首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gold species spontaneously deposited on pyrite and chalcopyrite, pyrrhotite, galena, sphalerite from HAuCl4 solutions at room temperature, as well as the state of the reacted mineral surfaces have been characterized using synchrotron radiation X-ray photoelectron spectroscopy (SR-XPS), scanning tunneling microscopy and tunneling spectroscopy (STM/STS). The deposition of silver from 10−4 M AgNO3 has been examined for comparison. Gold precipitates as metallic nanoparticles (NPs) from about 3 nm to 30 nm in diameter, which tends to aggregate forming larger particles, especially on pyrite. The Au 4f binding energies increase up to 1 eV with decreasing size of individual Au0 NPs, probably due to the temporal charging in the final state. Concurrently, a positive correlation between the tunneling current and the particle size was found in STS. Both these size effects were observed for unusually large, up to 20 nm Au particles. In contrast, silver deposited on the minerals as nanoparticles of semiconducting sulfide showed no shifts of photoelectron lines and different tunneling spectra.The quantity of gold deposited on pyrite and other minerals increased with time; it was lower for fracture surfaces and it grew if minerals were moderately pre-oxidized, while the preliminary leaching in Fe(III)-bearing media inhibited the following Au deposition. After the contact of polished minerals with 10−4 M solution (pH 1.5) for 10 min, the gold uptake changed in the order CuFeS2 > ZnS > PbS > FeAsS > FeS2 > Fe7S8. It was noticed that the open circuit (mixed) potentials of the minerals varied in approximately the same order, excepting chalcopyrite. We concluded that the potentials of minerals were largely determined by Fe(II)/Fe(III) couple, whereas the reduction of gold complexes had a minor effect. As a result, the deposition of gold, although it proceeded via the electrochemical mechanism, increased with decreasing potential. This suggests, in particular, that the accumulation of “invisible” gold in arsenian pyrites and arsenopyrite under hydrothermal conditions may be explained by the low electrochemical potentials but not structural relationships between As and Au in solids.  相似文献   

2.
藏南查拉普金矿床载金矿物特征与金的赋存状态   总被引:1,自引:0,他引:1  
黄铁矿和毒砂是卡林型和造山型金矿床重要的载金矿物。文章通过电子探针(EPMA)分析研究了藏南查拉普金矿床不同类型黄铁矿和毒砂中Au、As、S、Fe等元素的含量变化和分布规律,发现不同阶段的黄铁矿具有不同的结构特征和元素组成特点。沉积成岩期黄铁矿(Py1)主要呈草莓状、胶状,常构成环带状黄铁矿的核心,其中金的含量最高,显示了金在沉积成岩期的大量富集。热液期早阶段黄铁矿(Py2)主要呈自形-半自形的立方体,与Py1元素(S、Fe、As)组成相近,显示了一定的继承演化关系。热液期主阶段黄铁矿(Py3)与毒砂共生,多呈自形-半自形的五角十二面体、立方体,常包裹早期的黄铁矿形成环带结构。Py3中As的含量明显升高,其增加量近似等于S的减少量,说明As主要进入黄铁矿晶格替代了S的位置。各个阶段的黄铁矿和毒砂中Au的分布在EPMA微束的分辨率下均显示是不均匀的,Au在Py1和大部分Py2中主要以纳米级自然金(Au0)的形式存在;而在Py3中主要以(Au+)的形式存在,少部分以纳米级自然金(Au0)形式存在。Py1的结构及元素组成与典型卡林型金矿和造山型金矿沉积成岩期黄铁矿的特点相似,而Py3的大量发育则符合卡林型金矿的特征。  相似文献   

3.
Despite the common belief that AuI complexes with hydrogen sulfide ligands (H2S/HS) are the major carriers of gold in natural hydrothermal fluids, their identity, structure and stability are still subjects of debate. Here we present the first in situ measurement, using X-ray absorption fine structure (XAFS) spectroscopy, of the stability and structure of aqueous AuI–S complexes at temperatures and pressures (T–P) typical of natural sulfur-rich ore-forming fluids. The solubility of native gold and the local atomic structure around the dissolved metal in S–NaOH–Na2SO4–H2SO4 aqueous solutions were characterized at temperatures 200–450 °C and pressures 300–600 bar using an X-ray cell that allows simultaneous measurement of the absolute concentration of the absorbing atom (Au) and its local atomic environment in the fluid phase. Structural and solubility data obtained from XAFS spectra, combined with quantum-chemical calculations of species geometries, show that gold bis(hydrogensulfide) Au(HS)2 is the dominant Au species in neutral-to-basic solutions (5.5  pH  8.5; H2O–S–NaOH) over a wide range of sulfur concentrations (0.2 < ΣS < 3.6 mol/kg), in agreement with previous solubility studies. Our results provide the first direct determination of this species structure, in which two sulfur atoms are in a linear geometry around AuI at an average distance of 2.29 ± 0.01 Å. At acidic conditions (1.5  pH  5.0; H2O–S–Na2SO4–H2SO4), the Au atomic environment determined by XAFS is similar to that in neutral solutions. These findings, together with measured high Au solubilities, are inconsistent with the predominance of the gold hydrogensulfide Au(HS)0 complex suggested by recent solubility studies. Our spectroscopic data and quantum-chemical calculations imply the formation of species composed of linear S–Au–S moieties, like the neutral [H2S–Au–SH] complex. This species may account for the elevated Au solubilities in acidic fluids and vapors with H2S concentrations higher than 0.1–0.2 mol/kg. However, because of the complex sulfur speciation in acidic solutions that involves sulfite, thiosulfate and polysulfide species, the formation of AuI complexes with these ligands (e.g., AuHS(SO2)0, Au(HS2O3)2, Au(HSn)2) cannot be ruled out. The existence of such species may significantly enhance Au transport by high T–P acidic ore-forming fluids and vapors, responsible for the formation of a major part of the gold resources on Earth.  相似文献   

4.
Vein-hosted mesothermal stibnite-gold mineralisation at the Hillgrove Au-Sb mine in northeastern New South Wales has a halo of veinlet and disseminated auriferous arsenopyrite and arsenian pyrite in metasedimentary and granitic host rocks. About 50–55% of the gold produced at Hillgrove occurs invisibly in arsenopyrite and pyrite. Gold losses of ∼20% into tailings are due to this mineral chemical factor. From PIXE probe analyses, it has been found that arsenopyrite contains 255–1500 ppm Au and pyrite 24–223 ppm Au, with Au contents of each mineral correlating moderately with As content. Arsenopyrite and pyrite also contain anomalous values of Cu, Ag and Sb, whereas paragenetically later stibnite contains little invisible gold, but minor Fe, As, Ag, Cu and Pb. The precipitation of invisible gold in arsenopyrite and pyrite by a possible (Fe, Au)3+= (As-S)3− substitution mechanism may have been facilitated by rapid, non-equilibrium conditions involving pressure decreases and wall rock reaction (sulphidation, carbonatisation), as a prelude to the main stage of stibnite and gold deposition. Received: 15 January 1999 / Accepted: 12 October 1999  相似文献   

5.
The Song Hien Rift basin is considered as one of the important regions for gold deposits in North East Vietnam. Host rocks of a number gold deposits in the Song Hien Rift basin are mainly in Lower Triassic sedimentary formations. However, there is the Hat Han gold deposit hosted in fined-grained mafic magmatic rocks with similar characteristics as gold deposit hosted in the Triassic sediments. Sulphur isotopic compositions of sulphide are similar to those in carbonaceous shale, suggesting that the sulphur was ‘borrowed’ from sedimentary rocks in filling the rift basin. Gold-bearing sulphides (pyrite and arsenopyrite) are the main form of Au presence in the ore. Gold in pyrite is present as Au+ 1, and a minor amount of as nanoparticles of native Au (Au0); whereas in arsenopyrite, gold is chemically bound as the octahedral complex AuAs2. Analysis of geology, as well as geochemical and isotopic studies show that the genesis of the Hat Han gold deposit is not related to the Cao Bang mafic magmatism; instead the latter only serves as (ore) host rock. The geochemical results presented above suggest that the gabbro host rock only supplies iron needed for sulphide formation. With regard to ore genesis, the Hat Han gold deposit in the Song Hien rift basin was generated in the similar way as sediment-hosted gold deposit. There are many similar typomorphic features between the Hat Han deposit and Carlin-like deposits in the Nanpanjang sedimentary basin in China.  相似文献   

6.
Microorganisms and higher plants produce biogenic ligands, such as siderophores, to mobilize Fe that otherwise would be unavailable. In this paper, we study the stability of arsenopyrite (FeAsS), one of the most important natural sources of arsenic on Earth, in the presence of desferrioxamine (DFO-B), a common siderophore ligand, at pH 5. Arsenopyrite specimens from mines in Panasqueira, Portugal (100-149 μm) that contained incrustations of Pb, corresponding to elemental Pb as determined by scanning electron microscopy-electron diffraction spectroscopy (SEM-EDX), were used for this study. Batch dissolution experiments of arsenopyrite (1 g L−1) in the presence of 200 μM DFO-B at initial pH (pH0) 5 were conducted for 110 h. In the presence of DFO-B, release of Fe, As, and Pb showed positive trends with time; less dependency was observed for the release of Fe, As, and Pb in the presence of only water under similar experimental conditions. Detected concentrations of soluble Fe, As, and Pb in suspensions containing only water were found to be ca. 0.09 ± 0.004, 0.15 ± 0.003, and 0.01 ± 0.01 ppm, respectively. In contrast, concentrations of soluble Fe, As, and Pb in suspensions containing DFO-B were found to be 0.4 ± 0.006, 0.27 ± 0.009, and 0.14 ± 0.005 ppm, respectively. Notably, the effectiveness of DFO-B for releasing Pb was ca. 10 times higher than that for releasing Fe. These results cannot be accounted for by thermodynamic considerations, namely, by size-to-charge ratio considerations of metal complexation by DFO-B. As determined by SEM-EDX, elemental sample enrichment analysis supports the idea that the Fe-S subunit bond energy is limiting for Fe release. Likely, the mechanism(s) of dissolution for Pb incrustations is independent and occurs concurrently to that for Fe and As. Our results show that dissolution of arsenopyrite leads to precipitation of elemental sulfur, and is consistent with a non-enzymatic mineral dissolution pathway. Finally, speciation analyses for As indicate variability in the As(III)/As(V) ratio with time, regardless of the presence of DFO-B or water. At reaction times <30 h, As(V) concentrations were found to be 50-70%, regardless of the presence of DFO-B. These results are interpreted to indicate that transformations of As are not imposed by ligand-mediated mechanisms. Experiments were also conducted to study the dissolution behavior of galena (PbS) in the presence of 200 μM at pH0 5. Results show that, unlike arsenopyrite, the dissolution behavior of galena shows coupled increases in pH with decreases in metal solubility at t > 80 h. Oxidative dissolution mechanisms conveying sulfur oxidation bring about the production of {H+}. However, dissolution data trends for arsenopyrite and galena indicate {H+} consumption. It is plausible that the formation of Pb species is dependent on {H+} and {OH}, namely, stable surface hydroxyl complexes of the form (pH50 5.8) and for pH values 5.8 or above.  相似文献   

7.
Porphyry-type ore deposits sometimes contain fluid inclusion compositions consistent with the partitioning of copper and gold into vapor relative to coexisting brine at the depositional stage. However, this has not been reproduced experimentally at magmatic conditions. In an attempt to determine the conditions under which copper and gold may partition preferentially into vapor relative to brine at temperatures above the solidus of granitic magmas, we performed experiments at 800 °C, 100 MPa, oxygen fugacity () buffered by Ni-NiO, and fixed at either 3.5 × 10−2 by using intermediate solid solution-pyrrhotite, or 1.2 × 10−4 by using intermediate solid solution-pyrrhotite-bornite. The coexisting vapor (∼3 wt.% NaCl eq.) and brine (∼68 wt.% NaCl eq.) were composed initially of NaCl + KCl + HCl + H2O, with starting HCl set to <1000 μg/g in the aqueous mixture. Synthetic vapor and brine fluid inclusions were trapped at run conditions and subsequently analyzed by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Our experiments demonstrate that copper and gold partitioned strongly into the magmatic volatile phase(s) (MVP) (i.e., vapor or brine) relative to a silicate melt over the entire imposed range of . Nernst style partition coefficients between coexisting brine (b) and melt (m), Db/m (±1σ), range from 3.6(±2.2) × 101 to 4(±2) × 102 for copper and from 1.2(±0.6) × 102 to 2.4(±2.4) × 103 for gold. Partition coefficients between coexisting vapor (v) and melt, Dv/m range from 2.1 ± 0.7 to 18 ± 5 and 7(±3) × 101 to 1.6(±1.6) × 102 for copper and gold, respectively. Partition coefficients for all experiments between coexisting brine and vapor, Db/v (±1σ), range from 7(±2) to 1.0(±0.4) × 102 and 1.7(±0.2) to 15(±2) for copper and gold, respectively. Observed average Db/v at an of 1.2 × 10−4 were elevated, 95(±5) and 15 ± 1 for copper and gold, respectively, relative to those at the higher of 3.5 × 10−2 where Db/v were 10(±5) for copper and 7(±6) for gold. Thus, there is an inverse relationship between the and the Db/v for both copper and gold with increasing resulting in a decrease in the Db/v signifying increased importance of the vapor phase for copper and gold transport. This suggests that copper and gold may complex with volatile S-species as well as Cl-species at magmatic conditions, however, none of the experiments of our study at 800 °C and 100 MPa had a Db/v ? 1. We did not directly determine speciation, but infer the existence of some metal-sulfur complexes based on the reported data. We suggest that copper and gold partition preferentially into the brine in most instances at or above the wet solidus. However, in most systems, the mass of vapor is greater than the mass of brine, and vapor transport of copper and gold may become more important in the magmatic environment at higher , lower , or near the critical point in a salt-water system. A Db/v ? 1 at subsolidus hydrothermal conditions may also occur in response to changes in temperature, , , and/or acidity.Additionally, both copper and gold were observed to partition into intermediate solid solution and bornite much more strongly than into vapor, brine or silicate melt. This suggests that, although vapor and brine are both efficient at removing copper and gold from a silicate melt, the presence of Cu-Fe sulfides can sequester a substantial portion of the copper and gold contained within a silicate melt if the Cu-Fe sulfides are abundant.  相似文献   

8.
The speciation of cobalt (II) in Cl and H2S-bearing solutions was investigated spectrophotometrically at temperatures of 200, 250, and 300 °C and a pressure of 100 bars, and by measuring the solubility of cobaltpentlandite at temperatures of 120-300 °C and variable pressures of H2S. From the results of these experiments, it is evident that CoHS+ and predominate in the solutions except at 150 °C, for which the dominant chloride complex is CoCl3. The logarithms of the stability constant for CoHS+ show moderate variation with temperature, decreasing from 6.24 at 120 °C to 5.84 at 200 °C, and increasing to 6.52 at 300 °C. Formation constants for chloride species increase smoothly with temperature and at 300°C their logarithms reach 8.33 for , 6.44 for CoCl3, 4.94 to 5.36 for , and 2.42 for CoCl+. Calculations based on the composition of a model hydrothermal fluid (Ksp-Mu-Qz, KCl = 0.25 m, NaCl = 0.75 m, ΣS = 0.3 m) suggest that at temperatures ?200 °C, cobalt occurs dominantly as CoHS+, whereas at higher temperatures the dominant species is .  相似文献   

9.
The sheeted quartz–sulfide veins of the Radzimowice Au–As–Cu deposit in the Kaczawa Mountains are related to Upper Carboniferous post-collisional potassic magmatism of the composite Zelezniak porphyry intrusion. Multiple intrusive activity ranges from early calc-alkaline to sub-alkaline and alkaline rocks and is followed by multiple hydrothermal events. Early crustally derived dacitic magma has low mg# (<63) and very low concentrations of mantle-compatible trace elements, high large-ion lithophile elements (LILE), moderate light rare-earth elements (LREE), and low high-field-strength elements (HFSE). Later phases of more alkaline rocks have higher mg# (60–70), and LILE, LREE, and HFSE characteristics that indicate mafic magma contributions in a felsic magma chamber. The last episode of the magmatic evolution is represented by lamprophyre dikes which pre-date ore mineralization and are spatially related to quartz–sulfide–carbonate veins. The dikes consist of kersantite and spessartite of calc-alkaline affinity with K2O/Na2O ratios of 1.1–1.9, mg# of 77–79, and high abundances of mantle-compatible trace elements such as Cr, Ni, and V. They have high LILE, low LREE, and low HFSE contents suggesting a subduction-related post-collisional arc-setting. The mineralization started with arsenopyrite that was strongly brecciated and overprinted by multiple quartz–carbonate phases associated with base-metal sulfides and Au–Ag–Bi–Te–Pb±S minerals. The sulfur isotope composition of sulfides ranges from –1.1 to 2.8 34S and suggests a magmatic source. At least two generations of gold deposition are recognized: (1) early refractory, and (2) subsequent non-refractory gold mineralization of epithermal style. Co-rich arsenopyrite with refractory gold and pyrite are the most abundant minerals of the early stage of sulfide precipitation. Early arsenopyrite formed at 535–345°C along the arsenopyrite–pyrrhotite–loellingite buffer and late arsenopyrite crystallized below 370°C along the arsenopyrite–pyrite buffer. Non-refractory gold associated with base-metal sulfides and with Bi–Te–Ag–Pb–S mineral assemblages has an average fineness of about 685, and is represented by electrum of two generations, and minor maldonite (Au2Bi). Fluid inclusions from various quartz generations co-genetic with base-metal sulfides and associated with carbonates, tellurides and non-refractory gold indicate fluids with moderate salinity (9–15 wt% NaCl equiv.) and a temperature and pressure drop from 350 to 190°C and 1.2 to 0.8 kbar, respectively. According to the result of the sulfur isotope fractionation geothermometer the temperature of base-metal crystallization was in the range from 322 to 289°C. Preliminary results of oxygen isotope studies of quartz from veins indicate a gradual increase in the proportion of meteoric water in the epithermal stage. The gold to silver ratio in ore samples with >3 ppm Au is about 1:5 (geometric mean). Hydrothermal alteration started with sericitization, pyritization, and kaolinitization in vein selvages followed by alkaline hydrothermal alteration of propylitic character (illitization and chloritization), albitization and carbonatization. The mineralization of the Radzimowice deposit is considered as related to alkaline magmatism and is characterized by the superposition of low-sulfidation epithermal mineralization on higher-temperature and deeper-seated mesothermal/porphyry style.Editorial handling: B. Lehmann  相似文献   

10.
The Zaozigou gold deposit lies in the West Qinling orogenic belt, Gansu Province, China. It is one of the largest gold deposits, and the orebodies are hosted in fine‐grained slates intercalated with limestone of the Middle‐Triassic Gulangdi Formation and varied dykes. The gold orebodies are strictly controlled by the NE‐, NW‐, and SN‐trending tensional and shearing faults with high dipping angle. The mineralogy and geochemistry of pyrite and arsenopyrite are measured by electron microprobe. Pyrite has up to 0.12 wt.% Au, and arsenopyrite contains up to 0.17 wt.% Au. The antithetic correlation between S and As indicates the substitution of As for S in pyrite, and arsenic occurs in anionic As1? state in the pyrite structure under the reduced conditions. Pyrite has relatively high Co (~364–2248 ppm) but relatively low Ni (~109–497 ppm) contents, with Co/Ni ratios ranging from ~1.63 to 10.50, indicating that the deposit originated from a volcanogenic fluid and remobilized by hydrothermal fluid. Au in arsenopyrite occurs as cationic Au in solid solution, whereas Au in pyrite is in solid solution and metal nanoparticles (Au0). The texture characteristics and trace element geochemistry among cores, transition zones, and rims of pyrites demonstrate that there are at least four pulses of fluid participating in the generation of pyrite in the deposit. The calculated formation temperatures of the Zaozigou deposit vary from 148°C to 304°C, with an average temperature of 213°C based on Au contents in pyrite. The Pb isotopic compositions of pyrite samples suggest that the metallogenic materials of the Zaozigou deposit were derived from the mantle and upper crust. All the characteristics above lead us to draw the conclusion that the Zaozigou gold deposit is classified as an epithermal deposit.  相似文献   

11.
Physicochemical factors of formation of Au-As,Au-Sb,and Ag-Sb deposits   总被引:1,自引:0,他引:1  
The physicochemical formation conditions of Au-As, Au-Sb, and Ag-Sb ores characterized by similar paragenetic mineral assemblages and sets of major ore elements but differing in their proportions have been studied. The composition of the solutions filling fluid inclusions in minerals of Au-Sb deposits, combined with mineralogical and geochemical data, indicates that these deposits were formed from a near-neutral to alkalescent chloride-sulfide (<5 wt % NaCl) solution. Au-As and Au-Sb deposits were formed from fluids of the same type, consisting of a predominately CO2-CH4 gas phase with N2 and a low-saline chloride-sulfide solution, where Au and Ag were predominantly transported as dihydrosulfide species and Sb as sulfide and hydroxy complexes. Superimposed minerals of the sulfide-sulfosalt stage that precipitated from chloride-rich solutions (up to 30 wt % NaCl equiv), which contained Ca and Fe chlorides in addition to NaCl, are identified at some Au-Sb deposits. These solutions are similar in composition to the ore-forming fluids of Ag-Sb deposits. Chloride complexes are dominant Au and Ag species in acid chloride-rich solutions of Ag-Sb deposits (up to 38 wt % NaCl equiv), while chloride and hydroxy complexes are characteristic of Sb. These solutions are distinguished by high concentrations of Ag, Sb, Cu, Fe, Mn, Bi, Pb, and Zn. The mineralogical and geochemical specialization of Ag-Sb ore is caused by chemical features of highly concentrated chloride solutions enriched in Ag, Sb, and Cu and by a relatively low Au content within the pH interval 3.5–4.0 (10?6 m). The factors controlling formation of Au-As deposits are a high capacity of a low-chloride sulfide solution with respect to metals and a high Au concentration therein (two orders higher than that of solutions of Ag-Sb deposits). The enrichment of the pyrite-arsenopyrite paragenetic assemblage in gold is a result of juxtaposed stability fields of native gold, arsenopyrite, and pyrite and their mass deposition with a decrease in temperature from 400 to 300°C. The main cause of the specific mineralogy and geochemistry of Au-Sb deposits is a high metal capacity of a near-neutral low-chloride sulfide fluid with respect to Sb, Au, and Ag, but a low Ag content. The mineralogical and fluid inclusion data combined with computer thermodynamic simulation allowed us to establish the factors of ore formation at P-T-X parameters close to natural conditions and made it possible to characterize the joint deposition of gold and silver in quantitative terms.  相似文献   

12.
The mobility and transport of gold in low-temperature waters and brines is affected by the aqueous speciation of gold, which is sensitive in particular to pH, oxidation and halide concentrations. In this study, we use UV-Vis spectrophotometry to identify and measure the thermodynamic properties of Au(III) aqueous complexes with chloride, bromide and hydroxide. Au(III) forms stable square planar complexes with hydroxide and halide ligands. Based on systematic changes in the absorption spectra of solutions in three binary systems NaCl-NaBr, NaCl-NaOH and NaBr-NaOH at 25 °C, we derived log dissociation constants for the following mixed and end-member halide and hydroxide complexes: [AuCl3Br], [AuCl2Br2], [AuBr3Cl] and [AuBr4]; [AuCl3(OH)], [AuCl2(OH)2], [AuCl(OH)3] and [Au(OH)4]; and [AuBr3(OH)], [AuBr2(OH)2] and [AuBr(OH)3]. These are the first reported results for the mixed chloride-bromide complexes. Increasing temperature to 80 °C resulted in an increase in the stability of the mixed chloride-bromide complexes, relative to the end-member chloride and bromide complexes. For the [AuCl(4−n)(OH)n] series of complexes (n = 0-4), there is an excellent agreement between our spectrophotometric results and previous electrochemical results of Chateau et al. [Chateau et al. (1966)]. In other experiments, the iodide ion (I) was found to be unstable in the presence of Au(III), oxidizing rapidly to I2(g) and causing Au to precipitate. Predicted Au(III) speciation indicates that Au(III) chloride-bromide complexes can be important in transporting gold in brines with high bromide-chloride ratios (e.g., >0.05), under oxidizing (atmospheric), acidic (pH < 5) conditions. Native gold solubility under atmospheric oxygen conditions is predicted to increase with decreasing pH in acidic conditions, increasing pH in alkaline conditions, increasing chloride, especially at acid pH, and increasing bromide for bromide/chloride ratios greater than 0.05. The results of our study increase the understanding of gold aqueous geochemistry, with the potential to lead to new methods for mineral exploration, hydrometallurgy and medicine.  相似文献   

13.
The solubility of synthetic NdPO4 monazite end-member was experimentally determined from 300 up to 800 °C, at 2000 bars in pure water, and in aqueous chloride or phosphate solutions. Both the classical weight-loss method and a new method based on isotope dilution coupled with thermal ionization mass spectrometer were used. In the range of temperature studied monazite showed a prograde solubility from 10−5.4 m at 300 °C up to 10−2.57 m at 800 °C. Experiments in H2O-H3PO4-NaCl-HCl solutions suggested Nd(OH)30 was the major species that was formed at high temperature and pressure. The equilibrium constants (log K) for the reaction:
  相似文献   

14.
The solubility of gold has been measured in the system H2O+H2+HCl+NaCl+NaOH at temperatures from 300 to 600°C and pressures from 500 to 1800 bar in order to determine the stability and stoichiometry of chloride complexes of gold(I) in hydrothermal solutions. The experiments were carried out in a flow-through autoclave system. This approach permitted the independent determination of the concentrations of all critical aqueous components in solution for the determination of the stability and stoichiometry of gold(I) complexes. The solubilities (i.e. total dissolved gold) were in the range 9.9 × 10−9 to 3.26 × 10−5 mol kg−1 (0.002-6.42 mg kg−1) in solutions of total dissolved chloride between 0.150 and 1.720 mol kg−1, total dissolved sodium between 0.000 and 0.975 mol kg−1 and total dissolved hydrogen between 4.34 × 10−6 and 7.87 × 10−4 mol kg−1. A nonlinear least squares treatment of the data demonstrates that the solubility of gold in chloride solutions is accurately described by the reactions,
  相似文献   

15.
Stability and solubility of arsenopyrite, FeAsS, in crustal fluids   总被引:3,自引:0,他引:3  
The stability and solubility of natural arsenopyrite (FeAsS) in pure water and moderately acid to slightly basic aqueous solutions buffered or not with H2 and/or H2S were studied at temperatures from 300 to 450°C and pressures from 100 to 1000 bar. The solubilities of FeAsS in pure water and dilute HCl/NaOH solutions without buffering are consistent with the formation of the As(OH)30(aq) species and precipitation of magnetite. At more acid pH (pH ≤2), arsenopyrite dissolves either stoichiometrically or with formation of the As-FeAsS assemblage. In H2S-rich and H2-rich aqueous solutions, arsenopyrite dissolution results in the formation of pyrrhotite (±pyrite) and iron arsenide(s), respectively, which form stable assemblages with arsenopyrite.Arsenic concentrations measured in equilibrium with FeAsS in slightly acid to neutral aqueous solutions with H2 and H2S fugacities buffered by the pyrite-pyrrhotite-magnetite assemblage are 0.0006 ± 0.0002, 0.0055 ± 0.0010, 0.07 ± 0.01, and 0.32 ± 0.03 mol/kg H2O at 300°C/400 bar, 350°C/500 bar, 400°C/500 bar, and 450°C/500 bar, respectively. These values were combined with the available thermodynamic data on As(OH)30(aq) (Pokrovski et al., 1996) to derive the Gibbs free energy of FeAsS at each corresponding temperature and pressure. Extrapolation of these values to 25°C and 1 bar, using the available heat capacity and entropy data for FeAsS (Pashinkin et al., 1989), yields a value of −141.6 ± 6.0 kJ/mol for the standard Gibbs free energy of formation of arsenopyrite. This value implies a higher stability of FeAsS in hydrothermal environments than was widely assumed.Calculations carried out using the new thermodynamic properties of FeAsS demonstrate that this mineral controls As transport and deposition by high-temperature (>∼300°C) crustal fluids during the formation of magmatic-hydrothermal Sn-W-Cu-(Au) deposits. The equilibrium between As-bearing pyrite and the fluid is likely to account for the As concentrations measured in modern high- and moderate-temperature (150 ≤ T ≤ 350°C) hydrothermal systems. Calculations indicate that the local dissolution of arsenopyrite creates more reducing conditions than in the bulk fluid, which is likely to be an effective mechanism for precipitating gold from hydrothermal solutions. This could be a possible explanation for the gold-arsenopyrite association commonly observed in many hydrothermal gold deposits.  相似文献   

16.
The complexation between gold and silica was experimentally, confirmed and calibrated at 200 °C: $$\begin{gathered} Au^ + + H_3 SiO_4^ - \rightleftharpoons AuH_3 SiO_4^0 \hfill \\ \log K_{(200^\circ C)} = 19.26 \pm 0.4 \hfill \\ \end{gathered} $$ Thermodynamic calculations show that AuH3SiO 4 0 would be far more abundant than AuCl 2 ? under physicochemical conditions of geological interest, suggesting that silica is much more important than chloride as ligands for gold transport. In systems containing both sulfur and silica, AuH3SiO 4 0 would be increasingly more important than Au (HS) 2 ? as the proportion of SiO2 in the system increases. The dissolution of gold in aqueous SiO2 solutions can be described by the reaction: $$\begin{gathered} Au + 1/4O_2 + H_4 SiO_4^0 \rightleftharpoons AuH_3 SiO_4^0 + 1/2H_2 O \hfill \\ log K_{(200^\circ C)} = 6.23 \hfill \\ \end{gathered} $$ which indicates that SiO2 precipitation is an effective mechanism governing gold deposition, and thus explains the close association of silicification and gold mineralization.  相似文献   

17.
The solubility of gold in hydrogen sulfide gas: An experimental study   总被引:1,自引:0,他引:1  
The solubility of gold in H2S gas has been investigated at temperatures of 300, 350 and 400 °C and pressures up to 230 bars. Experimentally determined values of the solubility of Au are 0.4-1.4 ppb at 300 °C, 1-8 ppb at 350 °C and 8.6-95 ppb at 400 °C. Owing to a positive dependence of the logarithm of the fugacity of gold on the logarithm of the fugacity of H2S, it is proposed that the solubility of Au can be attributed to formation of a solvated gaseous sulfide or bisulfide complex through reactions of the type:
(A)  相似文献   

18.
The southern Kostomuksha gold-sulfide prospect with a grade of 0.2–30 g/t Au belongs to the gold-pyrrhotite-arsenopyrite mineral type and is localized in the metasomatically altered shear zone at the southern flank of the Kostomuksha iron deposit. The Au-bearing pyrite ore is commonly characterized by a low grade (0.02–1.0 g/t Au). The grade of Au-bearing mineralization composed of arsenopyrite, loellingite, and electrum (4.28–15.31 wt % Ag and up to 0.99–2.16 wt % Hg) is higher; pyrrhotite, chalcopyrite, galena, maldonite, aurostibite, and native bismuth are additional components of this mineral assemblage. The ore mineralization is hosted in the near-latitudinal shear zone close to the contact between the folded and metamorphosed banded iron formation (BIF) and hälleflinta. The early stage of collision-related HP-HT metamorphism resulted in the formation of a garnet-amphibole-biotite assemblage (T = 680-750°C) and microcline. After an abrupt drop m pressure, metasomatic alteration and ore mineralization took place. The ore-forming process started at 510–440°C with deposition of arsenopyrite. Galena and electrum were formed at a lower temperature. The temperature continued to decline down to the stage of ore oxidation and deposition of colloform marcasite. Ore minerals precipitated from acid chloride aqueous solutions admixed with methane at the initial stage and from diluted aqueous solutions at the final stage. The character of wall-rock alteration and the gain of K, Rb, and B show that the ore-forming process postdated the emplacement of potassium granite. The occurrence of Cu, Zn, Pb, As, and Ni and other heterogeneous elements indicates a complex metamorphic-metasomatic source and an additional supply of Au, As, Bi, Sb, and Te under conditions of sulfur deficiency. The gold mineralization at the southern Kostomuksha prospect is classified as gold-sulfide (arsenopyrite) ore type related to shear zones in the BIF.  相似文献   

19.
The Quesnel River gold deposit (1.2 million tonnes grading 5.22 g/t Au in three separate zones) occurs within Takla Group volcanic rocks of Upper Triassic age proximal to an alkalic stock. The deposit occurs in amphibole-augite phyric, fragmental, basaltic rocks. Alteration has produced an assemblage of epidote-chloritetremolite-calcite-quartz with lesser pyrite, chalcopyrite, pyrrhotite, sphalerite, marcasite, galena, arsenopyrite and gold.The West Zone comprises a tabular, conformable sulfide body underlain by bedded, variably altered fragmental basaltic rocks and overlain by siltstone and argillite. In the Main Zone, highest gold grades occur adjacent to a sharp discordant alteration front with barren, strongly carbonatized, pyritic basaltic lapilli-tuff. It is overlain by siltstone and argillite and bounded to the east and a depth by a west dipping reverse fault. To the west the auriferous, propylitically altered, rocks grade laterally into lower grade and barren basaltic rocks.Oxygen(18O = + 9 to + 15) and carbon (13O= -14 to –7) isotopic signatures of calcite from carbonate-altered and propylitically altered rocks are similar. However, sulfur isotopic values for pyrite are different, with gold-associated pyrite (34S = –7 to –3) distinct from pyrite in carbonate altered rocks with (34S = + 8 to + 13).The carbonization occurred before complete induration of the basaltic fragmental rocks, whereas propylitization and gold plus sulfide precipitation is clearly epigenetic.  相似文献   

20.
In galvanic cell arrangements gold is electrochemically deposited on semiconducting sulfide minerals (pyrite, arsenopyrite, chalcopyrite) from aerated as well as H2S-saturated, gold-bearing 1 M KCl solutions. Observed cell potential differences of about 0.4–0.6 V in setups with one sulfide in aerated (cathode) and the other in H2S-saturated (anode) solutions are comparable with known self-potentials of natural sulfide ore bodies. Gold preferentially accumulates on the cathode, i.e. under oxidizing conditions. Linked sulfides of variable composition in the same environment, either oxidizing or reducing, yield potential differences up to 20 mV. Such assemblages simulate conditions typically occurring at surfaces of chemically inhomogeneous single crystals (e.g. zonation). Depending on chemical composition, sulfide minerals show either n- or p-type conductivity. Visible gold is preferentially accumulated on individual domains of sulfide surfaces that act as cathodes, i.e. p-type conductors in n-p junctions. The experimental results are discussed in view of electrochemical accumulation of visible gold on sulfides in nature. Arsenic is the most important element in establishing p-type conductivity of pyrite and arsenopyrite. This feature may explain why As is such a powerful pathfinder in gold exploration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号