首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
增量方法已成功地应用到硅酸盐矿物、金属氧化物、碳酸盐矿物和硫酸盐矿物氧同位素分馏系数的计算中。本文在对硫化物晶体结构与矿物学特点分析的基础上,通过详细分析前人对硅酸盐矿物和金属氧化物中氧同位素分馏的增量计算方法,将氧化物和硫化物的晶体特征加以对比,提出了计算硫化物中硫同位素分馏的增量计算方法。修正的增量方法根据硫化物的晶体化学结构特征,引入了一个重要的参数,即Madelung常数,用于指示不同结构的硫化物对~(34)S的富集能力。本文利用这一修正的增量方法计算出了0℃到1000℃温度范围内,磁黄铁矿、方铅矿、闪锌矿、黄铜矿、硫镉矿的10~3Inβ和它们之间的分馏系数10~3Inα。并给出这五种矿物间的~(34)S富集顺序:磁黄铁矿>硫镉矿>闪锌矿>黄铜矿>方铅矿。与前人的实验结果对比表明,本次计算结果与实验结果基本吻合。同时,增量计算方法成功地再现了任意硫化物中~(32)S、~(33)S、~(34)S和~(36)S这四种同位素之间确实存在一定的分馏比例关系。这说明尽管增量方法存在一定的局限性,但将其扩展到硫化物间硫同位素分馏的理论计算是可行的。  相似文献   

2.
硫化物是重要的矿物类,通常是一个或多个金属元素与硫结合而形成硫化物.硫化物作为大多数金属的主要来源具有重大的经济利用价值,硫化物中硫同位素分馏的研究一直是同位素地球化学研究的热点.研究不同金属硫化物之间的硫同位素分馏效应,对于利用硫同位素对成矿作用过程和成矿物质来源开展地球化学示踪,具有非常重要的意义.本文结合笔者近期的工作概述了硫化物中硫同位素分馏的理论计算研究,认为虽然半经验半理论的增量方法在同位素分馏计算中存在一定的局限性,但在没有其他实用的理论计算方法时,改进的增量方法可以作为硫化物中硫同位素分馏计算的一种理论估算方法.  相似文献   

3.
The origin of Zn isotope fractionation in sulfides   总被引:2,自引:0,他引:2  
Isotope fractionation of Zn between aqueous sulfide, chloride, and carbonate species (Zn2+, Zn(HS)2, , , ZnS(HS), ZnCl+, ZnCl2, , and ZnCO3) was investigated using ab initio methods. Only little fractionation is found between the sulfide species, whereas carbonates are up to 1‰ heavier than the parent solution. At pH > 3 and under atmospheric-like CO2 pressures, isotope fractionation of Zn sulfides precipitated from sulfidic solutions is affected by aqueous sulfide species and the δ66Zn of sulfides reflect these in the parent solutions. Under high PCO2 conditions, carbonate species become abundant. In high PCO2 conditions of hydrothermal solutions, Zn precipitated as sulfides is isotopically nearly unfractionated with respect to a low-pH parent fluid. In contrast, negative δ66Zn down to at least −0.6‰ can be expected in sulfides precipitated from solutions with pH > 9. Zinc isotopes in sulfides and rocks therefore represent a potential indicator of mid to high pH in ancient hydrothermal fluids.  相似文献   

4.
Cu在自然界主要以硫化物的形式存在,目前只确定了几种含Cu硫化物的S同位素分馏系数以及黄铜矿的Fe同位素分馏系数,而且不同研究者确定的系数有很大的差别,使得S、Fe同位素在研究铜矿床的形成、演化等方面不能很好地发挥示踪作用。因此,本文基于第一性原理计算确定了0~1 000℃温度范围内主要含Cu硫化物的S同位素简约配分函数比(103lnβ34-32),以及Cu-Fe硫化物的Fe同位素简约配分函数比(103lnβ57-54)。重S同位素在这些含Cu硫化物中的富集顺序为铜蓝>方黄铜矿>黄铜矿≈黑硫铜镍矿>斑铜矿>辉铜矿,重Fe同位素在Cu-Fe硫化物中的富集顺序为方黄铜矿≈黄铜矿>低温斑铜矿>高温斑铜矿>中温斑铜矿>Cu8Fe4S8(中温斑铜矿的可能变体)。含Cu硫化物的103lnβ34-32与S原子的配位数、金属-S平均键长、S原子形成的所有化学键的平均键长没有明显的相关性,而Cu-Fe硫化物的103lnβ57-54与Fe—S平均键长基本成线性负相关关系。辉铜矿相变引起的S同位素分馏特别大,而斑铜矿相变时产生的S同位素分馏却可以忽略不计。本文的计算结果将会为探讨斑岩铜矿及其它类型的硫化物矿床的成因提供支持。  相似文献   

5.
The sulfur isotopic effect (δ34S) shown by batch cultures of six species of sulfate-reducing bacteria was ?14.6%. (S.D.4.1).Fractionation appeared to be independent of electron donor, temperature (between 35 and 55°) and the extent of sulfate reduction.  相似文献   

6.
《Chemical Geology》2003,193(1-2):59-80
The increment method is applied to calculation of oxygen isotope fractionation factors for common magmatic rocks. The 18O-enrichment degree of the different compositions of magmatic rocks is evaluated by the oxygen isotope indices of both CIPW normative minerals and normalized chemical composition. The consistent results are obtained from the two approaches, pointing to negligible oxygen isotope fractionation between rock and melt of the same compositions. The present calculations verify the following sequence of 18O-enrichment in the magmatic rocks: felsic rocks>intermediate rocks>mafic rocks>ultramafic rocks. Two sets of internally consistent fractionation factors are acquired for phenocryst–lava systems at the temperatures above 1000 K and rock–water systems in the temperatures range of 0–1200 °C, respectively. The present calculations are consistent with existing data from experiments and/or empirical calibrations. The obtained results can be used to quantitatively determine the history of water–rock interaction and to serve geological thermometry for various types of magmatic rocks (especially extrusive rocks).  相似文献   

7.
Sulfur isotope studies of post-Archean terrestrial materials have focused on the ratio 34S/32S because additional isotopes, 33S and 36S, were thought to carry little information beyond the well-known mass-dependent relationship among multiple-isotope ratios. We report high-precision analyses of Δ33S and Δ36S values, defined as deviations of 33S and 36S from ideal mass-dependent relationships, for international reference materials and sedimentary sulfides of Phanerozoic age by using a fluorination technique with a dual-inlet isotope ratio mass spectrometer. Measured variations in Δ33S and Δ36S are explained as resulting from processes involve branching reactions (two or more reservoirs formed) or mixing. Irreversible processes in closed systems (Rayleigh distillation) amplify the isotope effect. We outline how this new isotope proxy can be used to gain new insights into fundamental aspects of the sulfur biogeochemical cycle, including additional constraints on seawater sulfate budget and processes in sedimentary sulfide formation. The isotope systematics discussed here cannot explain the much larger variation of Δ33S and Δ36S observed in Archean rock records. Furthermore, Phanerozoic samples we have studied show a characteristic Δ33S and Δ36S relationship that differs from those measured in Archean rocks and laboratory photolysis experiments. Thus, high precision analysis of Δ33S and Δ36S can be used to distinguish small non-zero Δ33S and Δ36S produced by mass-dependent processes from those produced by mass-independent processes in Archean rocks and extraterrestrial materials.  相似文献   

8.
Laboratory experiments were conducted to simulate chalcopyrite oxidation under anaerobic and aerobic conditions in the absence or presence of the bacterium Acidithiobacillus ferrooxidans. Experiments were carried out with 3 different oxygen isotope values of water (δ18OH2O) so that approach to equilibrium or steady-state isotope fractionation for different starting conditions could be evaluated. The contribution of dissolved O2 and water-derived oxygen to dissolved sulfate formed by chalcopyrite oxidation was unambiguously resolved during the aerobic experiments. Aerobic oxidation of chalcopyrite showed 93 ± 1% incorporation of water oxygen into the resulting sulfate during the biological experiments. Anaerobic experiments showed similar percentages of water oxygen incorporation into sulfate, but were more variable. The experiments also allowed determination of sulfate–water oxygen isotope fractionation, ε18OSO4–H2O, of ~ 3.8‰ for the anaerobic experiments. Aerobic oxidation produced apparent εSO4–H2O values (6.4‰) higher than the anaerobic experiments, possibly due to additional incorporation of dissolved O2 into sulfate. δ34SSO4 values are ~ 4‰ lower than the parent sulfide mineral during anaerobic oxidation of chalcopyrite, with no significant difference between abiotic and biological processes. For the aerobic experiments, a small depletion in δ34SSO4 of ~? 1.5 ± 0.2‰ was observed for the biological experiments. Fewer solids precipitated during oxidation under aerobic conditions than under anaerobic conditions, which may account for the observed differences in sulfur isotope fractionation under these contrasting conditions.  相似文献   

9.
川滇黔铅锌矿集区是中国最重要的铅锌矿产地之一,文章以该矿集区内四川天宝山大型铅锌矿床为例,开展了LA-MC-ICP-MS硫化物原位硫同位素与LA-ICP-MS闪锌矿原位微量元素分析,为认识该类矿床硫源和矿床成因提供地质地球化学依据.微量元素数据计算所得成矿温度在130~170℃之间,是典型MVT型矿床的成矿温度.LA-...  相似文献   

10.
We present a model of bacterial sulfate reduction that includes equations describing the fractionation relationship between the sulfur and the oxygen isotope composition of residual sulfate (δ34SSO4_residual, δ18OSO4_residual) and the amount of residual sulfate. The model is based exclusively on oxygen isotope exchange between cell-internal sulfur compounds and ambient water as the dominating mechanism controlling oxygen isotope fractionation processes. We show that our model explains δ34SSO4_residual vs. δ18OSO4_residual patterns observed from natural environments and from laboratory experiments, whereas other models, favoring kinetic isotope fractionation processes as dominant process, fail to explain many (but not all) observed δ34SSO4_residual vs. δ18OSO4_residual patterns. Moreover, we show that a “typical” δ34SSO4_residual vs. δ18OSO4_residual slope does not exist. We postulate that measurements of δ34SSO4_residual and δ18OSO4_residual can be used as a tool to determine cell-specific sulfate reduction rates, oxygen isotope exchange rates, and equilibrium oxygen isotope exchange factors. Data from culture experiments are used to determine the range of sulfur isotope fractionation factors in which a simplified set of equations can be used. Numerical examples demonstrate the application of the equations. We postulate that, during denitrification, the oxygen isotope effects in residual nitrate are also the result of oxygen isotope exchange with ambient water. Consequently, the equations for the relationship between δ34SSO4_residual, δ18OSO4_residual, and the amount of residual sulfate could be modified and used to calculate the fractionation-relationship between δ15NNO3_residual, δ18ONO3_residual, and the amount of residual nitrate during denitrification.  相似文献   

11.
Sulfur isotope composition (δ34S) profiles in sediment pore waters often show an offset between sulfate and sulfide much greater in magnitude than S isotope fractionations observed in pure cultures. A number of workers have invoked an additional reaction, microbial disproportionation of sulfur intermediates, to explain the offset between experimental and natural systems. Here, we present an alternative explanation based on modeling of pore water sulfate and sulfide concentrations and stable isotope data from the Cariaco Basin (ODP Leg 165, Site 1002B). The use of unique diffusion coefficients for and , based on their unequal molecular masses, resulted in an increase in the computed fractionation by almost 10‰, when compared to the common assumption of equal diffusion coefficients for the two species. These small differences in diffusion coefficients yield calculated isotopic offsets between coeval sediment pore water sulfate and sulfide without disproportionation (up to 53.4‰) that exceed the largest fractionations observed in experimental cultures. Furthermore, the diffusion of sulfide within sediment pore waters leads to values that are even greater than those predicted by our model for sulfate reduction with unique diffusion coefficients. These diffusive effects on the sulfur isotope composition of pore water sulfate and sulfide can impact our interpretations of geologic records of sulfate and sulfide minerals, and should be considered in future studies.  相似文献   

12.
沉积岩型层状铜矿床(SSC型)的成因争论聚焦在成矿作用主要集中在沉积成岩期并可能叠加有后期成矿作用,还是形成于成岩后盆地闭合过程和造山作用有关.产于扬子板块西缘的东川式铜矿是中国SSC型矿床的典型代表,这些矿床赋存在晚古元古界东川群岩石中,主要呈层状矿体产出,但也存在少量脉状矿体.文章选择东川铜矿田内因民、汤丹和滥泥坪...  相似文献   

13.
红海早古生代块状硫化物矿床是近年来在东天山新发现的典型VMS型矿床,赋存在一套早古生代海相岛弧火山岩-火山碎屑岩中,是由上部透镜状块状矿体和深部脉状-网脉状矿体组成。文章对该矿床开展了系统的S、Pb同位素地球化学研究,拟揭示其成矿物质来源。本次分析获得金属硫化物的硫同位素δ34 S值:黄铁矿闪锌矿黄铜矿,且接近于0‰(-0.8‰~6.0‰);而重晶石的δ34 S值为高正值(27.4‰~29.9‰),这与世界大部分VMS型矿床的硫化物δ34 S值一致;矿床硫主要来自于下盘岛弧火山岩硫及与少量海水硫酸盐无机还原硫的混合。金属硫化物的Pb同位素组成比较集中,其中206 Pb/204 Pb为17.886~18.144,207 Pb/204 Pb为15.465~15.506,208Pb/204Pb为37.325~37.684,硫化物Pb同位素类似于MORB亏损地幔Pb同位素特征,具有地幔和造山带来源特征,显示其金属成矿物质主要来源于矿体下盘发育的具亏损地幔特征的岛弧火山岩。总之,红海VMS矿床硫化物S、Pb同位素研究显示其成矿物质主要来自岛弧火山岩,少量来自海水,它们为深入研究VMS矿床成矿物质来源和成矿过程中流体间相互作用提供了资料。  相似文献   

14.
The first data on the multi-isotope composition of sulfur (32S, 33S, 34S) in samples from the Fennoscandian Shield were obtained by the laser local method. An anomalous concentration of the stable isotope 33S was registered in some samples. Δ33S ranges from–0.45 to +0.24‰, which indicates the mass-independent fractionation of S isotopes and provides evidence for the processes of primarily sedimentary accumulation of sulfides in the Archean oxygen-free atmosphere.  相似文献   

15.
Dissolved Fe concentrations in subterranean estuaries, like their river-seawater counterparts, are strongly controlled by non-conservative behavior during mixing of groundwater and seawater in coastal aquifers. Previous studies at a subterranean estuary of Waquoit Bay on Cape Cod, USA demonstrate extensive precipitation of groundwater-borne dissolved ferrous iron and subsequent accumulation of iron oxides onto subsurface sands. Waquoit Bay is thus an excellent natural laboratory to assess the mechanisms of Fe-isotope fractionation in redox-stratified environments and determine potential Fe-isotope signatures of groundwater sources to coastal seawater. Here, we report Fe isotope compositions of iron-coated sands and porewaters beneath the intertidal zone of Waquoit Bay. The distribution of pore water Fe shows two distinct sources of Fe: one residing in the upward rising plume of Fe-rich groundwater and the second in the salt-wedge zone of pore water. The groundwater source has high Fe(II) concentration consistent with anoxic conditions and yield δ56Fe values between 0.3 and −1.3‰. In contrast, sediment porewaters occurring in the mixing zone of the subterranean estuary have very low δ56Fe values down to −5‰. These low δ56Fe values reflect Fe-redox cycling and result from the preferential retention of heavy Fe-isotopes onto newly formed Fe-oxyhydroxides. Analysis of Fe-oxides precipitated onto subsurface sands in two cores from the subterranean estuary revealed strong δ56Fe and Fe concentration gradients over less than 2m, yielding an overall range of δ56Fe values between −2 and 1.5‰. The relationship between Fe concentration and δ56Fe of Fe-rich sands can be modeled by the progressive precipitation of Fe-oxides along fluid flow through the subterranean estuary. These results demonstrate that large-scale Fe isotope fractionation (up to 5‰) can occur in subterranean estuaries, which could lead to coastal seawater characterized by very low δ56Fe values relative to river values.  相似文献   

16.
17.
Variations in the stable isotope abundances of transition metals have been observed in the geologic record and trying to understand and reconstruct the physical/environmental conditions that produced these signatures is an area of active research. It is clear that changes in oxidation state lead to large fractionations of the stable isotopes of many transition metals such as iron, suggesting that transition metal stable isotope signatures could be used as a paleo-redox proxy. However, the factors contributing to these observed stable isotope variations are poorly understood. Here we investigate how the kinetics of iron redox electrochemistry generates isotope fractionation. Through a combination of electrodeposition experiments and modeling of electrochemical processes including mass-transport, we show that electron transfer reactions are the cause of a large isotope separation, while mass transport-limited supply of reactant to the electrode attenuates the observed isotopic fractionation. Furthermore, the stable isotope composition of electroplated transition metals can be tuned in the laboratory by controlling parameters such as solution chemistry, reaction overpotential, and solution convection. These methods are potentially useful for generating isotopically-marked metal surfaces for tracking and forensic purposes. In addition, our studies will help interpret stable isotope data in terms of identifying underlying electron transfer processes in laboratory and natural samples.  相似文献   

18.
Fe, S, and Cu reduced partition function ratios (β-factors) allow calculation of equilibrium isotope fractionation factors. β-Factors for chalcopyrite are calculated from experimental and theoretical partial phonon densities of state states (Kobayashi et al., 2007). The Fe β-factors for mackinawite are calculated from Mössbauer spectroscopy data (Bertaut et al., 1965). Excellent agreement exists between Fe β-factors for chalcopyrite calculated from the experimental and theoretical 57Fe phonon densities of states, supporting the reliability of the Fe β-factors for chalcopyrite. The 34S β-factor for chalcopyrite is consistent with experimental data on equilibrium sulfur isotope fractionation factors among sulfides and theoretical 34S β-factors, except those recently calculated by a DFT approach.Up-to-date experimental isotope-exchange data on equilibrium Fe isotope fractionation factors between minerals and aqueous Fe were critically reevaluated in conjunction with Fe β-factors for minerals, and the following expressions for β-factors for aqueous Fe2+ and Fe3+ were obtained:
  相似文献   

19.
Rate-controlled calcium isotope fractionation in synthetic calcite   总被引:1,自引:0,他引:1  
The isotopic composition of Ca (Δ44Ca/40Ca) in calcite crystals has been determined relative to that in the parent solutions by TIMS using a double spike. Solutions were exposed to an atmosphere of NH3 and CO2, provided by the decomposition of (NH4)2CO3, following the procedure developed by previous workers. Alkalinity, pH and concentrations of CO32−, HCO3, and CO2 in solution were determined. The procedures permitted us to determine Δ(44Ca/40Ca) over a range of pH conditions, with the associated ranges of alkalinity. Two solutions with greatly different Ca concentrations were used, but, in all cases, the condition [Ca2+]>>[CO32−] was met. A wide range in Δ(44Ca/40Ca) was found for the calcite crystals, extending from 0.04 ± 0.13‰ to −1.34 ± 0.15‰, generally anti-correlating with the amount of Ca removed from the solution. The results show that Δ(44Ca/40Ca) is a linear function of the saturation state of the solution with respect to calcite (Ω). The two parameters are very well correlated over a wide range in Ω for each solution with a given [Ca]. The linear correlation extended from Δ(44Ca/40Ca) = −1.34 ± 0.15‰ to 0.04 ± 0.13‰, with the slopes directly dependent on [Ca]. Solutions, which were vigorously stirred, showed a much smaller range in Δ(44Ca/40Ca) and gave values of −0.42 ± 0.14‰, with the largest effect at low Ω. It is concluded that the diffusive flow of CO32− into the immediate neighborhood of the crystal-solution interface is the rate-controlling mechanism and that diffusive transport of Ca2+ is not a significant factor. The data are simply explained by the assumptions that: a) the immediate interface of the crystal and the solution is at equilibrium with Δ(44Ca/40Ca) ∼ −1.5 ± 0.25‰; and b) diffusive inflow of CO32− causes supersaturation, thus precipitating Ca from the regions exterior to the narrow zone of equilibrium. The result is that Δ(44Ca/40Ca) is a monotonically increasing (from negative values to zero) function of Ω. We consider this model to be a plausible explanation of most of the available data reported in the literature. The well-resolved but small and regular isotope fractionation shifts in Ca are thus not related to the diffusion of very large hydrated Ca complexes, but rather due to the ready availability of Ca in the general neighborhood of the crystal-solution interface. The largest isotopic shift which occurs as a small equilibrium effect is then subdued by supersaturation precipitation for solutions where [Ca2+]>>[CO32−] + [HCO3]. It is shown that there is a clear temperature dependence of the net isotopic shifts that is simply due to changes in Ω due to the equilibrium “constants” dependence on temperature, which changes the degree of saturation and hence the amount of isotopically unequilibrated Ca precipitated. The effects that are found in natural samples, therefore, will be dependent on the degree of diffusive inflow of carbonate species at or around the crystal-liquid interface in the particular precipitating system, thus limiting the equilibrium effect.  相似文献   

20.
Mg-calcite was precipitated at 25 °C in closed system, free-drift experiments, from solutions containing NaHCO3, CaCl2 and MgCl2. The carbon stable isotope composition of bulk solid and solution were analyzed from subsamples collected during time course experiments of 24 h duration. Considering only the Mg-content and δ13C values for the bulk solid, the carbon isotope fractionation factor for the Mg-calcite-HCO3(aq) system (as ) increased with average mol percentage of Mg (XMg) in the solid at a rate of (0.024 ± 0.011) per mol% MgCO3. Extrapolation of this relationship to the pure calcite end member yields a value of 0.82 ± 0.09, which is similar to published values for the calcite-HCO3(aq) system. Although did not vary for precipitation rates that ranged from 103.21 to 104.60 μmol m−2 h−1, it was not possible to hold Mg-content of the solid constant, so kinetic effect on 103 ln α could not be evaluated from these experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号