where D0 is in µm2/s, X is mole fraction of H2Ot on a single oxygen basis, T is temperature in K, and P is pressure in GPa.H2Ot diffusivities (DH2Ot, in µm2/s) can be calculated from H2Om diffusivity, or directly from the following expression:
At low H2Ot content (up to 2 wt.% if an error of a factor of 2 is allowed), H2Ot diffusivity is approximately proportional to H2Ot content:
where C is H2Ot content in wt.% and C0 is 1 wt.%. The new expressions for H2O diffusion not only reproduce our own data, but also match data in literature from different laboratories and using different methods, indicating good inter-laboratory and multi-method consistency. The new expressions cover a wide range of geological conditions, and can be applied to H2O diffusion in rhyolitic melts in various volcanic and magmatic processes.  相似文献   

12.
13.
The kinetics of the dissolution of chlorite as a function of pH and at 25°C     
Richard T. Lowson  M.-C. Josick Comarmond  Geetha Rajaratnam  Paul L. Brown 《Geochimica et cosmochimica acta》2005,69(7):1687-1699
Far from equilibrium, quasi-steady state dissolution rates of an iron rich chlorite (Mg2.76Fe2+1.90Fe3+0.07Al0.97)[Si2.48Al1.52O10](OH)8, have been measured as a function of H+ concentration for the pH range 3 to 10.5 and at 25°C. The rates were determined using a single pass flow through cell and with a time frame for observing the steady state condition of between 10 to 50 days. Rates are independent of the buffers used to control the pH, sample preparation, experimental methodology and chlorite composition. The results were collated with literature values allowing the rate to be expressed as a function of H+ as;
  相似文献   

14.
An experimental study of the particulars of the solubility and crystallization of brushite Ca(HPO4) · 2H2O from aqueous solution in conditions of a variable pH (6.0–3.0) and the contents of impurity ions (K+, Na+, NH 4 + , Mg2+, SO 4 2? , CO 3 2? ) has been conducted. It is established that brushite solubility markedly rises with a decrease in pH from 6 to 3 and slightly rises with an increase in Mg2+ and SO 4 2? concentrations. The enrichment in K+, Na+, and NH 4 + does not affect brushite solubility. The changeable chemistry of the medium results in variation of the synthetic crystal habit, from rhombic tabular to thickened prismatic crystals.  相似文献   

15.
Dissolution and precipitation rates of brucite (Mg(OH)2) were measured at 25°C in a mixed-flow reactor as a function of pH (2.5 to 12), ionic strength (10−4 to 3 M), saturation index (−12 < log Ω < 0.4) and aqueous magnesium concentrations (10−6 to 5·10−4 M). Brucite surface charge and isoelectric point (pHIEP) were determined by surface titrations in a limited residence time reactor and electrophoretic measurements, respectively. The pH of zero charge and pHIEP were close to 11. A two-pK, one site surface speciation model which assumes a constant capacitance of the electric double layer (5 F/m2) and lack of dependence on ionic strength predicts the dominance of >MgOH2+ species at pH < 8 and their progressive replacement by >MgOH° and >MgO as pH increases to 10-12. Rates are proportional to the square of >MgOH2+ surface concentration at pH from 2.5 to 12. In accord with surface speciation predictions, dissolution rates do not depend on ionic strength at pH 6.5 to 11. Brucite dissolution and precipitation rates at close to equilibrium conditions obeyed TST-derived rate laws. At constant saturation indices, brucite precipitation rates were proportional to the square of >MgOH2+ concentration. The following rate equation, consistent with transition state theory, describes brucite dissolution and precipitation kinetics over a wide range of solution composition and chemical affinity:
  相似文献   

16.
Water is an important volatile component in andesitic eruptions and deep-seated andesitic magma chambers. We report an investigation of H2O speciation and diffusion by dehydrating haploandesitic melts containing ?2.5 wt.% water at 743-873 K and 100 MPa in cold-seal pressure vessels. FTIR microspectroscopy was utilized to measure species [molecular H2O (H2Om) and hydroxyl group (OH)] and total H2O (H2Ot) concentration profiles on the quenched glasses from the dehydration experiments. The equilibrium constant of the H2O speciation reaction H2Om+O?2OH, K = (XOH)2/(XH2OmXO) where X means mole fraction on a single oxygen basis, in this Fe-free andesite varies with temperature as ln K = 1.547-2453/T where T is in K. Comparison with previous speciation data on rhyolitic and dacitic melts indicates that, for a given water concentration, Fe-free andesitic melt contains more hydroxyl groups. Water diffusivity at the experimental conditions increases rapidly with H2O concentration, contrary to previous H2O diffusion data in an andesitic melt at 1608-1848 K. The diffusion profiles are consistent with the model that molecular H2O is the diffusion species. Based on the above speciation model, H2Om and H2Ot diffusivity (in m2/s) in haploandesite at 743-873 K, 100 MPa, and H2Ot ? 2.5 wt.% can be formulated as
  相似文献   

17.
Knowledge of the solubility of quartz over a broad spectrum of aqueous fluid compositions and T-P conditions is essential to our understanding of water-rock interaction in the Earth’s crust. We propose an equation to compute the molality of aqueous silica, mSiO2(aq), mol·(kg H2O)−1, in equilibrium with quartz and water-salt-CO2 fluids, as follows:
  相似文献   

18.
The solubility of KFe(CrO4)2·2H2O, a precipitate recently identified in a Cr(VI)-contaminated soil, was studied in dissolution and precipitation experiments. Ten dissolution experiments were conducted at 4–75°C and initial pH values between 0.8 and 1.2 using synthetic KFe(CrO4)2·2H2O. Four precipitation experiments were conducted at 25°C with final pH values between 0.16 and 1.39. The log KSP for the reaction
相似文献   

19.
The effect of ionic strength (I), pCO2, and temperature on the dissolution rate of calcite was investigated in magnesium-free, phosphate-free, low calcium (mCa2+ ≈ 0.01 m) simple KCl and NaCl solutions over the undersaturation range of 0.4 ≤ Ωcalcite ≤ 0.8. First-order kinetics were found sufficient to describe the rate data where the rate constant (k) is dependent on the solution composition. Rates decreased with increasing I and were faster in KCl than NaCl solutions at the same I indicating that Na+ interacts more strongly with the calcite surface than K+ or that water is less available in NaCl solutions. Rates increased with increasing pCO2 and temperature, and their influences diminished at high I. Arrhenius plots yielded a relatively high activation energy (Ea ≈ 20 ± 2 kJ mol− 1) which indicated that dissolution was dominated by surface-controlled processes. The multiple regression model (MR) of Gledhill and Morse (2006a) was found to adequately describe the results at high I in NaCl solutions, but caution must be used when extrapolating to low I or pCO2 values. These results are consistent with the hypothesis that the mole fraction of “free” solvent (Xfree”H2O) plays a significant role in the dissolution kinetics of calcite with a minimum value of  45–55% required for dissolution to proceed in undersaturated solutions at 25–55 °C and pCO2 = 0.1–1 atm. This hypothesis has been incorporated into a modified version of the MR model of Gledhill and Morse (2006a) where Xfree”H2O has replaced I and the Ca2+ and Mg2+ terms have been dropped:
  相似文献   

20.
The chemistry of soil solutions can be altered by human activities, due to the intense agricultural and husbandry, leading to leaching of nutrients and subsequently elevating ground water levels. Multivariate statistical and inverse geochemical modeling techniques were used to determine the main factors controlling soil solution chemistry of calcareous soils. In this research, a total of 21 calcareous soils was characterized and assessed for soil solution using soil column. The major cations in the studied soil solutions were in the decreasing order as Ca2+ > Mg2+ > Na+ > K+. The anions were also arranged in decreasing order as HCO $ _{3}^{ - } $  > Cl $ ^{ - } $  > SO $ _{4}^{2 - } $  > NO $ _{3}^{ - } $ . Concentrations of NO $ _{3}^{ - } $ , P, and K+ in soil solutions were in the range of 6.8–307.5 mg l?1 (mean 63.2 mg l?1), 5.0–10.4 mg l?1 (mean 5.9 mg l?1), and 2.8–54.6 mg l?1 (mean 11.3 mg l?1), respectively. Results suggest that the concentration of P in the soil solutions could be primarily controlled by the solubility of dicalcium phosphate dihydrate and dicalcium phosphate. Interactions between soil properties and observed solubility of nutrients were described, and put into empirical multivariate formulations. Obtained equations contained electrical conductivity (EC) as a key factor in determining nutrients solubility. Inverse geochemical modeling of soil solution using PHREEQC indicates the dissolution of calcite, anhydrite, halite, CO2 (g), N2 (g), and hydroxyapatite, and precipitation of sulfur. Cation exchange between Ca2+, Mg2+, K+ and Na+ occurred with Mg2+ and K+ into the solution, and Ca2+ and Na+ out of the solution. Determination of soil solution will improve soil management in the area, and preventing groundwater deterioration.  相似文献   

  首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, the solubility constant of magnesium chloride hydroxide hydrate, Mg3Cl(OH)5·4H2O, termed as phase 5, is determined from a series of solubility experiments in MgCl2-NaCl solutions. The solubility constant in logarithmic units at 25 °C for the following reaction,
Mg3Cl(OH)5·4H2O+5H+=3Mg2++9H2O(l)+Cl-  相似文献   

2.
The reaction FeS2(cr) + 2Ag(cr) = ‘FeS’(cr) + Ag2S(cr) was studied by measuring the temperature dependence of the electromotive force (EMF) of the all-solid-state galvanic cell with common gas space:
(-)Pt|Ag|AgI|Ag2S,FeS,FeS2|Pt(+)  相似文献   

3.
The solubility of natural, near-end-member wollastonite-I (>99.5% CaSiO3) has been determined at temperatures from 400 to 800 °C and pressures between 0.8 and 5 GPa in piston-cylinder apparatus with the weight-loss method. Chemical analysis of quench products and optical monitoring in a hydrothermal diamond anvil cell demonstrates that no additional phases form during dissolution. Wollastonite-I, therefore, dissolves congruently in the pressure-temperature range investigated. The solubility of CaSiO3 varies between 0.175 and 13.485 wt% and increases systematically with both temperature and pressure up to 3.0 GPa. Above 3.0 GPa wollastonite-I reacts rapidly to the high-pressure modification wollastonite-II. No obvious trends are evident in the solubility of wollastonite-II, with values between 1.93 and 10.61 wt%. The systematics of wollastonite-I solubility can be described well by a composite polynomial expression that leads to isothermal linear correlation with the density of water. The molality of dissolved wollastonite-I in pure water is then
log(mwoll)=2.2288-3418.23×T-1+671386.84×T-2+logρH2O×(5.4578+2359.11×T-1).  相似文献   

4.
A previous contribution from our laboratory reported the formation of hydrogen peroxide (H2O2) upon addition of pyrite (FeS2) to O2-free water. It was hypothesized that a reaction between adsorbed H2O and Fe(III), at a sulfur-deficient defect site, on the pyrite surface generates an adsorbed hydroxyl radical (OH).
  相似文献   

5.
The ultraviolet spectra of dilute aqueous solutions of antimony (III) have been measured from 25 to 300 °C at the saturated vapour pressure. From these measurements, equilibrium constants were obtained for the following reactions:
H3SbO30 ? H+ + H2SbO3  相似文献   

6.

Background

The presence of natural and industrial jarosite type-compounds in the environment could have important implications in the mobility of potentially toxic elements such as lead, mercury, arsenic, chromium, among others. Understanding the dissolution reactions of jarosite-type compounds is notably important for an environmental assessment (for water and soil), since some of these elements could either return to the environment or work as temporary deposits of these species, thus would reduce their immediate environmental impact.

Results

This work reports the effects of temperature, pH, particle diameter and Cr(VI) content on the initial dissolution rates of K-Cr(VI)-jarosites (KFe3[(SO4)2 ? X(CrO4)X](OH)6). Temperature (T) was the variable with the strongest effect, followed by pH in acid/alkaline medium (H3O+/OH?). It was found that the substitution of CrO4 2?in Y-site and the substitution of H3O+ in M-site do not modify the dissolution rates. The model that describes the dissolution process is the unreacted core kinetic model, with the chemical reaction on the unreacted core surface. The dissolution in acid medium was congruent, while in alkaline media was incongruent. In both reaction media, there is a release of K+, SO4 2? and CrO4 2? from the KFe3[(SO4)2 ? X(CrO4)X](OH)6 structure, although the latter is rapidly absorbed by the solid residues of Fe(OH)3 in alkaline medium dissolutions. The dissolution of KFe3[(SO4)2 ? X(CrO4)X](OH)6 exhibited good stability in a wide range of pH and T conditions corresponding to the calculated parameters of reaction order n, activation energy E A and dissolution rate constants for each kinetic stages of induction and progressive conversion.

Conclusions

The kinetic analysis related to the reaction orders and calculated activation energies confirmed that extreme pH and T conditions are necessary to obtain considerably high dissolution rates. Extreme pH conditions (acidic or alkaline) cause the preferential release of K+, SO4 2? and CrO4 2? from the KFe3[(SO4)2 ? X(CrO4)X](OH)6 structure, although CrO4 2? is quickly adsorbed by Fe(OH)3 solid residues. The precipitation of phases such as KFe3[(SO4)2 ? X(CrO4)X](OH)6, and the absorption of Cr(VI) after dissolution can play an important role as retention mechanisms of Cr(VI) in nature.
  相似文献   

7.
In light of recent work on the reactivity of specific sites on large (hydr)oxo-molecules and the evolution of surface topography during dissolution, we examined the ability to extract molecular-scale reaction pathways from macroscopic dissolution and surface charge measurements of powdered minerals using an approach that involved regression of multiple datasets and statistical graphical analysis of model fits. The test case (far-from-equilibrium quartz dissolution from 25 to 300 °C, pH 1-12, in solutions with [Na+] ? 0.5 M) avoids the objections to this goal raised in these recent studies. The strategy was used to assess several mechanistic rate laws, and was more powerful in distinguishing between models than the statistical approaches employed previously. The best-fit model included three mechanisms—two involving hydrolysis of Si centers by H2O next to neutral (>Si-OH0) and deprotonated (>Si-O) silanol groups, and one involving hydrolysis of Si centers by OH. The model rate law is
  相似文献   

8.
Energetics for the condensation dimerization reaction of monosilicic acid:
2Si4(OH)⇒2SiO7H6+H2O  相似文献   

9.
The rates of Sb(III) oxidation by O2 and H2O2 were determined in homogeneous aqueous solutions. Above pH 10, the oxidation reaction of Sb(III) with O2 was first order with respect to the Sb(III) concentration and inversely proportional to the H+ concentrations at a constant O2 content of 0.22 × 10−3 M. Pseudo-first-order rate coefficients, kobs, ranged from 3.5 × 10−8 s−1 to 2.5 × 10−6 s−1 at pH values between 10.9 and 12.9. The relationship between kobs and pH was:
  相似文献   

10.
The solubility of gold has been measured in the system H2O+H2+HCl+NaCl+NaOH at temperatures from 300 to 600°C and pressures from 500 to 1800 bar in order to determine the stability and stoichiometry of chloride complexes of gold(I) in hydrothermal solutions. The experiments were carried out in a flow-through autoclave system. This approach permitted the independent determination of the concentrations of all critical aqueous components in solution for the determination of the stability and stoichiometry of gold(I) complexes. The solubilities (i.e. total dissolved gold) were in the range 9.9 × 10−9 to 3.26 × 10−5 mol kg−1 (0.002-6.42 mg kg−1) in solutions of total dissolved chloride between 0.150 and 1.720 mol kg−1, total dissolved sodium between 0.000 and 0.975 mol kg−1 and total dissolved hydrogen between 4.34 × 10−6 and 7.87 × 10−4 mol kg−1. A nonlinear least squares treatment of the data demonstrates that the solubility of gold in chloride solutions is accurately described by the reactions,
  相似文献   

11.
Huaiwei Ni  Youxue Zhang   《Chemical Geology》2008,250(1-4):68-78
Water diffusion in silicate melts is important for understanding bubble growth in magma, magma degassing and eruption dynamics of volcanos. Previous studies have made significant progress on water diffusion in silicate melts, especially rhyolitic melt. However, the pressure dependence of H2O diffusion is not constrained satisfactorily. We investigated H2O diffusion in rhyolitic melt at 0.95–1.9 GPa and 407–1629 °C, and 0.2–5.2 wt.% total water (H2Ot) content with the diffusion-couple method in a piston-cylinder apparatus. Compared to previous data at 0.1–500 MPa, H2O diffusivity is smaller at higher pressures, indicating a negative pressure effect. This pressure effect is more pronounced at low temperatures. Assuming H2O diffusion in rhyolitic melt is controlled by the mobility of molecular H2O (H2Om), the diffusivity of H2Om (DH2Om) at H2Ot ≤ 7.7 wt.%, 403–1629 °C, and ≤ 1.9 GPa is given by
DH2Om=D0exp(aX),
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号