首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The Bolokonu-Aqikekuduke fault zone(Bo-A Fault)is the plate convergence boundary between the middle and the northern Tianshan. Bo-A Fault is an inherited right-lateral strike-slip active fault and obliquely cuts the Tianshan Mountains to the northwest. Accurately constrained fault activity and slip rate is crucial for understanding the tectonic deformation mechanism, strain rate distribution and regional seismic hazard. Based on the interpretation of satellite remote sensing images and topographic surveys, this paper divides the alluvial fans in the southeast of Jinghe River into four phases, Fan1, Fan2, Fan3 and Fan4 by geomorphological elevation, water density, depth of cut, etc. This paper interprets gullies and terrace scarps by high-resolution LiDAR topographic data. Right-laterally offset gullies, fault scarps and terrace scarps are distributed in Fan1, Fan2b and Fan3. We have identified a total of 30 right-laterally offset gullies and terrace scarps. Minimum right-lateral displacement is about 6m and the maximum right-lateral displacements are(414±10)m, (91±5)m and(39±1)m on Fan2b, Fan3a and Fan3b. The landform scarp dividing Fan2b and Fan3a is offset right-laterally by (212±11)m. Combining the work done by the predecessors in the northern foothills of the Tianshan Mountains with Guliya ice core climate curve, this paper concludes that the undercut age of alluvial fan are 56~64ka, 35~41ka, 10~14ka in the Tianshan Mountains. The slip rate of Bo-A Fault since the formation of the Fan2b, Fan3a and Fan3b of the alluvial-proluvial fan is 3.3~3.7mm/a, 2.2~2.6mm/a and 2.7~3.9mm/a. The right-lateral strike-slip rate since the late Pleistocene is obtained to be 3.1±0.3mm/a based on high-resolution LiDAR topographic data and Monte Carlo analysis.  相似文献   

2.
In this study, we described a 14km-long paleoearthquakes surface rupture across the salt flats of western Qaidam Basin, 10km south of the Xorkol segment of the central Altyn Tagh Fault, with satellite images interpretation and field investigation methods. The surface rupture strikes on average about N80°E sub-parallel to the main Altyn Tagh Fault, but is composed of several stepping segments with markedly different strike ranging from 68°N~87°E. The surface rupture is marked by pressure ridges, sub-fault strands, tension-gashes, pull-apart and faulted basins, likely caused by left-lateral strike-slip faulting. More than 30 pressure ridges can be distinguished with various rectangular, elliptical or elongated shapes. Most long axis of the ridges are oblique(90°N~140°E)to, but a few are nearly parallel to the surface rupture strike. The ridge sizes vary also, with heights from 1 to 15m, widths from several to 60m, and lengths from 10 to 100m. The overall size of these pressure ridges is similar to those found along the Altyn Tagh Fault, for instance, south of Pingding Shan or across Xorkol. Right-stepping 0.5~1m-deep gashes or sub-faults, with lengths from a few meters to several hundred meters, are distributed obliquely between ridges at an angle reaching 30°. The sub-faults are characterized with SE or NW facing 0.5~1m-high scarps. Several pull-apart and faulted basins are bounded by faults along the eastern part of the surface rupture. One large pull-apart basins are 6~7m deep and 400m wide. A faulted basin, 80m wide, 500m long and 3m deep, is bounded by 2 left-stepping left-lateral faults and 4 right-stepping normal faults. Two to three m-wide gashes are often seen on pressure ridges, and some ridges are left-laterally faulted and cut into several parts, probably owing to the occurrence of repetitive earthquakes. The OSL dating indicates that the most recent rupture might occur during Holocene.
Southwestwards the rupture trace disappears a few hundred meters north of a south dipping thrust scarp bounding uplifted and folded Plio-Quaternary sediments to the south. Thrust scarps can be followed southwestward for another 12km and suggest a connection with the south Pingding Shan Fault, a left-lateral splay of the main Altyn Tagh Fault. To the northeast the rupture trace progressively veers to the east and is seen cross-cutting the bajada south of Datonggou Nanshan and merging with active thrusts clearly outlined by south facing cumulative scarps across the fans. The geometry of this strike-slip fault trace and the clear young seismic geomorphology typifies the present and tectonically active link between left-lateral strike-slip faulting and thrusting along the eastern termination of the Altyn Tagh Fault, a process responsible for the growth of the Tibetan plateau at its northeastern margin. The discrete relation between thrusting and strike-slip faulting suggests discontinuous transfer of strain from strike-slip faulting to thrusting and thus stepwise northeastward slip-rate decrease along the Altyn Tagh Fault after each strike-slip/thrust junction.  相似文献   

3.
The Riyue Mt. Fault is a secondary fault controlled by the major regional boundary faults (East Kunlun Fault and Qilian-Haiyuan Fault). It lies in the interior of Qaidam-Qilianshan block and between the major regional boundary faults. The Riyue Mt. fault zone locates in the special tectonic setting which can provide some evidences for recent activity of outward extension of NE Tibetan plateau, so it is of significance to determine the activity of Riyue Mt. Fault since late Pleistocene to Holocene. In this paper, we have obtained some findings along the Dezhou segment of Riyue Mt. Fault by interpreting the piedmont alluvial fans, measuring fault scarps, and excavating trenches across the fault scarp. The findings are as follows:(1) Since the late Pleistocene, there are an alluvial fan fp and three river terraces T1-T3 formed on the Dezhou segment. The abandonment age of fp is approximately (21.2±0.6) ka, and that of the river terrace T2 is (12.4±0.11) ka. (2) Since the late Pleistocene, the dextral strike-slip rate of the Riyue Mt. Fault is (2.41±0.25) mm/a. In the Holocene, the dextral strike-slip rate of the fault is (2.18±0.40) mm/a, and its vertical displacement rate is (0.24±0.16) mm/a. This result indicates that the dextral strike-slip rate of the Riyue Mt. Fault has not changed since the late Pleistocene. It is believed that, as one of the dextral strikeslip faults, sandwiched between the the regional big left-lateral strike-slip faults, the Riyue Mt. Fault didn't cut the boundary zone of the large block. What's more, the dextral strike-slip faults play an important role in the coordination of deformation between the sub-blocks during the long term growth and expansion of the northeast Tibetan plateau.  相似文献   

4.
The Yumen Fault lies on the west segment of the north Qilian Fault belt and adjacent to the Altyn-Tagh Fault,in the north margin of the Tibet Plateau.The tectonic location of the Yumen fault is special,and the fault is the evidence of recent activity of the northward growth of Tibetan plateau.In recent twenty years,many researches show the activity of the Yumen Fault became stronger from the early Pleistocene to the Holocene.Because the Yumen Fault is a new active fault and fold belt in the Qilian orogenic belt in the north margin of the Tibet Plateau,it is important to ascertain its slip rate and the recurrence interval of paleoearthquakes since the Late Pleistocene.Using the satellite image interpretation of the Beida river terrace,the GPS measurement of alluvial fans in front of the Yumen Fault and the trench excavation on the fault scarps,two conclusions are obtained in this paper.(1) The vertical slip rate of the Yumen Fault is about 0.41~0.48mm/a in the Holocene and about 0.24~0.30mm/a in the last stage of the late Pleistocene.(2) Since the Holocene epoch,four paleoearthquakes,which happened respectively in 6.12~10.53ka,3.6~5.38ka,1.64~1.93ka and 0.63~1.64ka,ruptured the surface scarps of the Yumen Fault.Overall,the recurrence interval of the paleoseismic events shortens gradually and the activity of the Yumen Fault becomes stronger since the Holocene.Anther characteristic is that every paleoearthquake probably ruptured multiple fault scarps at the same time.  相似文献   

5.
The two mainstream deformation models of the Tibet plateau are continental escape model and crustal thickening model, the former suggests that the NW-trending Karakoram Fault, Gyaring Co Fault, Beng Co Fault and the Jiali Fault as the Karakoram-Jiali fault zone is the southern border belt and that the dextral strike-slip rate is estimated as up to 10~20mm/yr. However, research results in recent years show that the slip rates along those faults are significantly less than earlier estimates. Taylor et al. (2003)suggest that the conjugate strike-slip faults control the active deformation in the central Tibet. The lack of research on the slip behavior of the NE-trending faults in the central Tibet Plateau constrains our understanding of the central Tibet deformation model. Thus, we choose the NE-direction Qixiang Co Fault located at the north of the Gyaring Co Fault as research object. Based on the interpretation of satellite images, we found several faulted geomorphic sites. Using RTK-GPS ground control point and unmanned aerial vehicle (UAV)topographic surveying, we obtained less than 10cm/pix-resolution digital elevation model (DEM)in the Yaqu town site. We used the LaDiCaoz_v2.1 software to automatically extract the left-lateral offset of the largest gully on the terrace T2 surface, which is (21.3±7.1)m, and the vertical dislocation of the scarp on the terrace T2 surface, which is (0.9±0.1)m. The age of both U-series dating samples on the terrace T2 is (4.98±0.17)ka and (5.98±0.07)ka, respectively. The Holocene left-lateral slip rate along Qixiang Co Fault is (3.56±1.19)mm/a and the vertical slip rate is (0.15±0.02)mm/a. The kinematic characteristics of the sinistral strike-slip with normal slip coincide with the eastward motion of the central Tibet plateau, and its magnitude is in agreement with its conjugate Gyaring Co Fault, suggesting that the deformation pattern of the central Tibetan plateau complies with the conjugate strike-slip faults mode.  相似文献   

6.
The Bolokenu-Aqikekuduk fault zone(B-A Fault)is a 1 000km long right-lateral strike-slip active fault in the Tianshan Mountains. Its late Quaternary activity characteristics are helpful to understand the role of active strike-slip faults in regional compressional strain distribution and orogenic processes in the continental compression environment, as well as seismic hazard assessment. In this paper, research on the paleoearthquakes is carried out by remote sensing image interpretation, field investigation, trench excavation and Quaternary dating in the Jinghe section of B-A Fault. In this paper, two trenches were excavated on in the pluvial fans of Fan2b in the bulge and Fan3a in the fault scarp. The markers such as different strata, cracks and colluvial wedges in the trenches are identified and the age of sedimentation is determined by means of OSL dating for different strata. Four most recent paleoearthquakes on the B-A Fault are revealed in trench TC1 and three most recent paleoearthquakes are revealed in trench TC2. Only the latest event was constrained by the OSL age among the three events revealed in the trench TC2. Therefore, when establishing the recurrence of the paleoearthquakes, we mainly rely on the paleoearthquake events in trench TC1, which are labeled E1-E4 from oldest to youngest, and their dates are constrained to the following time ranges: E1(19.4±2.5)~(19.0±2.5)ka BP, E2(18.6±1.4)~(17.3±1.4)ka BP, E3(12.2±1.2)~(6.6±0.8)ka BP, and E4 6.9~6.2ka BP, respectively. The earthquake recurrence intervals are(1.2±0.5)ka, (8.7±3.0)ka and(2.8±3)ka, respectively. According to the sedimentation rate of the stratum, it can be judged that there is a sedimentary discontinuity between the paleoearthquakes E2 and E3, and the paleoearthquake events between E2 and E3 may not be recorded by the stratum. Ignoring the sedimentary discontinuous strata and the earthquakes occurring during the sedimentary discontinuity, the earthquake recurrence interval of the Jinghe section of B-A Fault is ~1~3ka. This is consistent with the earthquake recurrence interval(~2ka)calculated from the slip rate and the minimum displacement. The elapsed time of the latest paleoearthquake recorded in the trench is ~6.9~6.2ka BP. The magnitude of the latest event defined by the single event displacement on the fault is ~MW7.4, and a longer earthquake elapsed time indicates the higher seismic risk of the B-A Fault.  相似文献   

7.
The geomorphologic structure in the southeastern Tibetan Plateau is one of the important indexes for the expansion and deep dynamic process of Tibet. There are two different understandings for the geomorphologic structure in the southeastern Tibetan Plateau, i.e. gradual change and abrupt change. The gradient model suggests a gradual topographic reduction towards southeast which is an important evidence for the lower crust channel flow. The abrupt model considers that the southeast boundary of the plateau shows an abrupt change of topography in a zone of 50~200km wide which is controlled by the Yarlung-Yulong fault system. Here, we describe the morphotectonic feature in detail of the Sichuan-Yunnan block on the southeast edge of the plateau through the digital elevation model(DEM)analysis, further review the structural controls on the geomorphologic structure by combining the tectono-thermochronology analysis, and evaluate the southeastward spreading mode of the plateau. The topographic arithmetic progression ranking by using the DEM of the Sichuan-Yunnan block reveals three geomorphologic steps gradually lowering from the northwest to southeast. The switching of hypsometric integral(HI)value and the anomaly of SL/K value(where SL is stream length-gradient index and K is altitude of the profile)of river systems all occur on the edge of terraces. The high terrace is located on the north of Muli-Yulong with average elevation~4 200m; the secondary level of terrace extends to the Yanyuan-Lijiang area with average elevation~3 000m; and the third level is the region between the Jinhe-Qinghe and Anninghe with average elevation~1 800m. Structure investigation reveals that all the topographic boundaries between different terraces are consistent with regional major faults. The Muli thrust fault and Yulong thrust fault control the southeast edge of the high terrace, the Jinhe-Qinghe thrust fault separates the second and third level of terrace. The coincidence between topography boundaries and faults suggests that the formation of the stepped geomorphology on the southeast edge of the plateau were induced by the fault activities, reflecting the fault-controlled southeastward stepped-expanding mode of the plateau. The fission-track(FT)dating of the granites at the hanging wall of the Yuling-Muli Fault reveals fast uplift during~27~22Ma BP, reflecting the major thrusting along the Yulong-Muli Fault, which is consistent with the early-stage activity (~30~25Ma BP) of the Longmenshan Fault. Therefore, the high terrace was formed during the Oligocene to early Miocene with the thrusting of the Yulong-Muli Fault. Tectono-thermochronology analysis also reveals the major thrusting of the Jinhe-Qinghe Fault occurred during~18~11Ma BP, indicating the middle terrace was formed in the middle Miocene, which also could correspond to the middle Miocene(~15~10Ma BP) activity of the Longmenshan Fault. Therefore, the thrusting faults controlled stepped terrace geomorphologic structure and the stepwise expanding mode under combined movements of large-scale thrusts and strike-slip faults at the southeast edge of Tibetan Plateau during the late Cenozoic do not support the lower crust channel flow model.  相似文献   

8.
西秦岭临潭-宕昌断裂第四纪最新活动特征   总被引:2,自引:0,他引:2  
临潭-宕昌断裂是西秦岭造山带内一条重要的分支断裂,其最新活动特征是分析西秦岭构造变形的重要依据.临潭-宕昌断裂的新构造活动强烈,中强地震频繁,但目前对于断裂的新活动特征研究程度较低,未见有其全新世活动地质地貌证据的报道.文中基于遥感解译、宏观地貌分析研究断裂的长期活动表现和分段性;同时通过地质地貌考察、无人机摄影测量、...  相似文献   

9.
The Sanweishan fault is located in the northern margin of the Tibetan plateau. It is a branch of the Altyn Tagh fault zone which extends to the northwest. A detailed study on Late Quaternary activity characteristics of the Sanwei Shan Fault can help understanding the strain distribution of the Altyn Tagh fault zone and regional seismic activity and northward growth of the Tibetan plateau. Previous research on this fault is insufficient and its activity is a controversial issue. Based on satellite images interpretation, field investigations and geological mapping, this study attempts to characterize this feature, especially its activity during Late Quaternary. Trench excavation and sample dating permit to address this issue, including determination of paleoseismic events along this fault. The results show that the Sanweishan fault is a large-scale active structure. It starts from the Shuangta reservoir in the east, extending southward by Shigongkouzi, Lucaogou, and Shugouzi, terminates south of Xishuigou, with a length of 175km. The fault trends in NEE, dipping SE at angles 50°~70°. It is characterized by left-lateral strike-slip with a component of thrust and local normal faulting. According to the geometry, the fault can be divided into three segments, i.e. Shuangta-Shigongkouzi, Shigongkouzi-Shugouzi and Shugouzi-Xishuigou from east to west, looking like a left-or right-step pattern. Plenty of offset fault landforms appear along the Sanweishan Fault, including ridges, left-lateral strike-slip gullies, fault scarps, and fault grooves. The trench study at the middle and eastern segments of the fault shows its activity during Late Pleistocene, evidenced by displaced strata of this epoch. Identification marks of the paleoearthquakes and sample dating reveal one paleoearthquake that occurred at(40.3±5.2)~(42.1±3.9) ka.  相似文献   

10.
The northeastern margin of Tibetan plateau is an active block controlled by the eastern Kunlun fault zone, the Qilian Shan-Haiyuan fault zone, and the Altyn Tagh fault zone. It is the frontier and the sensitive area of neotectonic activity since the Cenozoic. There are widespread folds, thrust faults and stike-slip faults in the northeastern Tibetan plateau produced by the intensive tectonic deformation, indicating that this area is suffering the crustal shortening, left-lateral shear and vertical uplift. The Riyueshan Fault is one of the major faults in the dextral strike-slip faults systems, which lies between the two major large-scale left-lateral strike-slip faults, the Qilian-Haiyuan Fault and the eastern Kunlun Fault. In the process of growing and expanding of the entire Tibetan plateau, the dextral strike-slip faults play an important role in regulating the deformation and transformation between the secondary blocks. In the early Quaternary, because of the northeastward expansion of the northeastern Tibetan plateau, tectonic deformations such as NE-direction extrusion shortening, clockwise rotation, and SEE-direction extrusion occurred in the northeastern margin of the Tibetan plateau, which lead to the left-lateral slip movement of the NWW-trending major regional boundary faults. As the result, the NNW-trending faults which lie between these NWW direction faults are developed. The main geomorphic units developed within the research area are controlled by the Riyueshan Fault, formed due to the northeastward motion of the Tibet block. These geomorphic units could be classified as:Qinghai Lake Basin, Haiyan Basin, Datonghe Basin, Dezhou Basin, and the mountains developed between the basins such as the Datongshan and the Riyueshan. Paleo basins, alluvial fans, multiple levels of terraces are developed at mountain fronts. The climate variation caused the formation of the geomorphic units during the expansion period of the lakes within the northeastern Tibetan plateau. There are two levels of alluvial fans and three levels of fluvial terrace developed in the study area, the sediments of the alluvial fans and fluvial terraces formed by different sources are developed in the same period. The Riyueshan Fault connects with the NNW-trending left-lateral strike-slip north marginal Tuoleshan fault in the north, and obliquely connects with the Lajishan thrust fault in the south. The fault extends for about 180km from north to south, passing through Datonghe, Reshui coal mine, Chaka River, Tuole, Ketu and Xicha, and connecting with the Lajishan thrusts near the Kesuer Basin. The Riyueshan Fault consists of five discontinuous right-step en-echelon sub-fault segments, with a spacing of 2~3km, and pull-apart basins are formed in the stepovers. The Riyueshan Fault is a secondary fault located in the Qaidam-Qilian active block which is controlled by the major boundary faults, such as the East Kunlun Fault and the Qilian-Haiyuan Fault. Its activity characteristics provide information of the outward expansion of the northeastern margin of Tibet. Tectonic landforms are developed along the Riyueshan Fault. Focusing on the distinct geomorphic deformation since late Pleistocene, the paper obtains the vertical displacement along the fault strike by RTK measurement method. Based on the fault growth-linkage theory, the evolution of the Riyueshan Fault and the related kinetic background are discussed. The following three conclusions are obtained:1)According to the characteristics of development of the three-stage 200km-long steep fault scarp developed in the landforms of the late Pleistocene alluvial fans and terraces, the Riyueshan Fault is divided into five segments, with the most important segment located in the third stepover(CD-3); 2)The three-stage displacement distribution pattern of the Riyueshan Fault reveals that the fault was formed by the growths and connections of multiple secondary faults and is in the second stage of fault growth and connection. With CD-3 as the boundary, the faults on the NW side continue to grow and connect; the fault activity time on the SE side is shorter, and the activity intensity is weaker; 3)The extreme value of the fault displacement distribution curve indicates the location of strain concentration and stress accumulation. With the stepover CD-3 as the boundary, the stress and strain on NW side are mainly concentrated in the middle and fault stepovers. The long-term accumulation range of stress on the SE side is relatively dispersed. The stress state may be related to the counterclockwise rotation inside the block under the compression of regional tectonic stress.  相似文献   

11.
The Shanxi Graben System is one of the intracontinental graben systems developed around the Ordos Block in North China since the Cenozoic, and it provides a unique natural laboratory for studying the long-term tectonic history of active intracontinental normal faults in an extensional environment. Comparing with the dense strong earthquakes in its central part, no strong earthquakes with magnitudes over 7 have been recorded historically in the Jin-Ji-Meng Basin-and-Range Province of the northern Shanxi Graben System. However, this area is located at the conjunction area of several active-tectonic blocks(e.g. the Ordos, Yan Shan and North China Plain blocks), thus it has the tectonic conditions for strong earthquakes. Studying the active tectonics in the northern Shanxi Graben System will thus be of great significance to the seismic hazard assessment. Based on high-resolution remote sensing image interpretations and field investigations, combined with the UAV photogrammetry and OSL dating, we studied the late Quaternary activity and slip rate of the relatively poorly-researched Yanggao-Tianzhen Fault(YTF)in the Jin-Ji-Meng Basin-and-Range Province and got the followings: 1)The YTF extends for more than 75km from Dashagou, Fengzhen, Inner Mongolia in the west to Yiqingpo, Tianzhen, Shanxi Province in the east. In most cases, the YTF lies in the contact zone between the bedrock mountain and the sediments in the basin, but the fault grows into the basin where the fault geometry is irregular. At the vicinity of the Erdun Village, Shijiudun Village, and Yulinkou Village, the faults are not only distributed at the basin-mountain boundary, we have also found evidence of late Quaternary fault activity in the alluvial fans that is far away from the basin-mountain boundary. The overall strike of the fault is N78°E, but the strike gradually changes from ENE to NE, then to NWW from the west to the east, with dips ranging from 30° to 80°. 2)Based on field surveys of tectonic landforms and analysis of fault kinematics in outcrops, we have found that the sense of motion of the YTF changes along its strikes: the NEE and NE-striking segments are mainly normal dip-slip faults, while the left-laterally displaced gullies on the NWW segment and the occurrence characteristics of striations in the fault outcrop indicate that the NWW-striking segment is normal fault with minor sinistral strike-slip component. The sense of motion of the YTF determined by geologic and geomorphic evidences is consistent with the relationship between the regional NNW-SSE extension regime and the fault geometry. 3)By measuring and dating the displaced geologic markers and geomorphic surfaces, such as terraces and alluvial fans at three sites along the western segment of the YTF, we estimated that the fault slip rates are 0.12~0.20mm/a over the late Pleistocene. In order to compare the slip rate determined by geological method with extension rate constrained by geodetic measurement, the vertical slip rates were converted into horizontal slip rate using the dip angles of the fault planes measured in the field. At Zhuanlou Village, the T2 terrace was vertically displaced for(2.5±0.4)m, the abandonment age of the T2 was constrained to be(12.5±1.6)ka, so we determined a vertical slip rate of(0.2±0.04)mm/a using the deformed T2 terrace and its OSL age. For a 50°dipping fault, it corresponds to extension rate of(0.17±0.03)mm/a. At Pingshan Village, the vertical displacement of the late Pleistocene alluvial fan is measured to be(5.38±0.83)m, the abandonment age of the alluvial fan is(29.7±2.5)ka, thus we estimated the vertical slip rate of the YTF to(0.18±0.02)mm/a. For a 65° dipping fault, it corresponds to an extension rate of(0.09±0.01)mm/a. Ultimately, the corresponding extensional rates were determined to be between 0.09mm/a and 0.17mm/a. Geological and geodetic researches have shown that the northern Shanxi Graben System are extending in NNW-SSE direction with slip rates of 1~2mm/a. Our data suggests that the YTF accounts for about 10% of the crustal extension rate in the northern Shanxi Graben System.  相似文献   

12.
Strike-slip fault plays an important role in the process of tectonic deformation since Cenozoic in Asia. The role of strike-slip fault in the process of mountain building and continental deformation has always been an important issue of universal concern to the earth science community. Junggar Basin is located in the hinterland of Central Asia, bordering on the north the Altay region and the Baikal rift system, which are prone to devastating earthquakes, the Tianshan orogenic belt and the Tibet Plateau on the south, and the rigid blocks, such as Erdos, the South China, the North China Plain and Amur, on the east. Affected by the effect of the Indian-Eurasian collision on the south of the basin and at the same time, driven by the southward push of the Mongolian-Siberian plate, the active structures in the periphery of the basin show a relatively strong activity. The main deformation patterns are represented by the large-scale NNW-trending right-lateral strike-slip faults dominated by right-lateral shearing, the NNE-trending left-lateral strike-slip faults dominated by left-lateral shearing, and the thrust-nappe structure systems distributed in piedmont of Tianshan in the south of the basin. There are three near-parallel-distributed left-lateral strike-slip faults in the west edge of the basin, from the east to the west, they are:the Daerbute Fault, the Toli Fault and the Dongbielieke Fault. This paper focuses on the Dongbielieke Fault in the western Junggar region. The Dongbielieke Fault is a Holocene active fault, located at the key position of the western Junggar orogenic belt. The total length of the fault is 120km, striking NE. Since the late Quaternary, the continuous activity of the Dongbielieke Fault has caused obvious left-lateral displacement at all geomorphologic units along the fault, and a linear continuous straight steep scarp was formed on the eastern side of the Tacheng Basin. According to the strike and the movement of fault, the fault can be divided into three segments, namely, the north, middle and south segment. In order to obtain a more accurate magnitude of the left-lateral strike-slip displacement and the accumulative left-lateral strike-slip displacement of different geomorphic surfaces, we chose the Ahebiedou River in the southern segment and used the UAV to take three-dimensional photographs to obtain the digital elevation model(the accuracy is 10cm). And on this basis, the amount of left-lateral strike-slip displacement of various geological masses and geomorphic surfaces(lines)since their formation is obtained. The maximum left-lateral displacement of the terrace T5 is(30.7±2.1)m and the minimum left-lateral displacement is(20.1±1.3)m; the left-lateral displacement of the terrace T4 is(12±0.9)m, and the left-lateral displacement of the terrace T2 is(8.7±0.6)m. OSL dating samples from the surface of different level terraces(T5, T4, T2 and T1)are collected, processed and measured, and the ages of the terraces of various levels are obtained. By measuring the amount of left-lateral displacements since the Late Quaternary of the Dongbielieke Fault and combining the dating results of the various geomorphic surfaces, the displacements and slip rates of the fault on each level of the terraces since the formation of the T5 terrace are calculated. Using the maximum displacement of(30.7±2.1)m of the T5 terrace and the age of the geomorphic surface on the west bank of the river, we obtained the slip rate of(0.7±0.11)mm/a; similarly, using the minimum displacement of(20.1±1.3)m and the age of the geomorphic surface of the east bank, we obtained the slip rate of(0.46±0.07)mm/a. T5 terrace is developed on both banks of the river and on both walls of the fault. After the terraces are offset by faulting, the terraces on foot wall in the left bank of the river are far away from the river, and the erosion basically stops. After that, the river mainly cuts the terraces on the east bank. Therefore, the west bank retains a more accurate displacement of the geomorphic surface(Gold et al., 2009), so the left-lateral slip rate of the T5 terrace is taken as(0.7±0.11)mm/a. The left-lateral slip rate calculated for T4 and T2 terraces is similar, with an average value of(0.91±0.18)mm/a. In the evolution process of river terraces, the lateral erosion of high-level terrace is much larger than that of low-level terrace, so the slip rate of T4 and T2 terraces is closer to the true value. The left-lateral slip rate of the Dongbielieke Fault since the late Quaternary is(0.91±0.18)m/a. Compared with the GPS slip rate in the western Junggar area, it is considered that the NE-trending strike-slip motion in this area is dominated by the Dongbielieke Fault, which absorbs a large amount of residual deformation while maintaining a relatively high left-lateral slip rate.  相似文献   

13.
The Lenglongling Fault(LLLF) is a major active left-lateral strike-slip fault along the northeastern margin of the Tibetan plateau. Fault slip rate is of great significance for researching the dynamics of tectonic deformation in NE Tibetan plateau and understanding the activity and seismic risk of the fault. However, slip rate of the LLLF, which remains controversial, is limited within~3~24mm/a, a relatively broad range. Taking Niutougou site(37.440 2°N, 102.094 0°E)and Chailong site(37.447 3°N, 102.063 0°E) in the upstream of Talihua gully in Menyuan County, Qinghai Province as the research objects, where faulted landform is typical, we analyzed the displacement evolution model and measured the slip amounts by back-slip of the faulted landform using high-resolution DEM from Terrestrial LiDAR and high-precision satellite images of Google Earth, and by collecting and testing samples from stratigraphic pit excavated in the faulted landform surface and stripping fresh stratigraphic section, we determined the abandonment age of the surface. Holocene slip rate obtained from Niutougou site and Chailong site is(6.4±0.7)mm/a and(6.6±0.3)mm/a, respectively, which have a good consistency. Taking into account the error range of the slip rate, the left-lateral slip rate of the LLLF is(6.6±0.8)mm/a since Holocene, which is between the previons results from geological method, also within the slip rate range of 4.2~8mm/a from InSAR, but slightly larger than that from GPS((4.0±1.0)mm/a). Late Quaternary slip rate of Qilian-Haiyuan fault zone, which displays an arc-shape distribution, turns to be the largest in LLLF region. The most intensive uplift in the LLLF region of the NE Tibetan plateau confirms the important role of the LLLF in accommodating the eastward component of movement of Tibetan plateau relative to the Gobi-Ala Shan block from one side.  相似文献   

14.
The Longmenshan fault zone is located in eastern margin of Tibetan plateau and bounded on the east by Sichuan Basin, and tectonically the location is very important. It has a deep impact on the topography, geomorphology, geological structure and seismicity of southwestern China. It is primarily composed of multiple parallel thrust faults, namely, from northwest to southeast, the back-range, the central, the front-range and the piedmont hidden faults, respectively. The MS8.0 Wenchuan earthquake of 12th May 2008 ruptured the central and the front-range faults. But the earthquake didn't rupture the back-range fault. This shows that these two faults are both active in Holocene. But until now, we don't know exactly the activity of the back-range fault. The back-range fault consists of the Pingwu-Qingchuan Fault, the Wenchuan-Maoxian Fault and the Gengda-Longdong Fault. Through satellite image(Google Earth)interpretation, combining with field investigation, we preliminarily found out that five steps of alluvial platforms or terraces have been developed in Minjiang region along the Wenchuan-Maoxian Fault. T1 and T2 terraces are more continuous than T3, T4 and T5 terraces. Combining with the previous work, we discuss the formation ages of the terraces and conclude, analyze and summarize the existing researches about the terraces of Minjiang River. We constrain the ages of T1, T2, T3, T4 and T5 surfaces to 3~10ka BP,~20ka BP, 40~50ka BP, 60ka BP and 80ka BP, respectively. Combining with geomorphologic structural interpretation, measurements of the cross sections of the terraces by differential GPS and detailed site visits including terraces, gullies and other geologic landforms along the fault, we have reason to consider that the Wenchuan-Maoxian Fault was active between the formation age of T3 and T2 terrace, but inactive since T2 terrace formed. Its latest active period should be the middle and late time of late Pleistocene, and there is no activity since the Holocene. Combining with the knowledge that the central and the front-range faults are both Quaternary active faults, the activity of Longmenshan fault zone should have shifted to the central and the front-range faults which are closer to the basin, this indicates that the Longmenshan thrust belt fits the "Piggyback Type" to some extent.  相似文献   

15.
A series of NWW striking faults are obliquely intersected by the NEE striking Altyn Tagh fault zone in the western Qilian Mountains. These faults were mostly active in late Quaternary and play an important role in accommodating regional lateral extrusion by both reverse and sinistral slip. Detailed studies on late Quaternary activity, tectonic transformation, paleoseismology, and strain partitioning not only significantly affect our recognition on seismogenic mechanism and zones of potential large earthquakes, but also provide useful information for exploring tectonic deformation mechanism in the northern Tibetan plateau. The Danghenanshan Fault, Yemahe-Daxueshan fault, and Altyn Tagh Fault form a triplet junction point at southwest of Subei county. The Yemahe-Daxueshan fault is one important branch fault in the western Qilian Mountains that accommodated eastward decreasing slip of the Altyn Tagh Fault, which was active in late Holocene, with a length up to 170km. Based on geometry and late Quaternary activity, the Yemahe-Daxueshan fault was subdivided into 3 segments, i.e. the Subei fault, Yemahe fault and Daxueshan Fault. The Yemahe Fault has the most prominent appearance among them, and is dominated by left-lateral slip with a little normal component. The heights of fresh scarps on this fault are only several tens of centimeters. We dug 2 trenches at the Zhazhihu site, and cleaned and reinterpreted one trench of previous studies. Then we interpreted trench profiles and paleoseismic events, and collected 14C and Optical Stimulated Luminescence samples to constrain event ages. Finally, we determined 3 events on the Yemahe fault with ages(6 830±30) a BP-(6 280±40) a BP, (5 220±30) a BP, (2 010±30) a BP, respectively. The elapsed time of most recent earthquake is(2 010±30) years before present, which is very close to the recurrence interval, so the possibility of major earthquakes on the Yemahe fault is relatively large.  相似文献   

16.
Longshou Shan, located at the southern edge of the Alxa block, is one of the outermost peripheral mountains and the northeasternmost area of the northeastern Tibetan plateau. In recent years, through geochronology, thermochronology, magnetic stratigraphy and other methods, a large number of studies have been carried out on the initiation time of major faults, the exhumation history of mountains and the formation and evolution of basins in the northeastern Tibet Plateau, the question of whether and when the northeastward expansion of the northeastern Tibet Plateau has affected the southern part of the Alxa block has been raised. Therefore, the exhumation history of Longshou Shan provides significant insight on the uplift and expansion of the Tibetan plateau and their dynamic mechanism. The Longshou Shan, trending NWW, is the largest mountain range in the Hexi Corridor Basin, and its highest peak is more than 3 600m(with average elevation of 2800m), where the average elevation of Hexi Corridor is 1 600m, the relative height difference between them is nearly 2200m. This mountain is bounded by two parallel thrust faults: The North Longshou Shan Fault(NLSF)and the South Longshou Shan Fault(SLSF), both of them trends NWW and has high angle of inclination(45°~70°)but dips opposite to each other. The South Longshou Shan Fault, located in the northern margin of the Hexi Corridor Basin, is the most active fault on the northeastern plateau, and controls the uplift of Longshou Shan.Due to its lower closure temperature, the lower-temperature thermochronology method can more accurately constrain the cooling process of a geological body in the upper crust. In recent years, the low-temperature thermochronology method has been used more and more in the study of the erosion of orogenic belts, the evolution of sedimentary basins and tectonic geomorphology. In this study, the apatite (U-Th)/He(AHe) method is used to analyze the erosion and uplift of rocks on the south and north sides of Longshou Shan. 11 AHe samples collected from the south slope exhibit variable AHe ages between~8Ma and~200Ma, the age-elevation plot shows that before 13~17Ma, the erosion rate of the Longshou Shan is very low, and then rapid erosion occurs in the mountain range, which indicates that the strong uplift of Longshou Shan occurred at 13~17Ma BP, resulting in rapid cooling of the southern rocks. In contrast, 3 AHe ages obtained from the north slope are older and more concentrated ranging from 220Ma BP to 240Ma BP, indicating that the north slope can be seen as a paleo-isothermal surface and the activity of the north side is weak. The results of thermal history inverse modeling show that the South Longshou Shan Fault was in a tectonic quiet period until the cooling rate suddenly increased to 3.33℃/Ma at 14Ma BP, indicating that Longshou Shan had not experienced large tectonic events before~14Ma BP.
We believe that under the control of South Longshou Shan Fault, the mountain is characterized by a northward tilting uplift at Mid-Miocene. Our results on the initial deformation of the Longshou Shan, in combination with many published studies across the northeastern margin of the Tibetan plateau, suggest that the compression strain of the northeastern margin of the Tibetan plateau may expand from south to north, and the Tibetan plateau has expanded northeastward to the southern margin of the Alxa block as early as Mid-Miocene, making Longshou Shan the current structural and geomorphic boundary of the northeastern plateau.  相似文献   

17.
位于龙门山逆冲推覆构造带东侧的龙泉山背斜,构成了四川前陆盆地的前陆隆起。通过室内航空相片对凯江跨背斜段的地貌面的解译,结合野外考察可知凯江发育3级阶地,其中T1、T2为堆积阶地,T3为基座阶地。在野外用差分GPS测量了阶地的空间坐标信息,同时采集了各级阶地堆积物的测年样本,并经实验分析约束了阶地的形成年龄。另外,对石油地震剖面解译揭示出龙泉山背斜北段地壳缩短和隆升主要是通过褶皱膝折带迁移机制进行的,滑脱层的深度约6km。利用面积守恒准则计算出龙泉山背斜晚更新世以来的地壳缩短速率约为(1.36±0.41)mm/a、隆升速率为(0.64±0.19)mm/a。通过滑脱层的推覆抬升机制形成的龙泉山背斜,给青藏高原东缘变形模式中的逆断层推覆地壳缩短造山增加了证据。  相似文献   

18.
库木库里盆地位于青藏高原北缘,与柴达木盆地一山之隔,是二者的过渡地带,也是高原主体部分向NE扩展的前缘地区;现今构造表现为被3条大型活动构造带(走滑的阿尔金断裂带、东昆仑断裂带和逆冲的祁漫塔格褶皱逆冲系)所夹持。因此,该盆地对于研究青藏高原北缘的构造活动性、活动历史,探讨高原的扩展模式具有十分重要的意义。虽然库木库里盆地南、北两侧均发育活动性很强的大型走滑断裂,但是在盆地中央发育1条大型背斜,走向NWW-SEE,与祁漫塔格褶皱逆冲系和柴达木盆地内的褶皱构造走向一致,说明盆地目前遭受NNE向的挤压。通过对盆地地形横、纵剖面和阶地展布形态的分析,得出背斜有自西向东扩展变形的特征;野外调查和测年结果显示,背斜东段冰川融水形成了大型冰水扇,形成年龄为(87.09±2.31)~(102.4±3.7)ka,进而获得背斜东段自晚更新世以来平均隆升速率的最大值为(2.78±0.28)~(3.28±0.28)mm/a。库木库里盆地整体的活动性很强,在构造上与其北边的柴达木盆地类似,都受控于阿尔金断裂南侧的NNE向的区域挤压作用。  相似文献   

19.
The northern margin of the Qinghai-Tibet Plateau is currently the leading edge of uplift and expansion of the plateau. Over the years, a lot of research has been carried out on the deformation and evolution of the northeastern margin of the Qinghai-Tibet Plateau, and many ideas have been put forward, but there are also many disputes. The Altyn Tagh Fault constitutes the northern boundary of the Qinghai-Tibet Plateau, and there are two active faults on the north side of the Altyn Tagh Fault, named Sanweishan Fault with NEE strike and Nanjieshan Fault with EW strike. Especially, studies on the geometric and kinematic parameters of Sanweishan Fault since the Late Quaternary, which is nearly parallel with the Altyn Tagn Fault, are of great significance for understanding the deformation transfer and distribution in the northwestward extension of the Qinghai-Tibet Plateau. Therefore, interpretation of the fault landforms and statistical analysis of the horizontal displacement on the Sanweishan Fault and its newly discovered western extension are carried out in this paper. We believe that the Sanweishan Fault is an important branch of the eastern section of the Altyn Tagh fault zone. It is located at the front edge of the northwestern Qinghai-Tibet Plateau and is a left-lateral strike-slip and thrust active fault. Based on the interpretation of satellite imagery and microgeomorphology field investigation of Sanweishan main fault and its western segments, it's been found that the Sanweishan main fault constitutes the contact boundary between the Sanweishan Mountain and the alluvial fans. In the bedrock interior and on the north side of the Mogao Grottoes, there are also some branch faults distributed nearly parallel to the main fault. The main fault is about 150km long, striking 65°, mainly dipping SE with dip angles from 50° to 70°. The main fault can be divided into three segments in the spatial geometric distribution:the western segment(Xizhuigou-Dongshuigou, I), which is about 35km long, the middle segment(Dongshuigou-Shigongkouzi, Ⅱ), about 65km long, and the east segment(Shigongkouzi-Shuangta, Ⅲ), about 50km long. The above three segments are arranged in the left or right stepovers. In the west of Mingshashan, it's been found that the fault scarps are distributed near Danghe Reservoir and Yangguan Town in the west of Minshashan Mountain, and we thought those scarps are the westward extension of the main Sanweishan Fault. Along the main fault and its western extension, the different levels of water system(including gullies and rills)and ridges have been offset synchronously, forming a series of fault micro-geomorphology. The scale of the offset water system is proportional to the horizontal displacement. The frequency statistical analysis of the horizontal displacement shows that the displacement has obvious grouping characteristics, which are divided into 6 groups, and the corresponding peaks are 3.4m, 6.7m, 11.4m, 15m, 22m and 26m, respectively. Among them, 3.4m represents the coseismic displacement of the latest ancient earthquake event, and the larger displacement peak represents the accumulation of coseismic displacements of multi-paleoearthquake events. This kind of displacement characterized by approximately equal interval increase indicates that the Sanweishan Fault has experienced multiple characteristic earthquakes since the Late Quaternary and has the possibility of occurrence of earthquakes greater than magnitude 7. The distribution of displacement and structural transformation of the end of the fault indicate that Sanweishan Fault is an "Altyn Tagh Fault"in its infancy. The activities of Sanweishan Fault and its accompanying mountain uplift are the result of the transpression of the northern margin of the Qinghai-Tibet Plateau, representing one of the growth patterns of the northern margin of the plateau.  相似文献   

20.
The Yangjia Village-Yaodian segment of Weihe Fault, starting from Yangjia Village in the west, passing through Weijiaquan, Jinjiazhuang, Donger Village, Chenjiatai to Yaodian, occurs as a NE-striking fault dipping south with a total length of 33 kilometers. As a syn-depositional normal fault, it extends along the leading and trail edge of T1, T2 and T3 terrace at the northern bank of Weihe River. Results of remote sensing interpretation, shallow seismic exploration, exploratory trench, and drilling show that the Yangjia Village-Yaodian section of Weihe Fault manifests as fault scarps, overlapping with the NE-extending terrace scarp at the northern bank of Weihe River. Weihe Fault broke the T1 that can be distinguished on the shallow seismic profile and multiple profiles with broken signs from T1 to the ground, which is the same with the cracks through the Han Tomb at the top of the exploratory trench in Yangjia Village. It shows that the fault may still be active from the late Pleistocene to Holocene. Through composite drilling section and the analysis of exploratory trench, there is no significant difference in activity between the Yangjia Village-Jinjiazhuang and Donger Village-Yaodian section. This segment has experienced a large displacement event since (46.0±3.3)ka BP, approximately 11.0~16.5m, with a vertical slip rate of 0.34~0.45mm/a. The most recent activity occurred approximately around 2.0ka BP. The left-step en echelon fracture zone at Jingjiazhuang separates this section into two minor ones, Yangjia Village-Jinjiazhuang section and Donger Villag-Yaodian section. Yangjia Village-Yaodian section in Weihe Fault and Yaodian-Zhangjiawan section which was found out in the Xi'an active fault detection and seismic risk assessment project can be combined into the Yangjia Village-Zhangjiawan section.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号