共查询到20条相似文献,搜索用时 757 毫秒
1.
Despite its location on sediment-free basalt, vent fluids from the Main Endeavour Field (MEF) contain chemical species that indicate fluids have interacted with sediments during circulation. We report on the distribution and isotopic abundances of organic compounds (C1-C3 alkanes and alkenes, benzene and toluene) in fluids collected from the Main Endeavour Field (MEF) in July, 2000, to understand the processes that regulate their abundances and characterize fluid sources. Aqueous organic compounds are derived from the thermal alteration of sedimentary organic matter and subsequently undergo further oxidation reactions during fluid flow. Fluid:sediment mass ratios calculated using ΣNH4 concentrations indicate that the sediments are distal to the MEF, resulting in a common reservoir of fluids for all of the vents. Following the generation from sediment alteration, aqueous organic compounds undergo secondary alteration reactions via a stepwise oxidation reaction mechanism. Alkane distributions and isotopic compositions indicate that organic compounds in MEF fluids have undergone a greater extent of alteration as compared to Middle Valley fluids, either due to differences in subsurface redox conditions or the residence time of fluids at subsurface conditions. The distributions of the aromatic compounds benzene and toluene are qualitatively consistent with the subsurface conditions indicated by equilibration of aqueous alkanes and alkanes. However, benzene and toluene do not achieve chemical equilibrium in the subsurface. Methane and CO2 also do not equilibrate chemically or isotopically at reaction zone temperatures, a likely result of an insufficient reaction time after addition of CO2 from magmatic sources during upflow. The organic geochemistry supports the assumption that the sediments with which MEF fluids interact has the same composition as sediments present in Middle Valley itself, and highlight differences in subsurface reaction zone conditions and fluid flow pathways at these two sites. 相似文献
2.
Juan de Fuca洋脊Endeavour段热液硫化物稀土元素地球化学特征 总被引:4,自引:0,他引:4
用 ICP-MS对取自 Juan de Fuca洋脊 Endeavour段 5块热液硫化物样品的 13个分析样进行了稀土元素(REE)测试.结果显示该区硫化物样品的 REE含量较低(0.35~ 14.8 μ g/g),所有样品的 REE球粒陨石标准化分布模式均表现出 Eu正异常和 LREE富集的特征,表明硫化物中的 REE来自热液.不同喷口硫化物的 REE含量变化较大,同一块状硫化物不同部位的含量也有较大差异,主要是由于硫化物形成过程中,热液和海水的混合不均一性以及不同矿物沉淀和 (或 )溶解的结果.硫化物 REE的分布特征主要受热液的影响,烟囱内外层 Eu正异常的变化主要受矿物组成和物理化学条件的控制. 相似文献
3.
M. D. Buatier Gretchen L. Früh-Green A. M. Karpoff 《Contributions to Mineralogy and Petrology》1995,122(1-2):134-151
We present results of a detailed mineralogical and geochemical study of the progressive hydrothermal alteration of clastic sediments recovered at ODP Site 858 in an area of active hydrothermal venting at the sedimented, axial rift valley of Middle Valley (northern Juan de Fuca Ridge). These results allow a characterization of newly formed phyllosilicates and provide constraints on the mechanisms of clay formation and controls of mineral reactions on the chemical and isotopic composition of hydrothermal fluids. Hydrothermal alteration at Site 858 is characterized by a progressive change in phyllosilicate assemblages with depth. In the immediate vent area, at Hole 858B, detrital layers are intercalated with pure hydrothermal precipitates at the top of the section, with a predominance of hydrothermal phases at depth. Sequentially downhole in Hole 858B, the clay fraction of the pure hydrothermal layers changes from smectite to corrensite to swelling chlorite and finally to chlorite. In three pure hydrothermal layers in the deepest part of Hole 858B, the clay minerals coexist with neoformed quartz. Neoformed and detrital components are clearly distinguished on the basis of morphology, as seen by SEM and TEM, and by their chemical and stable isotope compositions. Corrensite is characterized by a 24?Å stacking sequence and high Si- and Mg-contents, with Fe/(Fe+Mg) ratio of ≈0.08. We propose that corrensite is a unique, possibly metastable, mineralogical phase and was precipitated directly from seawater-dominated hydrothermal fluids. Hydrothermal chlorite in Hole 858B has a stacking sequence of 14?Å with Fe/(Fe+Mg) ratios of ≈0.35. The chemistry and structure of swelling chlorite suggest that it is a corrensite/chlorite mixed-layer phase. The mineralogical zonation in Hole 858B is accompanied by a systematic decrease in δ18O, reflecting both the high thermal gradients that prevail at Site 858 and extensive sediment-fluid interaction. Precipitation of the Mg-phyllosilicates in the vent region directly controls the chemical and isotopic compositions of the pore fluids. This is particularly evident by decreases in Mg and enrichments in deuterium and salinity in the pore fluids at depths at which corrensite and chlorite are formed. Structural formulae calculated from TEM-EDX analyses were used to construct clay-H2O oxygen isotope fractionation curves based on oxygen bond models. Our results suggest isotopic disequilibrium conditions for corrensite-quartz and swelling chlorite-quartz precipitation, but yield an equilibrium temperature of 300°?C±30° for chlorite-quartz at 32?m below the surface. This estimate is consistent with independent estimates and indicates steep thermal gradients of 10–11°/m in the vent region. 相似文献
4.
Brandy M. Toner Cara M. Santelli Richard Wirth Thomas McCollom Katrina J. Edwards 《Geochimica et cosmochimica acta》2009,73(2):388-994
Here we examine Fe speciation within Fe-encrusted biofilms formed during 2-month seafloor incubations of sulfide mineral assemblages at the Main Endeavor Segment of the Juan de Fuca Ridge. The biofilms were distributed heterogeneously across the surface of the incubated sulfide and composed primarily of particles with a twisted stalk morphology resembling those produced by some aerobic Fe-oxidizing microorganisms. Our objectives were to determine the form of biofilm-associated Fe, and identify the sulfide minerals associated with microbial growth. We used micro-focused synchrotron-radiation X-ray fluorescence mapping (μXRF), X-ray absorption spectroscopy (μΕXAFS), and X-ray diffraction (μXRD) in conjunction with focused ion beam (FIB) sectioning, and high resolution transmission electron microscopy (HRTEM). The chemical and mineralogical composition of an Fe-encrusted biofilm was queried at different spatial scales, and the spatial relationship between primary sulfide and secondary oxyhydroxide minerals was resolved. The Fe-encrusted biofilms formed preferentially at pyrrhotite-rich (Fe1−xS, 0 ? x ? 0.2) regions of the incubated chimney sulfide. At the nanometer spatial scale, particles within the biofilm exhibiting lattice fringing and diffraction patterns consistent with 2-line ferrihydrite were identified infrequently. At the micron spatial scale, Fe μEXAFS spectroscopy and μXRD measurements indicate that the dominant form of biofilm Fe is a short-range ordered Fe oxyhydroxide characterized by pervasive edge-sharing Fe-O6 octahedral linkages. Double corner-sharing Fe-O6 linkages, which are common to Fe oxyhydroxide mineral structures of 2-line ferrihydrite, 6-line ferrihydrite, and goethite, were not detected in the biogenic iron oxyhydroxide (BIO). The suspended development of the BIO mineral structure is consistent with Fe(III) hydrolysis and polymerization in the presence of high concentrations of Fe-complexing ligands. We hypothesize that microbiologically produced Fe-complexing ligands may play critical roles in both the delivery of Fe(II) to oxidases, and the limited Fe(III) oxyhydroxide crystallinity observed within the biofilm. Our research provides insight into the structure and formation of naturally occurring, microbiologically produced Fe oxyhydroxide minerals in the deep-sea. We describe the initiation of microbial seafloor weathering, and the morphological and mineralogical signals that result from that process. Our observations provide a starting point from which progressively older and more extensively weathered seafloor sulfide minerals may be examined, with the ultimate goal of improved interpretation of ancient microbial processes and associated biological signatures. 相似文献
5.
6.
The results of studying Hg in an underwater hydrothermal system in the ocean using the Middle Valley of the Juan de Fuca ridge as an example are presented. A significant part of Hg is accumulated in the basalt fundament (Holes 858F, G), forming anomalously high concentrations (up to 29.30 ppm) in certain parts. The high Hg contents were established in metalliferous sediments (323 ppm) of the sedimentary cover (Hole 858D) and in sulfide deposits (up to 10.30 ppm). In other parts of the section, Hg content is 0.02–0.76 ppm (Holes 858B, D, F), background Hg contents in sediments—0.08–0.28 ppm and in basalts—0.17–0.31 ppm (Holes 855A, C, D). 相似文献
7.
The abundance and 13C/12C ratios of carbon were analyzed in basaltic glass from twenty locations along the Juan de Fuca Ridge using a 3-step combustion/extraction technique. Carbon released during the first two combustion steps at 400-500 degrees C and 600-650 degrees C is interpreted to be secondary, and only the carbon recovered during a final combustion step at approximately 1200 degrees C is thought to be indigenous to the samples. For carbon released at approximately 1200 degrees C, glasses analyzed as 1-2 mm chips contained 23-146 ppm C with delta 13C values of -4.8 to -9.3%, whereas samples crushed to 38-63 microns or 63-90 microns yielded 56-103 ppm C with delta 13C values of -6.1 to -9.2%. The concentrations and isotopic compositions of the primary carbon dissolved in the glasses and present in the vesicles are similar to those previously reported for other ocean-ridge basalts. The Juan de Fuca basaltic magmas were not in equilibrium with respect to carbon when they erupted and quenched on the sea floor. Evidence of disequilibrium includes (1) a large range of carbon contents among glasses collected at similar depths, (2) a highly variable calculated carbon isotopic fractionation between melt and vapor determined by comparing crushed and uncrushed splits of the same sample, and (3) a lack of correlation between vesicle abundance, carbon concentration, and depth of eruption. Variations in carbon concentration and delta 13C ratios along the ridge do not correlate with major element chemistry. The observed relationship between carbon concentrations and delta 13C values may be explained by late-stage, variable degrees of open-system (Rayleigh-like) degassing. 相似文献
8.
9.
Lithology and Mineral Resources - Clay minerals in Holocene–Pleistocene sediments from Hole 858B DSDP drilled at 20 m from the black smoker in the Dead Dog hydrothermal field, axial valley of... 相似文献
10.
11.
R.L. Carlson 《Tectonophysics》1981,77(3-4)
In response to at least one change in the direction of sea-floor spreading, the Juan de Fuca Ridge and Gorda Rise have rotated approximately 20° clockwise with respect to geographic North during the last 10 million years. The rotation histories of these ridge segments have been determined from the ages and azimuths of linear magnetic anomalies within the corresponding “zed” patterns. In each case the rotations were systematic and occurred between about 9 and 3 Ma B.P. Significantly, the rotations occurred in a number of discrete stages during each of which the rates of rotation were approximately constant; rotation rates range from 1.3 to 8.6°/Ma.Though the rotation histories of these spreading centers are generally similar, some changes in the rotation rates are not synchronous, and until 3 Ma B.P., the Juan de Fuca Ridge had a 5–10° more easterly trend than the Gorda Rise. For the last 3 million years both ridge segments have had stable trends near 19°E of North.On a time scale of millions of years, ridge reorientation may be regarded as a continuous process wherein the rotation of the spreading center results from asymmetric spreading. Discontinuous changes in the degree of asymmetric spreading are required to account for observed changes in rotation rate. If the orthogonal arrangement of spreading centers and transform faults represents a least-work condition in which the resistance to plate motions is minimized by minimizing the lengths of ridge segments, as suggested previously, and if the rate at which the system seeks to reduce the total resistance after a change in spreading direction is maximum, it follows that the degree of asymmetric spreading, and hence the rate of rotation, are inversely proportional to the resistance to motion on transform faults. Thus, the various stages of rotation of the Juan de Fuca Ridge and Gorda Rise probably reflect different stress conditions on the Blanco Fracture Zone.It is difficult to account for the different trends of the Juan de Fuca Ridge and Gorda Rise largely because the Gorda Block is not behaving as a rigid plate and because the Mendocino Fracture Zone is not a transform fault. However, the fact that the Gorda Rise has had a stable trend for 3 million years, in spite of the deformation of an adjacent plate, suggests that the motion of the Gorda Block is not controlled by the motions of the vast Pacific and North American Plates, and that the Driving mechanism is “felt” directly at the ridge. 相似文献
12.
Rachel Sours-Page Kevin T. M. Johnson Roger L. Nielsen Jill L. Karsten 《Contributions to Mineralogy and Petrology》1999,134(4):342-363
The development of petrogenetic models of igneous processes in the mantle is dependent on a detailed knowledge of the diversity
of magmas produced in the melting regime. These primary magmas, however, undergo significant mixing and fractionation during
transport to the surface, destroying much of the evidence of their primary diversity. To circumvent this problem and to determine
the diversity of melts produced in the mantle, we used melt inclusions hosted in primitive plagioclase phenocrysts from eight
mid-ocean ridge basalts from the axial and West Valleys of the Endeavour Segment, Juan de Fuca Ridge. This area was selected
for study because of the demonstrated close association of enriched (E-MORB) lavas and incompatible element enriched depleted
(N-MORB) lavas. Rehomogenized melt inclusions from E-MORB, T-MORB, and N-MORB lavas have been analyzed by electron and ion
microprobe for major and trace elements. The depleted and enriched lavas, as well as their melt inclusions, have very similar
compatible element concentrations (major elements, Sr, Ni and Cr). Inclusion compositions are more primitive than, yet collinear
with, the host lava suites. In contrast, the minor and trace element characteristics of melt inclusions from depleted and
enriched lavas are different both in range and absolute concentration. N-MORB lavas contain both depleted and enriched melt
inclusions, and therefore exhibit the largest compositional range (K2O: 0.01 to 0.4 oxide wt%, P2O5: <0.01 to 0.2 oxide wt%, LaN: 7 to 35, YbN: 1 to 13, and Ti/Zr: <100 to 1300). E-MORB lavas contain only enriched inclusions, and are therefore relatively homogeneous
(K2O: 0.32 to 0.9 oxide wt %, P2O5: 0.02 to 0.35 oxide wt%, LaN: 11 to 60, YbN: 4 to 21, and Ti/Zr: ∼100). In addition, the most primitive E-32 inclusions are similar in composition to the most enriched
inclusions from the depleted hosts. Major element data for melt inclusions from both N-MORB and E-MORB lavas suggest that
the magmas lie on a low pressure cotectic, consistent with a petrogenesis including fractional crystallization. However, the
minor and trace element compositions in melt inclusions vary independently of the major element composition implying an alternative
history. When fractionation-corrected, inclusion compositions correlate with their host glass composition. Hence, the degree
of enrichment of the lavas is a function of the composition of aggregated melts, not of processing in the upper mantle or
lower crust. Based on this fact, the lava suites are not produced from a single parent magma, but from a suite of primary
magmas. The chemistry of the melt inclusions from the enriched lavas is consistent with a derivation from variable percentages
of partial melting within the spinel stability field by a process of open system (continuous or critical) melting assuming
a depleted lherzolite source veined with clinopyroxenite. The low percentage melts are dominantly enriched melts of the clinopyroxenite.
In contrast, the depleted lavas were created by melting of a harzburgite source, possibly fluxed with a fluid enriched in
K, Ba and the LREE. Such a source was likely melted up to or past the point at which all of its clinopyroxene was consumed.
This set of characteristics is consistent with a scenario by which diverse melts produced at different depths travel through
the melting regime to the base of the crust without homogenizing en route. The homogeneous major element characteristics are created in the lower crust by fractional crystallization
and reaction with lower crustal gabbros. Therefore, the degree of decoupling between major and trace element characteristics
of the melt inclusions (and lavas) is dictated by the reaction rate of the melts with the materials in the conduit walls,
as well as the residence times and flux rate, in the upper mantle and lower crust.
Received: 2 December 1997 / Accepted: 27 August 1998 相似文献
13.
Á.S. Dias R.A. Mills R.N. Taylor P. Ferreira F.J.A.S. Barriga 《Chemical Geology》2008,247(3-4):339-351
Hydrothermal sediment mineralogy and geochemistry can provide insights into seafloor mineralization processes and changes through time. We report a geochemical investigation of a short (22 cm) near-vent hydrothermal metalliferous sediment core from the Lucky Strike site (LS), on the Mid-Atlantic Ridge (MAR). The sediment was collected from the base of an active white smoker vent and comprises pure hydrothermal precipitates, mainly chalcopyrite, sphalerite, pyrite and barite, with negligible detrital and biogenic inputs. Geochemically, the core is enriched in elements derived from high-temperature hydrothermalism (Fe, Cu, Zn and Ba) and depleted in elements derived from low-temperature hydrothermalism (Mn), and metasomatism (Mg). The U/Fe content ratio is elevated, particularly in the deeper parts of the core, consistent with uptake from seawater associated with sulphide alteration. Rare earth elements (REE) concentrations are low and chondrite-normalized patterns are characteristic of high-temperature vent fluids with an enrichment in light REE and a pronounced positive Eu anomaly. A stronger positive Eu anomaly associated with higher Lan/Smn at the core top is controlled by barite precipitation. The hydrothermal influence on the REE decreases downcore with some evidence for a stronger seawater influence at depth. Nd isotopes also exhibit an increased detrital/seawater influence downcore. Pb isotope ratios are uniform and plot on the Northern Hemisphere Reference Line in a small domain defined by LS basalts and exhibit no detrital or seawater influence. Lucky Strike sediments are derived from high-temperature mineralization and are overprinted by a weak seawater–sediment interaction when compared with other Atlantic hydrothermal sites such as TAG. The larger seawater input and/or a larger detrital contribution in deeper layers can be explained by variable hydrothermal activity during sediment formation, suggesting different pulses in activity of the LS hydrothermal system. 相似文献
14.
Lavas erupted at the southern end of the intermediate Juan de Fuca ridge (Cleft segment) are mostly cogenetic and their chemical diversity results from melt evolution in an open magma system. In the present study, we apply a theoretical model allowing the time evolution of this periodically recharged and tapped magma chamber to be estimated. In our mathematical procedure, the melt quantity supplied to the reservoir varies through time following a sinusoidal function. The rare earth element concentrations in the refilling melt were calculated on the basis of the REE distribution in lavas. This theoretical composition is akin to that previously estimated for a Mg#70 MORB from mineralogical and chemical data. Then, we approached the temporal evolution of the reservoir using a set of suitable parameters deduced from the geometry of the crust and magma system beneath the Cleft segment. Particularly, we considered two end-members scenarios for the melt repartition through the magma reservoir beneath the Cleft segment: the “gabbro glacier” model (crystal nucleation and growth occur within one single melt lens and crystals subside vertically and laterally) and the “sheeted sill” model (crystallization takes place within a network of connected sills located at various depths within the crust). We estimated that the magma chamber is refilled every thousand years and that the melt resides approximately one hundred years within the reservoir. 相似文献
15.
V. N. Sharapov A. A. Tomilenko S. Z. Smirnov V. V. Sharygin S. V. Kovyazin 《Petrology》2013,21(5):427-453
In this paper, we discuss the formation conditions of rhyolites and results of their interaction with later portions of basic magmas on the basis of the investigation of melt and fluid inclusions in minerals from a rhyolite xenolith and host neovolcanic basalts of the Cleft segment of the Juan de Fuca Ridge. In terms of bulk chemistry and the compositions of melt inclusions in pyroxene and olivine phenocrysts, the basic rocks of the southern part of this segment are typical MOR basalts. Their olivine, clinopyroxene, and plagioclase crystallized at temperatures of 1160–1280°C and a pressure range between 20 and 100 MPa. The xenolith is a leucocratic rock with negligible amounts of mafic minerals, which clearly distinguishes it from the known occurrences of silicic rocks in the rift valleys of MOR. The rhyolite melt crystallized at temperatures of 900–880°C. The final stages of rhyolite melt crystallization at temperatures of 780–800°C were accompanied by the release of a saline aqueous fluid with high chloride contents. Based on the geochemical characteristics of melt inclusions and melting products, it can be suggested that the magmatic melt was produced by melting of metamorphosed oceanic crust within the Cleft segment under the influence sof saline aqueous fluid trapped in the pores and interstices of the rock. The rock represented by the xenolith is a late differentiation product of such melts. The ultimate products of silicic melt fractionation show high volatile contents: H2O > 3.0 wt %, Cl ~ 2.0 wt %, and F ~ 0.1 wt %. The interaction of the xenolith with the host basaltic melt occurred at temperatures equal or slightly higher than those of ferrobasalt melts (1190–1180°C). During ascent the xenolith occurred for a few tens of hours in high-temperature basic magma, and diffusion exchange between the basaltic and silicic melts was very minor. 相似文献
16.
Geochemistry of hydrothermal fluids from the PACMANUS, Northeast Pual and Vienna Woods hydrothermal fields, Manus Basin, Papua New Guinea 总被引:3,自引:0,他引:3
Eoghan P. Reeves Jeffrey S. Seewald Wolfgang Bach Wayne C. Shanks Emily Walsh Martin Rosner 《Geochimica et cosmochimica acta》2011,75(4):1088-102
Processes controlling the composition of seafloor hydrothermal fluids in silicic back-arc or near-arc crustal settings remain poorly constrained despite growing evidence for extensive magmatic-hydrothermal activity in such environments. We conducted a survey of vent fluid compositions from two contrasting sites in the Manus back-arc basin, Papua New Guinea, to examine the influence of variations in host rock composition and magmatic inputs (both a function of arc proximity) on hydrothermal fluid chemistry. Fluid samples were collected from felsic-hosted hydrothermal vent fields located on Pual Ridge (PACMANUS and Northeast (NE) Pual) near the active New Britain Arc and a basalt-hosted vent field (Vienna Woods) located farther from the arc on the Manus Spreading Center. Vienna Woods fluids were characterized by relatively uniform endmember temperatures (273-285 °C) and major element compositions, low dissolved CO2 concentrations (4.4 mmol/kg) and high measured pH (4.2-4.9 at 25 °C). Temperatures and compositions were highly variable at PACMANUS/NE Pual and a large, newly discovered vent area (Fenway) was observed to be vigorously venting boiling (358 °C) fluid. All PACMANUS fluids are characterized by negative δDH2O values, in contrast to positive values at Vienna Woods, suggesting substantial magmatic water input to circulating fluids at Pual Ridge. Low measured pH (25 °C) values (∼2.6-2.7), high endmember CO2 (up to 274 mmol/kg) and negative δ34SH2S values (down to −2.7‰) in some vent fluids are also consistent with degassing of acid-volatile species from evolved magma. Dissolved CO2 at PACMANUS is more enriched in 13C (−4.1‰ to −2.3‰) than Vienna Woods (−5.2‰ to −5.7‰), suggesting a contribution of slab-derived carbon. The mobile elements (e.g. Li, K, Rb, Cs and B) are also greatly enriched in PACMANUS fluids reflecting increased abundances in the crust there relative to the Manus Spreading Center. Variations in alkali and dissolved gas abundances with Cl at PACMANUS and NE Pual suggest that phase separation has affected fluid chemistry despite the low temperatures of many vents. In further contrast to Vienna Woods, substantial modification of PACMANUS/NE Pual fluids has taken place as a result of seawater ingress into the upflow zone. Consistently high measured Mg concentrations as well as trends of increasingly non-conservative SO4 behavior, decreasing endmember Ca/Cl and Sr/Cl ratios with increased Mg indicate extensive subsurface anhydrite deposition is occurring as a result of subsurface seawater entrainment. Decreased pH and endmember Fe/Mn ratios in higher Mg fluids indicate that the associated mixing/cooling gives rise to sulfide deposition and secondary acidity production. Several low temperature (?80 °C) fluids at PACMANUS/NE Pual also show evidence for anhydrite dissolution and water-rock interaction (fixation of B) subsequent to seawater entrainment. Hence, the evolution of fluid compositions at Pual Ridge reflects the cumulative effects of water/rock interaction, admixing and reaction of fluids exsolved from silicic magma, phase separation/segregation and seawater ingress into upflow zones. 相似文献
17.
Lead isotopic analyses of a suite of basaltic rocks from the Juan de Fuca-Gorda Ridge and nearby seamounts confirm an isotopically heterogeneous mantle known since 1966. The process of mixing during partial melting of a heterogeneous mantle necessarily produces linear data arrays that can be interpreted as secondary isochrons. Moreover, the position of the entire lead isotope array, with respect to the geochron, requires that U/Pb and Th/Pb values are progressively increased over the age of the earth. Partial melting theory also dictates analogous behavior for the other incompatible trace elements. This process explains not only the LIL element character of MOR basalts, but also duplicates the spread of radiogenic lead data collected from alkali-rich oceanic basalts. This dynamic, open-system model of lead isotopic and chemical evolution of the mantle is believed to be the direct result of tectonic flow and convective overturn within the mantle and is compatible with geophysical models of a dynamic earth. 相似文献
18.
The compositions of parental melts of Tolbachinsky Dol (Kamchatka) basalts were estimated from the compositions of olivine-hosted (Fo90.5-83.1) primitive melt inclusions in the rocks of the Northern breakthrough of the Great Tolbachik Fissure Eruption (1975 A.C.) and of the late-Holocene cone “1004”. The parental melts contain 100–150 ppm Cu and 0.16–0.30 wt % S. These concentrations are much higher than those determined for the initial magmas of mid-ocean ridge basalts (MORB), for example of the Juan de Fuca ridge (Cu = 55–105 ppm, S=0.09–0.12 wt %). Modeling of mantle melting under variable redox conditions demonstrated that the high Cu and S contents in the Tolbachinsky Dol melts can be obtained by 6–12% melting of DMM-like source under oxidized conditions (ΔQFM = +1.2 ± 0.1) and do not require a significant (>30–35% for S) subduction-related influx of these elements to the mantle source. The high contents of Cu and S in the Tolbachinsky Dol melts are largely explained by the increase of sulfide solubility in a silicate melt under oxidized conditions. In contrast, relatively reduced (ΔQFM ~ 0) conditions of MORB generation result in low contents of Cu and S in their initial magmas. The estimated ΔQFM values agree well with the data obtained using the Cr-spinel–olivine oxybarometer. The high oxygen potential of Tolbachinsky Dol primary magmas is inherited by more evolved magmas, thus favouring Cu enrichment up to 270 ppm during magma fractionation, approaching maximum copper contents in the global systematics of island-arc rocks. 相似文献
19.
Geochemistry of heavily exploited aquifers in the Emilia-Romagna region (Po Valley, northern Italy) 总被引:1,自引:0,他引:1
More than 5 800 chemical analyses on water samples collected during 1987–1995 from 528 monitoring wells located in the southernmost
part of the Po Valley (Emilia-Romagna region, northern Italy), one of the most urbanized, industrialized and agriculturally
developed areas of Italy, have been processed. The analysis of data showed that: (1) waters are discharging from both confined
and unconfined aquifers; (2) the water in the unconfined aquifer(s) is Ca(Mg)-HCO3 in composition while confined ones are Na-Cl and/or Na-(HCO3); (3) both confined and unconfined aquifer samples have δ18O and δD isotopic values of meteoric signature; (4) waters from both the aquifers are at least 40 years old; (5) the pumping
rate has caused subsidence, particularly where the aquifer(s) is (are) unconfined; (6) the unconfined aquifer(s) is exposed
to the risk of NO3 pollution; (7) considering the present "pressure" (i.e. pumping rate) on this natural environment by human activity, care
must be taken in the future to preserve this "strategic" resource.
Received: 27 October 1997 · Accepted: 12 March 1998 相似文献
20.
Isotopic compositions of C, O, and Sr in carbonates, as well as Rb-Sr systems in the silicate material from Upper Precambrian
and Lower Cambrian rocks exposed by the Chapa River in the northern Yenisei Ridge, are studied. The Late Precambrian part
of the section includes the following formations (from the bottom to top): Lopatinskaya (hereafter, Lopatino), Vandadykskaya
(hereafter, Vandadyk) or Kar’ernaya, Chivida, Suvorovskaya (hereafter, Suvorovo), Pod”emskaya (hereafter, Podyom), and Nemchanka.
They are characterized by alternation of horizons with anomalously high and low δ13C values (such alternation is typical of the ∼700–550 Ma interval). The lower, relatively thin (20 m), positive excursion
(δ13C up to 4.3‰) was established in dolomites from the lower subformation of the Vandadyk (Kar’ernaya) Formation (hereafter,
lower Vandadyk subformation). The upper positive excursion (δ13C = 2.2 ± 0.6‰) was recorded in the 3-km-thick Nemchanka Formation enriched in terrigenous rocks. The lower negative excursion
stands out as uniform, moderately low δ13C values (−2 ± 1‰) and significant thickness. It comprises the upper part of the Vandadyk Formation, as well as Chivida and
Podyom formations. The upper negative excursion is related to a thin (∼20 m) marker carbonate horizon of the upper Nemchanka
subformation, in which δ13C values fall down to −8.3‰. The lower part of the Lebyazhinskaya (hereafter, Lebyazhino) Formation, which overlies the Nemchanka
Formation, shows a step-by-step increase in δ13C from −2.2 to 2.5‰ typical of the Vendianto-Cambrian (Nemakit-Daldyn Horizon/Stage) transitional sequences. The absence of
relationships between the carbon and oxygen isotope compositions and other parameters of postsedimentary alterations suggests
that the excursions characterized above could form at the sedimentation stage and coincide in general with δ13C fluctuations in seawater. The value of 87Sr/86Sr = 0.7076−0.7078 in limestones of the Podyom Formation points to their early Ediacaran age. Values of 87Sr/86Sr = 0.70841 and 0.70845 in dolomites of the lower Lebyazhino subformation correspond to the Early Cambrian. The Rb-Sr systems
of the clay material from the Vandadyk and Chivida formations are approximated by a straight line, parameters of which correspond
to the age of 695 ± 20 Ma (87Sr/86Sr0 = 0.7200 ± 0.0013) and probably characterize the epigenetic stage of older sedimentary rocks, which were subjected to very
rapid exhumation and “polar” sulfuric acid weathering in the course of glacioeustatic regression. 相似文献