paragonite + quartz and jadeite + paragonite + quartz in H2O were determined at 500 and 600 °C, 1.0-2.25 GPa, using hydrothermal piston-cylinder methods. The three minerals are isobarically and isothermally invariant in the presence of H2O, so fluid composition is uniquely determined at each pressure and temperature. A phase-bracketing approach was used to achieve accurate solubility determinations. Albite + quartz and jadeite + quartz dissolve incongruently in H2O, yielding residual paragonite which could not be retrieved and weighed. Solution composition fixed by the three-mineral assemblage at a given pressure and temperature was therefore bracketed by adding NaSi3O6.5 glass in successive experiments, until no paragonite was observed in run products. Solubilities derived from experiments bounding the appearance of paragonite thus constrain the equilibrium fluid composition. Results indicate that, at a given pressure, Na, Al, and Si concentrations are higher at 600 °C than at 500 °C. At both 500 and 600 °C, solubilities of all three elements increase with pressure in the albite stability field, to a maximum at the jadeite-albite-quartz equilibrium. In the jadeite stability field, element concentrations decline with continued pressure increase. At the solubility maximum, Na, Al, and Si concentrations are, respectively, 0.16, 0.05, and 0.48 molal at 500 °C, and 0.45, 0.27, and 1.56 molal at 600 °C. Bulk solubilities are 3.3 and 10.3 wt% oxides, respectively. Observed element concentrations are everywhere greater than those predicted from extrapolated thermodynamic data for simple ions, monomers, ion pairs, and the silica dimer. The measurements therefore require the presence of additional, polymerized Na-Al-Si-bearing species in the solutions. The excess solubility is >50% at all conditions, indicating that polymeric structures are the predominant solutes in the P-T region studied. The solubility patterns likely arise from combination of the large solid volume change associated with the albite-jadeite-quartz equilibrium and the rise in Na-Al-Si polymerization with approach to the hydrothermal melting curves of albite + quartz and jadeite + quartz. Our results indicate that polymerization of Na-Al-Si solutes is a fundamental aspect of fluid-rock interaction at high pressure. In addition, the data suggest that high-pressure metamorphic isograds can impose unexpected controls on metasomatic mass transfer, that significant metasomatic mass transfer prior to melting should be considered in migmatitic terranes, and that polymeric complexes may be an important transport agent in subduction zones.  相似文献   

4.
Preliminary measurements were carried out of the solubility of the O2-buffering assemblage bismuth + bismite (Bi2O3) in aqueous liquid–vapor and vapor-only systems at temperatures of 220, 250 and 300 °C. All experiments were carried out in Ti reaction vessels and were designed such that the Bi solids were contained in a silica tube that prevented contact with liquid water at any time during the experiment. Two blank (no Bi solids present) liquid–vapor experiments at 220 °C yielded Bi concentrations (±1σ) in the condensed liquid of 0.22 ± 0.02 mg/L, whereas the solubility measurements at this temperature yielded an average value of approximately 6 ± 9 mg/L, with replicate experiments ranging from 0.3 to 26 mg/L. Although the 6 mg/L value is associated with a considerable degree of uncertainty, the experiments do indicate transport of Bi through the vapor phase. Measured Bi concentrations in the condensed liquid at 250 °C were in the same range as those at 220 °C, whereas those at 300 °C were significantly lower (i.e., all below the blank value). Vapor-only experiments necessarily contained much smaller initial volumes of water, thereby making the results more susceptible to contamination. Single blank runs at 220 and 300 °C yielded Bi concentrations of 82 and 16 mg/L, respectively. Measured concentrations (±1σ) of Bi in the vapor-only solubility experiments at 220 °C were 235 ± 78 mg/L for an initial water volume of 0.5 mL, and at 300 °C were 56 ± 30 mg/L and 33 ± 21 for initial water volumes of 1 and 2 mL, respectively, suggesting strong preferential partitioning of Bi into the vapor. The results indicate a negative dependence of Bi solubility on temperature, but are inconclusive with respect to the dependence of Bi solubility on water density or fugacity.  相似文献   

5.
This study used batch reactors to characterize the mechanisms and rates of elemental release (Al, Ca, K, Mg, Na, F, Fe, P, Sr, and Si) during interaction of a single bacterial species (Burkholderia fungorum) with granite at T = 28 °C for 35 days. The objective was to evaluate how actively metabolizing heterotrophic bacteria might influence granite weathering on the continents. We supplied glucose as a C source, either NH4 or NO3 as N sources, and either dissolved PO4 or trace apatite in granite as P sources. Cell growth occurred under all experimental conditions. However, solution pH decreased from ∼7 to 4 in NH4-bearing reactors, whereas pH remained near-neutral in NO3-bearing reactors. Measurements of dissolved CO2 and gluconate together with mass-balances for cell growth suggest that pH lowering in NH4-bearing reactors resulted from gluconic acid release and H+ extrusion during NH4 uptake. In NO3-bearing reactors, B. fungormum likely produced gluconic acid and consumed H+ simultaneously during NO3 utilization.Over the entire 35-day period, NH4-bearing biotic reactors yielded the highest release rates for all elements considered. However, chemical analyses of biomass show that bacteria scavenged Na, P, and Sr during growth. Abiotic control reactors followed different reaction paths and experienced much lower elemental release rates compared to biotic reactors. Because release rates inversely correlate with pH, we conclude that proton-promoted dissolution was the dominant reaction mechanism. Solute speciation modeling indicates that formation of Al-F and Fe-F complexes in biotic reactors may have enhanced mineral solubilities and release rates by lowering Al and Fe activities. Mass-balances further reveal that Ca-bearing trace phases (calcite, fluorite, and fluorapatite) provided most of the dissolved Ca, whereas more abundant phases (plagioclase) contributed negligible amounts. Our findings imply that during the incipient stages of granite weathering, heterotrophic bacteria utilizing glucose and NH4 only moderately elevate silicate weathering reactions that consume atmospheric CO2. However, by enhancing the dissolution of non-silicate, Ca-bearing trace minerals, they could contribute to high Ca/Na ratios commonly observed in granitic watersheds.  相似文献   

6.
This study used batch reactors to characterize the rates and mechanisms of elemental release during the interaction of a single bacterial species (Burkholderia fungorum) with Columbia River Flood Basalt at T = 28 °C for 36 days. We primarily examined the release of Ca, Mg, P, Si, and Sr under a variety of biotic and abiotic conditions with the aim of evaluating how actively metabolizing bacteria might influence basalt weathering on the continents. Four days after inoculating P-limited reactors (those lacking P in the growth medium), the concentration of viable planktonic cells increased from ∼104 to 108 CFU (Colony Forming Units)/mL, pH decreased from ∼7 to 4, and glucose decreased from ∼1200 to 0 μmol/L. Mass-balance and acid-base equilibria calculations suggest that the lowered pH resulted from either respired CO2, organic acids released during biomass synthesis, or H+ extrusion during uptake. Between days 4 and 36, cell numbers remained constant at ∼108 CFU/mL and pH increased to ∼5. Purely abiotic control reactors as well as control reactors containing inert cells (∼108 CFU/mL) showed constant glucose concentrations, thus confirming the absence of biological activity in these experiments. The pH of all control reactors remained near-neutral, except for one experiment where the pH was initially adjusted to 4 but rapidly rose to 7 within 2 days. Over the entire 36 day period, P-limited reactors containing viable bacteria yielded the highest Ca, Mg, Si, and Sr release rates. Release rates inversely correlate with pH, indicating that proton-promoted dissolution was the dominant reaction mechanism. Both biotic and abiotic P-limited reactors displayed low P concentrations. Chemical analyses of bacteria collected at the end of the experiments, combined with mass-balances between the biological and fluid phases, demonstrate that the absence of dissolved P in the biotic reactors resulted from microbial P uptake. The only P source in the basalt is a small amount of apatite (∼1.2%), which occurs as needles within feldspar grains and glass. We therefore conclude that B. fungorum utilized apatite as a P source for biomass synthesis, which stimulated elemental release from coexisting mineral phases via pH lowering. The results of this study suggest that actively metabolizing bacteria have the potential to influence elemental release from basalt in continental settings.  相似文献   

7.
Fluid inclusions were synthesized in a piston-cylinder apparatus under mineral-buffered conditions over a range of Cl concentration (0.29 to 11.3 mol kg−1), temperature (525 to 725 °C), and pressure (0.3 to 1.7 GPa). All fluids were buffered by the mineral assemblage native copper + cuprite + talc + quartz. In situ fluid composition was determined by analysing individual fluid inclusions by LA-ICPMS and independently analysing the quench solution. The solubility data provide basic information necessary to model the high temperature behaviour of Cu in magmatic-hydrothermal systems. Copper concentrations up to ∼15 wt% were measured at 630 °C and 0.34 GPa. These results give an upper limit for Cu in natural fluids and support field-based observations of similar high Cu concentrations in fluids at near-magmatic conditions. Experimental evidence indicates that Cu+ may form neutral chloride complexes with the general stoichiometry with n up to 4, though n ? 2 is typical for the majority of the experimental conditions. At high pressure (>∼0.5 GPa) there is evidence that hydroxide species, e.g., CuOH0, become increasingly important and may predominate over copper(I)-chloride complexes. The roles of fluid mixing, cooling and decompression in ore-forming environments are also discussed.  相似文献   

8.
The effect of pH on the kinetics of smectite (K-montmorillonite) dissolution was investigated at 25 °C in batch and stirred flow-through reactors over the pH range of 1-13.5, in KNO3 solutions. Dissolution rates were obtained based on the release of Si and Al at steady-state under far from equilibrium conditions. Dissolution was non-stoichiometric between pH 5 and 10, due to adsorption/precipitation of Al. Dissolution rates computed from batch and flow-through experiments were consistent, irrespective of the Si and Al concentrations. Sample pre-treatment and the interlayer cation do not affect the steady-state dissolution rate or stoichiometry of cation release. The rate dependence on pH can be described by:
  相似文献   

9.
The aqueous interfacial chemistry of kaolinite and Na-montmorillonite samples was investigated by potentiometric measurements using acid/base continuous titrations and batch experiments at 25 and 60 °C. Using the batch experimental method, a continuous drift of pH was observed reflecting the mineral dissolution. Consequently, the continuous titration method appears to be the best way of studying solid surface reactions. For each clay mineral, the net proton surface excess/consumption was calculated as a function of pH and ionic strength (0.025, 0.1 and 0.5 M). At 25 °C, and according to the literature data, the pH corresponding to zero net proton consumption for montmorillonite appears to depend on ionic strength, whereas the value for kaolinite is constant and close to 5. Similar results are obtained at 60 °C, which suggests that the point of zero net proton consumption for clay minerals does not depend on temperature, at least up to 60 °C. On the other hand, the temperature rise induces a slight increase of the net proton surface excess. Finally, the diffuse double layer formalism (DDLM) is used to model the experimental data. The model involves two processes: the protonation/deprotonation of two types of edge sites (aluminol and silanol) and H+/Na+ exchange reactions on basal surfaces, while a tiny proportion of the negative structural charge remains uncompensated. This last process maintains a negative surface potential whatever the pH of the solution, which is in agreement with electrokinetic data.  相似文献   

10.
The behavior of ammonium, NH4+, in aqueous systems was studied based on Raman spectroscopic experiments to 600 °C and about 1.3 GPa. Spectra obtained at ambient conditions revealed a strong reduction of the dynamic three-dimensional network of water with addition of ammonium chloride, particularly at small solute concentrations. The differential scattering cross section of the ν1-NH4+ Raman band in these solutions was found to be similar to that of salammoniac.The Raman band of silica monomers at ∼780 cm−1 was present in all spectra of the fluid at high temperatures in hydrothermal diamond-anvil cell experiments with H2O ± NH4Cl and quartz or the assemblage quartz + kyanite + K-feldspar ± muscovite/tobelite. However, these spectra indicated that dissolved silica is less polymerized in ammonium chloride solutions than in comparable experiments with water. Quantification based on the normalized integrated intensity of the H4SiO40 band showed that the silica solubility in experiments with H2O + NH4Cl was significantly lower than that in equimolal NaCl solutions. This suggests that ammonium causes a stronger decrease in the activity of water in chloridic solutions than sodium.The Raman spectra of the fluid also showed that a significant fraction of ammonium was converted to ammonia, NH3, in all experiments at temperatures above 300 °C. This indicates a shift towards acidic conditions for experiments without a buffering mineral assemblage. The estimated pH of the fluid was ∼2 at 600 °C, 0.26 GPa, 6.6 m initial NH4Cl, based on the ratio of the integrated ν1-NH3 and ν1-NH4+ intensities and the HCl0 dissociation constant. The NH3/NH4+ ratio increased with temperature and decreased with pressure. This implies that more ammonium should be retained in K-bearing minerals coexisting with chloridic fluids upon high-P low-T metamorphism. At 500 °C, 0.73 GPa, ammonium partitions preferentially into the fluid, as constrained from infrared spectroscopy on the muscovite and from mass balance.The conversion of K-feldspar to muscovite proceeded much faster in experiments with NH4Cl solutions than in comparable experiments with water. This is interpreted as being caused by enhancement of the rate-limiting alumina solubility, suggesting complexation of Al with NH4. Nucleation and growth of mica at the expense of K-feldspar and NH4+/K+ exchange between fluid and K-feldspar occurred simultaneously, but incorporation of NH4+ into K-feldspar was distinctly faster than K-feldspar consumption.  相似文献   

11.
Highly reducing and high-pH vent fluids characterize moderately low temperature ultramafic-hosted hydrothermal systems, such as the recently discovered Lost City hydrothermal field at 30°N Mid-Atlantic Ridge Ridge (MAR). To better understand the role of mineral reaction rates on changes in fluid chemistry and mineralization processes in these and similar systems, we conducted an experimental study involving seawater and peridotite at 200 °C, 500 bar. Time series changes in fluid chemistry were monitored and compared with analogous data predicted using experimental and theoretical data for mineral dissolution rates. Although there was qualitative agreement between predicted and measured changes in the chemical evolution of the fluid for some species, the rate and magnitude of increase in pH, dissolved chloride and H2 did not agree well with predictions based on theoretical modeling results. Experimental data indicate that dissolved H2 abruptly and intermittently increased, reaching a value only approximately 20% of that predicted assuming magnetite as the primary Fe-bearing alteration phase. The distribution and valence of Fe in primary and secondary minerals reveal that the most abundant secondary mineral, serpentine, contained significant amounts of both ferric and ferrous Fe, with the less abundant brucite, also being Fe-rich (XFe = 0.3). Surprisingly, magnetite was present in only trace amounts, indicating that H2 generation was largely accommodated by the formation of Fe-chrysotile. Accordingly, the diversity of Fe-bearing secondary minerals together with rates of serpentinization less than theoretically predicted, account best for the relatively low dissolved H2 concentrations produced. Thus, the experimental data can be used to obtain provisional estimates of thermodynamic data for Fe-bearing minerals, enhancing the application of reaction path models depicting mass transfer processes during serpentinization at mid-ocean ridges. Similarly, the observed differences between theoretically predicted and experimentally measured pH values result from constraints imposed by complex patterns of mass transfer inherent to the experimental system. In particular, the experimental observation of a late stage increase in Na/Cl ratio likely results from the dissolution of a Na2O component of clinopyroxene, which causes pH to increase sufficiently to induce precipitation of a Ca-bearing phase, perhaps portlandite. As with the redox variability observed during the experiment, this event could not be predicted, underscoring the need to use caution when modeling alteration processes in the chemically complex ultramafic-hosted hydrothermal systems at elevated temperatures and pressures.  相似文献   

12.
The solubility and speciation of the assemblage MoO2-MoO3 in water vapour were investigated in experiments conducted at 350 °C, Ptotal from 59 to 160 bar and fHCl from 0 to 3.4 bar (0-2.0 mol%). Measured solubility at these conditions ranges from 22 to 2500 ppm (∑fMo from 4.4 × 10−4 to 6.5 × 10−2 bar). The concentration of Mo in the vapour at fHCl below 0.1 bar is similar to that in pure water vapour, but increases by two orders of magnitude at fHCl above 0.1 bar. The fugacity of gaseous Mo species is independent of chloride concentration at fHCl below 0.1 bar, but increases with increasing fHCl above this pressure. The dominant Mo species at fHCl below 0.1 bar is interpreted to be the same as it is in pure water vapour, and to form as a result of the reaction
(A1)  相似文献   

13.
The mobility and transport of gold in low-temperature waters and brines is affected by the aqueous speciation of gold, which is sensitive in particular to pH, oxidation and halide concentrations. In this study, we use UV-Vis spectrophotometry to identify and measure the thermodynamic properties of Au(III) aqueous complexes with chloride, bromide and hydroxide. Au(III) forms stable square planar complexes with hydroxide and halide ligands. Based on systematic changes in the absorption spectra of solutions in three binary systems NaCl-NaBr, NaCl-NaOH and NaBr-NaOH at 25 °C, we derived log dissociation constants for the following mixed and end-member halide and hydroxide complexes: [AuCl3Br], [AuCl2Br2], [AuBr3Cl] and [AuBr4]; [AuCl3(OH)], [AuCl2(OH)2], [AuCl(OH)3] and [Au(OH)4]; and [AuBr3(OH)], [AuBr2(OH)2] and [AuBr(OH)3]. These are the first reported results for the mixed chloride-bromide complexes. Increasing temperature to 80 °C resulted in an increase in the stability of the mixed chloride-bromide complexes, relative to the end-member chloride and bromide complexes. For the [AuCl(4−n)(OH)n] series of complexes (n = 0-4), there is an excellent agreement between our spectrophotometric results and previous electrochemical results of Chateau et al. [Chateau et al. (1966)]. In other experiments, the iodide ion (I) was found to be unstable in the presence of Au(III), oxidizing rapidly to I2(g) and causing Au to precipitate. Predicted Au(III) speciation indicates that Au(III) chloride-bromide complexes can be important in transporting gold in brines with high bromide-chloride ratios (e.g., >0.05), under oxidizing (atmospheric), acidic (pH < 5) conditions. Native gold solubility under atmospheric oxygen conditions is predicted to increase with decreasing pH in acidic conditions, increasing pH in alkaline conditions, increasing chloride, especially at acid pH, and increasing bromide for bromide/chloride ratios greater than 0.05. The results of our study increase the understanding of gold aqueous geochemistry, with the potential to lead to new methods for mineral exploration, hydrometallurgy and medicine.  相似文献   

14.
Hydrocarbon distributions and stable isotope ratios of carbonates (δ13Ccar, δ18Ocar), kerogen (δ13Cker), extractable organic matter (δ13CEOM) and individual hydrocarbons of Liassic black shale samples from a prograde metamorphic sequence in the Swiss Alps were used to identify the major organic reactions with increasing metamorphic grade. The studied samples range from the diagenetic zone (<100°C) to amphibolite facies (∼550°C). The samples within the diagenetic zones (<100 and 150°C) are characterized by the dominance of C<20n-alkanes, suggesting an origin related with marine and/or bacterial inputs. The metamorphic samples (200 to 550°C) have distributions significantly dominated by C12 and C13n-alkanes, C14, C16 and C18n-alkylcyclopentanes and to a lesser extend C15, C17 and C21n-alkylcyclohexanes. The progressive 13C-enrichment (up to 3.9‰) with metamorphism of the C>17n-alkanes suggests the occurrence of cracking reactions of high molecular weight compounds. The isotopically heavier (up to 5.6) C<17n-alkanes in metamorphic samples are likely originated by thermal degradation of long-chain homologous with preferential release of isotopically light C1 and C2 radicals. The dominance of specific even C-number n-alkylcyclopentanes suggests an origin related to direct cyclization mechanism (without decarboxylation step) of algal or bacterial fatty acids occurring in reducing aqueous metamorphic fluid conditions. The regular increase of the concentrations of n-alkylcycloalkanes vs. C>13n-alkanes with metamorphism suggests progressive thermal release of kerogen-linked fatty acid precursors and degradation of n-alkanes. Changes of the steroid and terpenoid distributions are clearly related to increasing metamorphic temperatures. The absence of 18α(H)-22,29,30-trisnorneohopane (Ts), the occurrence of 17β(H)-trisnorhopane, 17β(H), 21α(H)-hopanes in the C29 to C31 range and 5α(H),14α(H),17α(H)-20R C27, C29 steranes in the low diagenetic samples (<100°C) are characteristic of immature bitumens. The higher thermal stress within the upper diagenetic zone (150°C) is marked by the presence of Ts, the disappearance of 17β(H)-trisnorhopane and thermodynamic equilibrium of the 22S/(22S + 22R) homohopane ratios. The increase of the ααα-sterane 20S/(20S + 20R) and 20R ββ/(ββ + αα) ratios (from 0.0 to 0.55 and from 0.0 to 0.40, respectively) in the upper diagenetic zone indicates the occurrence of isomerization reactions already at <150°C. However, the isomerization at C-20 (R → S) reaches thermodynamic equilibrium values already at the upper diagenesis (∼150°C) whereas the epimerisation at C-14 and C-17 (αα → ββ) arrives to constant values in the lower anchizone (∼200°C). The ratios Ts vs. 17α(H)-22,29,30-trisnorneohopane [(Ts/(Ts + Tm)] and 18α(H)-30-norneohopane (C29Ts) vs. 17α(H),21β(H)-30-norhopane [C29Ts/(C29Ts + C29)] increase until the medium anchizone (200 to 250°C) from 0.0 to 0.96 and from 0.0 to 0.44, respectively. An opposite trend towards lower values is observed in the higher metamorphic samples.The occurrence of specific hydrocarbons (e.g., n-alkylcyclopentanes, cadalene, hydrogenated aromatic compounds) in metamorphic samples points to kerogen degradation reactions most probably occurring in the presence of water and under reducing conditions. The changes of hydrocarbon distributions and carbon isotopic compositions of n-alkanes related to metamorphism suggest that the organic geochemistry may help to evaluate the lowest grades of prograde metamorphism.  相似文献   

15.
16.
The stability of yttrium-acetate (Y-Ac) complexes in aqueous solution was determined potentiometrically at temperatures 25-175 °C (at Ps) and pressures 1-1000 bar (at 25 and 75 °C). Measurements were performed using glass H+-selective electrodes in potentiometric cells with a liquid junction. The species YAc2+ and were found to dominate yttrium aqueous speciation in experimental solutions at 25-100 °C (log [Ac] < −1.5, pH < 5.2), whereas at 125, 150 and 175 °C introduction of into the Y-Ac speciation model was necessary. The overall stability constants βn were determined for the reaction
  相似文献   

17.
The kinetics of Fe(III) precipitation in synthetic buffered waters have been investigated over the pH range 6.0-9.5 using a combination of visible spectrophotometry, 55Fe radiometry combined with ion-pair solvent extraction of chelated iron and numerical modeling. The rate of precipitation, which is first order with respect to both dissolved and total inorganic ferric species, varies by nearly two orders of magnitude with a maximum rate constant of 16 ± 1.5 × 106 M−1 s−1 at a pH of around 8.0. Our results support the existence of the dissolved neutral species, Fe(OH)30, and suggest that it is the dominant precursor in Fe(III) polymerization and subsequent precipitation at circumneutral pH. The intrinsic rate constant of precipitation of Fe(OH)30 was calculated to be allowing us to predict rates of Fe(III) precipitation in the pH range 6.0-9.5. The value of this rate constant, and the variation in the precipitation rate constant over the pH range considered, are consistent with a mechanism in which the kinetics of iron precipitation are controlled by rates of water exchange in dissolved iron hydrolysis species.  相似文献   

18.
Direct measurements of calcite faces were performed using in situ atomic force microscopy (AFM) to reveal the dissolution processes as a function of solution saturation state and temperature. Time-sequential AFM images demonstrated that step velocities at constant temperature increased with increasing undersaturation. The anisotropy of obtuse and acute step velocities appeared to become more significant as solutions approached equilibrium and temperature increased. At saturation state Ω > 0.02, a curvilinear boundary was formed at the intersection of two acute steps and the initially rhombohedral etch pit exhibited a nearly triangular shape. This suggests that the and steps may not belong to the calcite-aqueous solution equilibrium system. Further increase in the saturation state (Ω ? 0.3) led to a lack of etch pit formation and dissolution primarily occurred at existing steps, in accordance with Teng (2004). Analysis of step kinetics at different temperatures yielded activation energies of 25 ± 6 kJ/mol and 14 ± 13 kJ/mol for obtuse and acute steps, respectively. The inconsistencies in etch pit morphology, step anisotropy, and step activation energies from the present study with those of studies far-from-equilibrium can be explained by increased influence of the backward reaction, or growth, near-equilibrium. We propose that the backward reaction occurs preferentially at the acute-acute kink sites. The kinetics and effective activation energies of near-equilibrium calcite dissolution presented in this work provide accurate experimental data under likely CO2 sequestration conditions, and thus are crucial to the development of robust geochemical models that predict the long-term performance of mineral-trapped CO2.  相似文献   

19.
Synthetic fluid inclusions in quartz were grown from cassiterite-saturated fluids in cold-seal pressure vessels at and subsequently analyzed by laser ablation-ICP-MS. Most inclusions were synthesized using a new technique that allows entrapment of fluid that had no immediate contact to the capsule walls, such that potential disequilibrium effects due to alloying could be avoided. Measured Sn solubilities increase with increasing ligand concentration in the fluid, ranging from 100 to 800 ppm in NaCl-bearing fluids (5-35 wt% NaCl), from 70 to 2000 ppm in HF-bearing fluids (0.5-3.2 m HF), and from 0.8 to 11 wt% in HCl-bearing fluids (0.5-4.4 m HCl). Two runs performed with the in-situ cracking method after 1 week of pre-equilibration demonstrate that the speed of hydrogen diffusion through the capsule wall relative to that of fluid inclusion formation is a critical factor in fO2-dependent solubility studies. Graphical evaluation of the solubility data suggests that Sn may have been dissolved as Sn(OH)Cl in the NaCl-bearing fluids, as Sn(OH)Cl and SnCl2 in the HCl-bearing fluids, and as SnF2 in the HF-bearing fluids. Experiments with NaF-bearing fluids produced an additional melt phase with an approximate composition of 53 wt% SiO2, 25 wt% H2O, 14 wt% NaF and 8 wt% SnO, which caused the composition of the coexisting fluid to be buffered at 0.5 wt% NaF and 150 ppm Sn. Fluorine-rich, peralkaline melts may therefore serve as important transport media for Sn in the final crystallization stages of tin granites. Based on the available cassiterite-solubility data in fluids and melts, in natural granite systems is estimated to be in the order of 0.1-4 (depending on their aluminosity), suggesting that Sn is not easily mobilized by magmatic-hydrothermal fluids. This interpretation is in accordance with the high degrees of Sn-enrichment commonly observed in highly fractionated melt inclusions. is primarily controlled by the HCl concentration in the fluid, which in turn is a function of the aluminum saturation index of the magma. Compared to HCl, the effect of fluorine on is subordinate.  相似文献   

20.
Forward dissolution rates of Na-Montmorillonite (Wyoming) SWy-2 smectite (Ca0.06Na0.56)[Al3.08Fe(III)0.38Mg0.54] [Si7.93 Al0.07]O20(OH)4 were measured at 25 °C in a mixed-flow reactor equipped with interior dialysis compartment (6-8 kDa membrane) as a function of pH (1-12), dissolved carbonate (0.5-10 mM), phosphate (10−5 to 0.03 M), and nine organic ligands (acetate, oxalate, citrate, EDTA, alginate, glucuronic acid, 3,4-dihydroxybenzoic acid, gluconate, and glucosamine) in the concentration range from 10−5 to 0.03 M. In organic-free solutions, the Si-based rates decrease with increasing pH at 1 ? pH ? 8 with a slope close to −0.2. At 9 ? pH ? 12, the Si-based rates increase with a slope of ∼0.3. In contrast, non-stoichiometric Mg release weakly depends on pH at 1 ? pH ? 12 and decreases with increasing pH. The empirical expression describing Si-release rates [R, mol/cm2/s] obtained in the present study at 25 °C, I = 0.01 M is given by
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号