首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Polycyclic aromatic hydrocarbons with varying degrees of aromatization were isolated from the Eocene Messel Shale (Rheingraben, Germany). The high abundances of these compounds and their structural resemblances to cyclic triterpenoid lipids are consistent with derivation from microbial rather than thermal processes. Compounds structurally related to oleanane contain from five to nine double bonds; those within a series of aromatized hopanoids contain from three to nine. All are products of diagenetic reactions that remove hydrogen or methyl groups, and, in several cases, break carbon-carbon bonds to open rings. Aromatized products are on average depleted in 13C relative to possible precursors by l.2% (range: l.5% enrichment to 4% depletion, n = 9). The dependence of 13C content on the number of double bonds is not, however, statistically significant and it must be concluded that there is no strong evidence for isotopic fractionation accompanying diagenetic aromatization. Isotopic differences between series (structures related to ursane, des-A-ursane, des-A-lupane, des-A-arborane, and possibly, des-A-gammacerane are present) are much greater, indicating that 13C contents are controlled primarily by source effects. Fractionations due to chromatographic isotope effects during HPLC ranged from 0.1 to 2.8%.  相似文献   

2.
Pore water profiles of dissolved Si, Ca2+, SO42-, CH4, and TCO2 (Dissolved Inorganic Carbon; DIC) were determined from multicores and gravity cores collected at nine sites off Southern California, the west coast of Mexico, and within the Gulf of California. These sites were located within the eastern North Pacific oxygen minimum zone at depths of 400 to 900 m and in settings where bottom water oxygen concentrations were <3 μM and sediments were laminated. Pore water profiles were defined at a resolution of millimeters (whole core squeezing), centimeters (sectioning and squeezing) and meters (gravity core sectioning and squeezing), and diffusive fluxes were calculated for different zones within the sediment column. The flux of dissolved silica across the sediment-water interface (SWI) ranged from 0.3 to 3.4 mmol Si m-2d-1, and TCO2 fluxes ranged from 0.8 to 4.6 mmol C m-2d-1. A positive correlation (r = 0.74) existed between these fluxes, yet these two constituents exhibited significantly different diagenetic behavior downcore; dissolved Si generally reached a constant concentration (between 450 and 900 μM) in the upper few cm, whereas TCO2 concentrations increased monotonically with depth.Methane was detected at micromolar levels in sediment intervals between 0 and 60 cm and at five sites, increased to millimolar levels at depths of 80 to 170 cm. At the horizon marking the appearance of millimolar levels of methane, there was a distinct change in slope of the sulfate and TCO2 gradients. A flux budget for this horizon was determined by using linear fits to pore water profiles; these budgets indicate that the upward TCO2 flux away from this horizon is 40 to 50% greater than the downward sulfate flux to this horizon. Given that the TCO2 flux to this horizon from below was quite small, this imbalance suggests that anaerobic oxidation of methane by sulfate is not the only process producing TCO2 within this horizon. A budget for TCO2 at this horizon is balanced when 40 to 80% of the sulfate flux is attributed to organic carbon remineralization. Of the DIC that diffuses across the SWI, 20 to 40% is generated by reactions occurring within or below this deep reaction horizon.  相似文献   

3.
Results of pore water and sediment analyses from the western Mexican continental margin strongly suggest the present day formation of apatite. The interstitial water phosphate and fluoride profiles indicate chemical removal at a depth which corresponds to a large maximum in the phosphorus content of the sediments. Apatite is identified within this maximum via X-ray diffraction but is elsewhere undetectable in the core. Radioisotopic thorium, uranium, and radium data support the conclusion that this deposit is modern. The present day depositional environment is consistent with those reported by other workers for phosphorite formation with the exception that pore water magnesium is not depleted below its seawater value.  相似文献   

4.
Ordination is a multivariate technique developed by plant ecologists which has proven effective in the interpretation of paleoenvironments. It allows gradational relationships among samples to be depicted in contrast to other quantitative techniques which classify samples into discrete groups. In this study, ordination is used to interpret textural data for 62 bottom samples taken from the Cape Hatteras, North Carolina, continental margin. The ordination suggests the existence of six sedimentary facies that are similar to those obtained by cluster analysis using a dendrograph display. The facies represented are: littoral sands and outer-shelf shelly sands; inner-shelf sands; outer-shelf sands and silts; outer-shelf slope silts; and two highly biogenic, deep-water silt and clayey silt facies with similar characteristics. The facies are related in a qualitative manner to the environmental processes operating off Cape Hatteras. Chicago Bridge Technical Paper No. 5139.  相似文献   

5.
In NW Mexico, zeolite deposits of potential economic interest occur in continental sediments related to mid-Tertiary basin and range tectonism. In central Sonora, where the stratigraphic column is thicker (e.g. in the Moctezuma Basin), two superposed sequences of sediments are distinguished on the basis of their lithology and stratigraphy. They are known as the Baucarit Formation. The lower sequence, Miocene in age and 300 to 400 m thick, is indurated and consists mainly of sandstones and conglomerates. The upper one, of variable thickness, consists of clays. Zeolites occur in both sequences as alteration products of volcanic glass in beds of white intercalated rhyolitic tuff. Previously known outcrops of zeolitites from Rio Batepito (erionite), Tetuachi and San Pedro Ures (heulandite group), Divisaderos (chabazite) and several other newly discovered occurrences are described in this work in terms of mineral association, physical properties (porosity, thermal behaviour) and chemical characteristics (major and trace elements for individual crystals and bulk rock). Heulandite-group minerals are also present as cement (30% by volume) of the sandstones from the lower sequence. Amygdales and veins from basaltic flows intercalated within the lowest sediments contain a large variety of zeolite species: chabazite, stilbite, phillipsite, mesolite, erionite, thomsonite, heulandite and analcime. Zeolites in the pyroclastic beds intercalated in the upper sequence represent the highest economic potential because they are essentially monomineralic and constitute up to 80% in volume of the whole rock. Because of the inhomogeneous distribution of amygdales, zeolites in the basaltic flows have a low economic interest.  相似文献   

6.
Based on the sedimentary geochemical studies of the Antarctic Ocean and the various geochemical parameters available,this paper deals with the process of emobilization of iodine in marine sediments during early diagenesis.The results showed that the process is not always controlled completely by organic matter as was expected previously.On average the adsorption and oxide phases of iodine account respectively for 23% and 32% of the total in continental-shelf and hemipelagic surficial sediments.Chemical analysis has revealed that the upward diffusion flux and redox conditions would play an important role in the concentration of iodine in the surface sediments.And the species of iodine in the surfial sediments characteristic of high I/Corg ratios would bepredominated by the oxide and adsorption phases.As experimentally evidenced,it is the early diagenetic remoibilization of iodine associated with the oxide and adsorption phases that led to the decrease of I/Corg with increasing depth.Calculations suggested that the diffusion flux of iodine from the deep parts of te sedimentary columum upwards is on the same order of magnitude as the deposition flux of it from sea water.This may be one of the important factors leading to the depletion of iodine in sedimentary rocks.On the basis of the above discussion and calculations the author has proposed a model for the remobilization of iodine in marine sediments during early diagenesis.  相似文献   

7.
8.
通过对南海北部神狐海域Site5B和Site4B站位岩心柱沉积物中自生矿物的类型、形貌特点、丰度和稳定同位素特征的研究,探讨了自生矿物的成因机制。研究表明,沉积物中主要发育黄铁矿和碳酸盐类自生矿物。两个站位中发育的自生矿物的丰度、分布位置、晶体形貌和个体大小等存在明显差异,可能与不同站位中甲烷通量和深部构造有关。自生黄铁矿可能是硫酸盐与甲烷等烃类气体或有机质的厌氧氧化作用的产物,极低负值的硫同位素值可能与硫酸盐还原菌和单质硫歧化菌共同参与有关。自生碳酸盐矿物的成因则相对复杂,其形成过程受多种因素的综合影响。碳同位素值未表现出极低负值,可能是甲烷、有机质和正常海水等碳源混合的结果。  相似文献   

9.
We present the iron isotope composition of primary, diagenetic and metamorphic minerals in five samples from the contact metamorphosed Biwabik Iron Formation. These samples attained peak metamorphic temperatures of <200, <340, ∼500, <550, and <740°C respectively. δ56Fe of bulk layers ranges from −0.8 to +0.8‰; in some samples the layers may differ by >1‰ on the millimeter scale. Minerals in the lowest grade samples consistently show a sequence in which δ56Fe of magnetite > silicate ≥ carbonate. The inter-mineral Fe isotope differences vary in a fashion that cannot be reconciled with theoretical temperature-dependent fractionation factors. Textural evidence reveals that most, if not all, magnetite in the Biwabik Formation is diagenetic, not primary, and that there was tremendous element mobility during diagenesis. The short duration of contact metamorphism allowed diagenetic magnetite compositions to be preserved throughout prograde metamorphism until at least the appearance of olivine. Magnetite compositions therefore act as an isotope record of the environment in which these sediments formed. Larger-scale fluid flow and longer timescales may allow equilibration of Fe isotopes in regionally metamorphosed rocks to lower temperatures than in contact metamorphic environments, but weakly regionally metamorphosed rocks may preserve small-scale Fe isotopic heterogeneities like those observed in the Biwabik Iron Formation. Importantly, Fe isotope compositions that are characteristic of chemical sedimentation or hydrothermal processes are preserved at low grade in the form of large inter-mineral variations, and at high grade in the form of unique bulk rock compositions. This observation confirms earlier work that has suggested that Fe isotopes can be used to identify sedimentary processes in the Precambrian rock record. An erratum to this article can be found at  相似文献   

10.
The effects of diagenesis on marine organic material have been compared to those on terrestrial organic material in three Australian oil exploration wells. n-Alkaae distributions obtained for limestones ranged from C15 to C25 with no odd-even predominance and showed little variation with depth. n-Alkane distributions obtained for shales ranged from C15 to C33 and frequently had a pronounced odd-even predominance. Differences in the rates of hydrocarbon diagenesis between different rock types may be due to variations in either clay mineral content or the nature of the parent organic material. The individual n-alkane distributions of the sediments are determined by source material, degree of diagenesis and lithofacies.  相似文献   

11.
12.
The Biwabik Iron Formation of Minnesota (1.9 Ga) underwent contact metamorphism by intrusion of the Duluth Complex (1.1 Ga). Apparent quartz–magnetite oxygen isotope temperatures decrease from ∼700°C at the contact to ∼375°C at 2.6 km distance (normal to the contact in 3D). Metamorphic pigeonite at the contact, however, indicates that peak temperatures were greater than 825°C. The apparent O isotope temperatures, therefore, reflect cooling, and not peak metamorphic conditions. Magnetite was reset in δ18O as a function of grain size, indicating that isotopic exchange was controlled by diffusion of oxygen in magnetite for samples from above the grunerite isograd. Apparent quartz–magnetite O isotope temperatures are similar to calculated closure temperatures for oxygen diffusion in magnetite at a cooling rate of ∼5.6°C/kyr, which suggests that the Biwabik Iron Formation cooled from ∼825 to 400°C in ∼75 kyr at the contact with the Duluth Complex. Isotopic exchange during metamorphism also occurred for Fe, where magnetite–Fe silicate fractionations decrease with increasing metamorphic grade. Correlations between quartz–magnetite O isotope fractionations and magnetite–iron silicate Fe isotope fractionations suggest that both reflect cooling, where the closure temperature for Fe was higher than for O. The net effect of metamorphism on δ18O–δ56Fe variations in magnetite is a strong increase in δ18OMt and a mild decrease in δ56Fe with increasing metamorphic grade, relative to the isotopic compositions that are expected at the low temperatures of initial magnetite formation. If metamorphism of Iron Formations occurs in a closed system, bulk O and Fe isotope compositions may be preserved, although re-equilibration among the minerals may occur for both O and Fe isotopes. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
The organic matter in the Late Cretaceous and Tertiary sediments from the southern Black Sea margin is assigned to the terrestrial-marine/terrestrial range of organic facies. Within this range, the stratigraphic section yields different organic facies types in response to different accumulation and preservation controlling processes. During the Late Companian-Maastrichtian, organic material from the shelf and slope was re-deposited in the deeper oxic parts of the basin. Rapid transport and sedimentation resulted in a higher degree of preservation of lipid-rich, terrestrial components (sporinite, cutinite, resinite) in comparison to the autochthonous sediments. The increase in organic carbon with increasing silt/clay content together with low carbon concentrations in the allochthonous sediments suggest that the accumulation of organic matter in the source areas was controlled by terrigenous influx and that the accumulation conditions were not favorable.In the Eocene (fore-arc basin), the higher content of marine organic matter can be explained by progressive shallowing of the environment and by reduced oxygen content in the bottom waters (reduced bioturbation).In the Miocene and Pliocene (back-arc basin), the organic fraction of the sediments from the basin margin is purely terrestrial and consists mostly of inertinite and reworked terrigenous liptinite indicating oxidative conditions. The dominance of inertodetrinite in the Miocene and of semifusinite in the Pliocene point to a change in the source area or to a higher energy transport or deposition conditions for the Miocene marginal sediments. In the basin interior, the higher content of marine organic matter is due to an oxygen deficiency or anoxic conditions in the bottom waters. Mineral associations indicate complete sulfate reduction and consequent methanogenesis. This is also implied in the hydrocarbon distributions. Periodic oxic conditions lead to a decrease in the marine liptinitic component. In the basin interior, however, the terrigenous fraction is still dominant, implying a continuous influx from the basin margins.The Late Cretaceous to Pliocene sediments are thermally immature (Rm<0.5%, Tmax<435 °C).
Zusammenfassung Die organische Substanz in den Sedimenten der Oberkreide und des Tertiärs der südlichen Schwarzmeerregion ist dem terrestrischen bis marin-terrestrischen Bereich organischer Fazies zuzuordnen. Innerhalb dieses Bereiches weisen die stratigraphischen Abschnitte unterschiedliche organische Faziestypen auf, die auf unterschiedliche, die Akkumulation und den Erhaltungsgrad der organischen Substanz kontrollierende Prozesse zurückzuführen sind.Während des Obercampan-Maastrichtiums und des Paläozäns (fore-arc Becken) wurde organisches Material des Schelf/-hanges in den tieferen oxischen Beckenbereichen resedimentiert. Die rasche Zufuhr und Ablagerung führte zu einem gegenüber den autochthonen Sedimenten höheren Erhaltungsgrad an lipidreichen, terrestrischen Komponenten (Sporinit, Cutinit, Resinit). Die Zunahme an organischem Kohlenstoff mit steigendem Silt-/Tonanteil bei insgesamt niedrigen Kohlenstoffkonzentrationen in den Resedimenten läßt vermuten, daß die Akkumulation organischer Substanz in den Liefergebieten durch terrigene Zufuhr bestimmt wurde und die Akkumulationsbedingungen ungünstig waren.Für das Eozän ist ein erhöhter Eintrag an marinem organischem Material zu verzeichnen, der mit der zunehmenden Verflachung des Ablagerungsraumes (fore-arc Becken) und einer Reduzierung im Sauerstoffgehalt des Bodenwassers (abnehmende Bioturbation) erklärt wird.Für das Miozän und Pliozän (back-arc Becken) ist die organische Fraktion der Ablagerungen des Beckenrandes rein terrestrisch und besteht zum größten Teil aus Inertinit und wieder aufgearbeitetem terrigenem Liptinit, die oxidative Verhältnisse anzeigen. Die Dominanz von Inertodetrinit im Miozän und Semifusinit im Pliozän indiziert eine Änderung im Liefergebiet oder ein höheres Energieniveau beim Transport bzw. im Ablagerungsraum der miozänen Randsedimente. Im Beckeninneren ist ein erhöhter Anteil an mariner organischer Substanz festzustellen, der auf Sauerstoffverarmung oder anoxische Verhältnisse im Bodenwasser zurückgeführt wird. Die Mineralassoziationen in den Sedimenten weisen auf vollständige Sulfatreduktion und nachfolgende Methanogenese hin, die sich auch mit den Kohlenwasserstoffverteilungen nachvollziehen läßt. Periodisch oxische Bedingungen führen zu einer Reduzierung der marin-liptinitischen Komponente. Im Beckeninneren dominiert jedoch auch die terrigene Fraktion (Huminit/Vitrinit, Inertinit), was auf kontinuierliche Zufuhr vom Beckenrand schließen läßt.Die Sedimente der Oberkreide bis Pliozän sind thermisch unreif (Rm<0.5%, Tmax<435 °C).

Résumé La matière organique contenue dans les sédiments du Crétacé supérieur et du Tertiaire de la partie sud de la Mer Noire est à rapporter au domaine de facies organique terrestre à marin-terrestre. La série stratigraphique présente, dans les limites de ce domaine, divers types de facies organiques qui traduisent les divers processus qui régissent l'accumulation et la préservation.Au cours du Campanian supérieur-Maastrichtien, des matériaux organiques provenant du shelf et du talus continental ont été redéposés dans les parties oxygénées plus profondes du bassin. La rapidité du transport et de la sédimentation a entraîné la préservation de composants terrestres riches en lipides (sporonite, cutinite, résinite), dans une mesure plus élevée que dans les sédiments autochtones. L'augmentation de la teneur en carbone organique corrélative à celle de la fraction fine (boue et silt), de même que la faible concentration en carbone des sédiments allochtones indique que, dans la région-source, l'accumulation de matières organiques était régie par un afflux terrigène et que les conditions d'accumulation n'étaient pas favorables.A l'Eocène (bassin d'avant-arc) le contenu en matière organique marine est plus élevé, ce qui s'explique par la diminution progressive de la profondeur et par la réduction de la teneur en oxygène des eaux du fond (bioturbation réduite).Au Miocène et au Pliocène (bassin d'arrière-arc), la fraction organique des sédiments de la bordure du bassin est purement terrestre et consiste principalement en inertinite et en liptinite terrigène remaniée, ce qui indique des conditions oxydantes. La prédominance d'inertodétrinite au Miocène et de semifusinite au Pliocène indique soit une source différente, soit un transport ou un dépôt dans les conditions de plus haute énergie des sédiments miocènes marginaux. Vers l'intérieur du bassin, le contenu plus élevé en matière organique marine est dû à une déficience en oxygène ou à des conditions anoxiques dans les eaux de fond. Les associations minérales indiquent une réduction complète des sulfates et en conséquence une méthanogenèse, ce qui ressort également de la distribution des hydrocarbures. Des conditions oxydantes périodiques provoquent une diminution du composant liptinitique marin. Dans l'intérieur du bassin, toutefois, la fraction terrigène reste dominante, ce qui implique un afflux continu depuis les marges du bassin.Les sédiments d'âge crétacé supérieur à pliocène sont thermiquement immatures (Rm<0,5%; Tmax<435 °C).

, , - . , , . - , . , ( , , ), . , , . , (force-arc Basin) ( ). (back-arc Basin) , . , , . , , . , . . ( , ), . : (Rm<0,5 %; Tmax<435° ).
  相似文献   

14.
Generally, oxidative regeneration of phosphate from anoxic sediments is by microbially mediated sulfate reduction processes. Stoichiometric modelling of such reactions takes into consideration varying proportions of ‘decomposable’ organically bound P to account for the ratios among nutrients in depth-concentration profiles of near-surface sediments. New results of interstitial water composition from sediments underlying the water masses influenced by coastal upwelling of the eastern boundary current system off Peru indicate that dissolution of phosphatic fish debris represents a mechanism for remineralization of phosphate comparable to or larger in magnitude than that by oxidative regeneration of organically bound P.Dissolved interstitial phosphate from fish debris is revealed by an excess amount of phosphate over that predicted from a simple stoichiometric oxidative regeneration model and by anomalously high dissolved interstitial fluoride concentrations. Phosphate flux estimates based on diffusion from the sediment suggest that this mechanism may generate up to 10% of the nutrient pool in the waters of the Peru undercurrent. Partitioning of P among the two sources reveals further that fish debris phosphate is about four times more important than organically bound P in nutrient generation from sediments of the Peru continental margin. Not only does this mechanism of regeneration affect the nutrient cycling but may also control widespread phosphorite formation in this area.  相似文献   

15.
发育于太行山造山带南段的西石门铁矿矿体和岩体、碳酸盐岩地层之间有非常明显的接触界线,且具有明显的侵入关系.矿石矿物主要以自形磁铁矿为主,矿石发育气孔构造,显示了充填-贯入的特征.全岩地球化学分析结果表明,闪长岩与钠长岩的FeO、MgO与TiO2呈明显的线性正相关,Na2O与SiO2呈微弱线性正相关,而Na2O与CaO呈线性负相关.闪长岩Fe同位素组成的变化范围为δ56Fe=-0.048‰~0.223‰,平均值为δ56Fe=0.070‰±0.197(2SD,n=6);钠长岩Fe同位素组成的变化范围为δ56Fe=0.033‰~0.101‰,平均值为δ56Fe=0.063‰±0.070(2SD,n=4);磁铁矿矿石Fe同位素组成的变化范围为δ56Fe=0.008‰~0.115‰,平均值为δ56Fe=0.065‰±0.089(2SD,n=12);两个矽卡岩Fe同位素分别为-0.085‰和0.025‰;大理岩样品的δ56Fe为-0.320‰.磁铁矿矿石Fe同位素组成和平均火成岩接近,且较为均一,铁的来源很可能来自于高温"矿浆".本文提出西石门铁矿床为岩浆通道-"矿浆"贯入式成矿.矿体下部相比上部更偏富集Fe的重同位素,判断"矿浆"运移方向是从下部往上部运移.  相似文献   

16.
龙欣雨  唐杰  许文良 《岩石学报》2024,40(3):785-810
花岗岩作为大陆地壳的重要组成部分, 其岩浆作用过程一直是地学领域研究的热点。传统上利用全岩地球化学和同位素数据来示踪花岗岩成因和演化过程的方法已不够准确, 为此, 本文系统总结了近年来报导的花岗岩中单矿物的原位微区成分——这些数据记录了全岩数据无法识别的单矿物颗粒内部和不同矿物颗粒之间元素和同位素组成的变异特征, 明显提高了对花岗质岩浆作用及后期演化过程的认识。首先, 矿物原位微区成分对花岗质岩浆的源区性质和混合过程具有指示意义。花岗岩中岩浆锆石Hf同位素组成的变异可能暗示其源区在深熔作用过程中发生了锆石的不平衡和选择性熔融, 而未必是壳幔混合作用的结果, 这是对"锆石效应"概念新的扩展; 同一花岗岩样品中分选出的磷灰石颗粒可以具有完全不同的稀土元素配分模式、Eu异常、Sr含量和Sr-Nd同位素组成等, 表明它们中的部分颗粒是岩浆形成和上升过程中从围岩捕获的, 是小规模地壳混染作用的产物; 榍石的微区成分分带记录了多种岩浆混合过程, 也反映了熔体成分、氧逸度和温度等因素的变化; 花岗岩与其中发育的包体、捕虏体和相关围岩的锆石Hf-O同位素和磷灰石Sr-Nd同位素组成可以记录上述岩石在形成过程中经历岩浆混合和同化混染等作用。其次, 矿物原位微区成分可以反映花岗质岩浆的分离结晶过程。岩浆成因磷灰石不同的稀土元素配分模式可能指示它们受到了其他矿物分离结晶作用的影响, 如帘石族、榍石、角闪石、斜长石等; 花岗伟晶岩系统中岩浆成因独居石Sm/Nd值在不同岩带中的规律性变化揭示了岩浆分离结晶程度的差异; 榍石的多种微区元素含量和它们之间的协变关系受控于花岗质岩浆的结晶分异过程和氧化还原状态; 岩浆成因绿帘石族矿物的震荡环带表明在绿帘石结晶的晚期阶段花岗质岩浆中的Fe3+含量降低, 且结晶过程中褐帘石和绿帘石并不能形成完全连续的固溶体, 因此晚期结晶的绿帘石环边与褐帘石核具有成分间断; 根据角闪石的电子探针数据可以计算得到花岗质岩浆结晶时的温度、压力和fO2, 并据此推断出岩浆起源的深度。此外, 矿物原位微区成分可以记录花岗质岩石晚期经历的构造热事件和矿化作用过程。经历晚期变质/交代作用改造的花岗岩中的磷灰石具有低的轻稀土元素含量和变化很大的Nd同位素组成, 导致花岗岩具有Nd-Hf位素体系解耦的特点; 晚期变质/交代作用同样会改变磷灰石和榍石的δ18O值, 造成各副矿物之间δ18O值相互解耦的现象; 蚀变独居石的元素和U-Th-Pb同位素体系指示流体交代过程中多种置换反应的发生以及普通Pb混染和Pb丢失的过程; 热液成因绿帘石族矿物的成分环带表明氧化环境下热液流体成分会不断演化, 根据矿物-流体平衡模型, 可以利用绿帘石成分计算出成矿作用发生的温度以及流体的pH值, 研究表明绿帘石向流体中释放的大量Ca2+有效促进了硫化物矿床的成矿作用进程。综上, 单矿物原位微区成分分析技术的不断提高使我们对花岗质岩浆作用及后期演化过程的认识有了很大进步, 在未来的研究中, 如何取长补短, 将这些数据进行良好地运用是本领域的重要方向。  相似文献   

17.
The concentrations of authigenic phases of Cd, Re, U, and Mo increase with depth in four 45-cm-long sediment box cores collected along the axis of the Laurentian Trough, Gulf of St. Lawrence. Average authigenic accumulation rates, estimated from element inventories, are similar to rates in other continental margin environments. Strong regional variations in sediment accumulation rate and sulfide concentration have little influence on the accumulation rates of Cd and Re. This suggests that slow precipitation kinetics controls the accumulation of Cd and Re in these sediments. The accumulation rate of authigenic U is more variable; it may be tied to the kinetics of microbially mediated U reduction and be controlled by the availability of reactive organic matter. Authigenic Mo is distinguished by a sharp subsurface concentration minimum, above which Mo cycles with manganese. Mo released to pore water upon reduction of Mn oxides diffuses downward and enriches the subsurface sediment. Mo accumulates most rapidly in the sediment with the highest sulfide content. Slow conversion of molybdate to thiomolybdate may explain the much slower Mo accumulation rate in the less sulfidic sediments. A component of authigenic Mo accumulates with pyrite in an approximately constant Mo:Fe ratio. The accumulation rate of pyrite and associated Mo is insensitive to AVS abundance. Pyrite formation may be limited by the reactivity of iron oxide minerals.  相似文献   

18.
Glycerol dialkyl glycerol tetraether (GDGT)-based proxies are increasingly used in modern carbon cycling and palaeoenvironmental investigations. It is therefore crucial to examine the robustness (sources, transport and degradation) of all GDGT-based proxies in continental margins, where sedimentation rates and extent of carbon cycling are high. We have analyzed the distributions of GDGTs in surface sediments from the Lower Yangtze River and East China Sea (ECS) shelf. The results revealed multiple sources and complex shelf processes that govern the distributions. The isoprenoid GDGT-inferred sea surface temperatures (SSTs) are robust and reflect the satellite-derived annual mean SSTs on the shallow ECS shelf, confirming an origin from surface water column-dwelling crenarchaeota. The input from methanogen-sourced, isoprenoid GDGTs is significant in the river surface sediments but they are almost absent from the ECS shelf. Branched GDGTs are also abundant in the river sediments, but ca. 95% are degraded in the Yangtze estuary, a much greater extent than observed for other terrigenous organic matter (OM) proxies. There is also evidence for production of branched GDGTs in the oxic ECS shelf water column and the anoxic sediments/waters of the Lower Yangtze River. As a result, branched GDGT-based proxies in the lower river and ECS surface sediments do not reflect the catchment environmental conditions. The effective degradation in the estuary and widespread aquatic contributions of branched GDGTs improves our understanding of how to use branched GDGT-based proxies in marginal seas.  相似文献   

19.
Rock‐magnetic measurements of two sediment cores from the Madeira Abyssal Plain (MAP), north Atlantic, are used to investigate post‐depositional changes in the concentration, grain size and composition of magnetic minerals in the sediments that have occurred within organic‐rich turbidite horizons. The changes are associated with an initial stage of suboxic (reductive) diagenesis, following depletion of porewater O2, and a later stage of oxidative diagenesis associated with the slow descent of an oxidation front through the sediment, as a result of diffusion of O2 from the overlying sea water. The turbidites are of late Quaternary age (δ18O stages 1–3) and derive both from different sites on the NW African continental margin, and from the flanks of the Canary Islands. Thus, the turbidites are variable compositionally, especially in terms of carbonate, detrital magnetic mineral and organic carbon content. Diagenetic changes in these sediments have been identified using solid‐phase geochemical data (U, Mn, Corg and CaCO3) reported previously in more than one study. Rock‐magnetic parameters of the sediments, when expressed on a carbonate‐free basis, reveal that significant depletion of detrital ferrimagnetic iron (Fe2+/Fe3+) oxide grains has occurred within organic‐rich turbidites during redoxomorphic diagenesis. Normalized quotients of magnetic parameters also show that reductive diagenesis is a ferrimagnetic grain size‐selective process, but it has a minimal effect on the canted‐antiferromagnetic Fe3+ oxides in the sediment. Such components, if present, therefore become relatively enriched in magnetic assemblages as the ferrimagnetic grains are dissolved progressively, and bulk magnetic concentration is thus depleted. There is clear evidence in both cores for the existence of ultrafine ferrimagnetic grains at depth within the suboxic zone of the organic‐rich turbidites, beneath both active and fossil oxidation fronts. These grains are most probably associated with populations of live magnetotactic bacteria, which commonly inhabit such organic‐rich horizons and play a part in the chain of bacterially mediated reactions normally associated with suboxic diagenesis. These results show that simple and rapid rock‐magnetic techniques can be used to characterize early diagenetic processes involving iron phases in deep‐sea sediments, at least as effectively as more laborious, time‐consuming and sample‐destructive geochemical measurements.  相似文献   

20.
Radiocarbon-dated marine cores, measurements of sediment density and seismic surveys were used to estimate the sediment and mass accumulation rates (m/kyr and kg/m2/kyr) in the troughs from the southwest to north-central Iceland shelf (i.e. northwest sector of Iceland). The 3.5-kHz seismic survey showed varying thicknesses of acoustically transparent sediment in the troughs, whereas the inter-trough banks were largely devoid of sediment. The survey showed a pervasive reflector 1 to ≥60 m below the sea floor, which turned out to be Saksunarvatn tephra, dated at 10 180±60 cal. yr BP. The 3.5-kHz analogue data were digitized at 1-min intervals and provided 1645 estimates of maximum sediment thickness and 979 estimates of sediment accumulation over the last 10 200 cal. yr BP. Maximum sediment accumulation occurred in the mid-troughs and not, as expected, in the fjords. The median sediment accumulation rate (SAR) based on the core data was 0.23 m/kyr, but was 0.77 m/kyr based on the seismic data: the difference is attributed to coring limitations. Based on the volume of offshore sediment and the contributing terrestrial drainage area, the Holocene denudation of northern Iceland (c. 50 000 km2) is calculated to have been between 0.02 to 0.05 m/kyr, substantially lower that the 1-3 m/kyr derived from the suspended sediment load of rivers from southern Iceland but in agreement with the rate of accumulation of Holocene glacial lacustrine sediments in central Iceland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号