共查询到19条相似文献,搜索用时 46 毫秒
1.
针对车载激光点云中道路边界提取困难,自动化程度低的问题,提出一种基于离散点Snake的车载激光点云道路边界提取方法。不同于传统基于图像建立Snake,本文直接基于离散点建立Snake模型。先利用伪轨迹点数据,确定初始轮廓位置,参数化不同类型的道路边界初始轮廓;然后基于离散点构建适合多类型道路边界的Snake模型,定义模型内部、外部和约束能量,通过能量函数最小化推动轮廓曲线移动到显著道路边界特征点处,实现不同道路边界的精细提取。本文试验采用3份不同城市场景的车载激光点云数据验证本文方法的有效性,道路边界提取结果的准确率达到97.62%,召回率达到98.04%,F1-Measure值达到97.83%以上,且提取的道路边界结果与软件交互提取的结果有较好的吻合度。试验结果表明,本文方法能够修正噪声、断裂等数据质量对道路边界提取的影响,能够实现各类复杂城市环境中不同形状道路边界的提取,具有较强的稳健性和适用性。 相似文献
2.
结合城市车载激光扫描点云道路数据与地物点各自的特点和空间分布,用路面点云控制道路两侧地物点云进行滤波,从而实现道路路面点和地物点的分离,并根据城市道路中含有高出路面边缘的路缘石的结构特性设置阈值来提取路缘石,通过设置合适的格网及其邻域格网中点的密度特性进一步滤波路缘石,生成道路边线。 相似文献
3.
以车载激光点云数据为对象,提出一种基于轻型梯度增强学习器LightGBM(Light Gradient Boosting Machine)的电力线快速提取方法。该方法首先分析车载激光点云邻域范围内电力线和其他地物类型的基本特征,构建描述电力线点云的特征向量;其次训练基于LightGBM模型的电力线点云分类器,用于提取车载激光点云中的电力线;最后选择3个车载激光点云数据集对该方法的有效性进行了测试。实验结果表明:所提方法的分类效果与最优的梯度提升决策树GBDT(Gradient Boosting Decision Tree)算法持平,但时间效率上有显著提升,仅为GBDT方法的27.29%。同时,所提出的算法能够从海量的车载激光点云中快速提取电力线,可以用于支撑城市中电力线巡查与改造应用需求,具有重要的实践意义。 相似文献
4.
5.
针对道路车载激光扫描点云数据中行道树与其他地物相互遮掩,存在杆状物分类困难的情况,本文提出了一种基于车载激光扫描数据的行道树自动提取方法。首先,构建格网并地形点云滤波,提取非地面点,从而提升后续算法的运算效率;其次,在非地面点的基础上构建空间体元进行邻域分析,提取树干点云,同时建立树冠分层点云投影面积理论,提取得到树冠点云;最后,使用改进分割算法进一步修正树冠点云归属,实现行道树的单体化。使用两组不同类型道路点云数据进行实验,结果显示本文算法提取行道树的平均提取完整率与正确提取率分别为90.73%、91.22%,较对比方法具有一定优势,为行道树的高效、快速、准确提取提供了新的思路。 相似文献
6.
在SSW车载激光扫描点云数据的基础上,研究了提取道路边线点集的方法,并对道路边线点进行均匀抽稀,最后按照道路纵断面shape构建道路模型。试验表明该方法能成功地提取出道路边线点,建立道路模型。 相似文献
7.
8.
车载激光扫描数据的结构化道路自动提取方法 总被引:1,自引:0,他引:1
车载激光扫描系统获取的结构化道路环境(城市道路/高速公路)点云数据量大、目标复杂,难以有效提取出道路的点云.本文通过分析扫描线上激光点云的空间分布和统计特征,提出一种适用于结构化道路环境的道路点云自动提取方法.在Optech公司提供的两份车载激光扫描点云数据中,道路提取结果的完整率、准确率、提取质量相应地超过94.92%、95.80%和91.13%.通过定量和定性的试验分析,该方法不仅适应于有固定道路宽度的规则道路提取,同样适用于无固定宽度的非规则道路提取. 相似文献
9.
车载激光扫描系统获取的复杂道路环境点云数据量大、目标复杂,难以有效提取出道路的点云。本文通过分析扫描线上激光点云的空间分布和统计特征,提出一种适用于复杂道路环境的道路点云自动提取方法。该方法首先根据点的扫描角度或GPS时间信息提取扫描线;利用移动窗口法进行高程滤波,提取地面点云,然后采用基于路坎模型的移动窗口法提取路坎点;利用局部区域相邻扫描线的相似性特点,对提取的路坎点云进行跟踪和优化;最后利用优化后的路坎作为道路的边界实现道路路面精确提取。经过实验和分析,该方法不仅适应于有固定道路宽度的结构化道路提取,同样适用于无固定宽度的复杂道路提取。 相似文献
11.
本文提出一种基于路面点云强度增强的车载激光点云实线型交通标线提取方法。首先通过预处理提取路面点云,获取各激光点与轨迹线的距离。然后逐段对路面进行强度增强,集合多滤波器集成的策略进行强度变换和去噪,消除距离、点密度、磨损等因素对反射强度值影响,增强路面点云和标线的强度差异。基于增强后的反射强度,采用k均值聚类和连通分支聚类等方法对标线进行分割,并利用归一化图割方法优化强度分割结果。最后利用实线型标线的语义信息和空间分布特征从分割后标线对象中识别实线型交通标线。试验采用四份不同车载激光扫描系统获取的数据用于验证本文方法有效性,实线型标线提取结果的准确率达到95.98%,召回率达到91.87%,综合评价指标F 1-Measure值达到95.55%以上。试验结果表明本文方法能够有效增强受扫描距离、路面磨损及点密度分布不均等因素影响的点云强度信息,实现不同车载激光扫描获取的复杂道路环境下实线型交通标线的提取。 相似文献
12.
13.
道路边界精确提取建模是城市道路管理、智能交通规划和高精度地图制作等领域的重要课题之一。本文提出了一种基于车载激光雷达点云数据和开源街道地图(OSM)的三维道路边界精确提取方法。首先,针对原始车载LiDAR点云数据应用布料模拟滤波分离地面点,再结合相对高程分析获取道路边界点候选数据集。然后,应用OSM矢量道路网数据的节点辅助道路边界点候选点集进行分段。最后,在各分段点云数据集中基于随机抽样一致性算法获得三维道路边界点集。通过直道、弯道及高密度复杂场景3种不同类型的城区道路边界路段分类提取试验。结果表明,利用该方法进行道路边界提取的准确率和召回率分别达96.12%和95.17%,F1值达92.11%,本文方法可用于高精度道路边界的三维精细提取与矢量化,进而为智能交通与无人驾驶导航提供支撑。 相似文献
14.
Accurate 3D road information is important for applications such as road maintenance and virtual 3D modeling. Mobile laser scanning (MLS) is an efficient technique for capturing dense point clouds that can be used to construct detailed road models for large areas. This paper presents a method for extracting and delineating roads from large-scale MLS point clouds. The proposed method partitions MLS point clouds into a set of consecutive “scanning lines”, which each consists of a road cross section. A moving window operator is used to filter out non-ground points line by line, and curb points are detected based on curb patterns. The detected curb points are tracked and refined so that they are both globally consistent and locally similar. To evaluate the validity of the proposed method, experiments were conducted using two types of street-scene point clouds captured by Optech’s Lynx Mobile Mapper System. The completeness, correctness, and quality of the extracted roads are over 94.42%, 91.13%, and 91.3%, respectively, which proves the proposed method is a promising solution for extracting 3D roads from MLS point clouds. 相似文献
15.
Segmentation of mobile laser point clouds of urban scenes into objects is an important step for post-processing (e.g., interpretation) of point clouds. Point clouds of urban scenes contain numerous objects with significant size variability, complex and incomplete structures, and holes or variable point densities, raising great challenges for the segmentation of mobile laser point clouds. This paper addresses these challenges by proposing a shape-based segmentation method. The proposed method first calculates the optimal neighborhood size of each point to derive the geometric features associated with it, and then classifies the point clouds according to geometric features using support vector machines (SVMs). Second, a set of rules are defined to segment the classified point clouds, and a similarity criterion for segments is proposed to overcome over-segmentation. Finally, the segmentation output is merged based on topological connectivity into a meaningful geometrical abstraction. The proposed method has been tested on point clouds of two urban scenes obtained by different mobile laser scanners. The results show that the proposed method segments large-scale mobile laser point clouds with good accuracy and computationally effective time cost, and that it segments pole-like objects particularly well. 相似文献
16.
针对如何规模化、定量化评估城市建筑物尺度光伏发电潜力,充分、有效利用太阳能资源,实现建筑物能源自给自足目标的问题,该文通过利用机载激光雷达数据,批量获取建筑物屋顶相关信息,借助三维立体模型确定太阳能板的安装区域,进行区域建筑物表面光伏发电潜力评估。以山东建筑大学校园内13栋建筑物屋顶为例,基于ArcGISPro提供的太阳辐射分析工具获取实验区域2016年逐月太阳辐射数据。实验结果显示,该区域年均太阳辐射强度为1160.7kW·h/m2,通过实例分析验证了基于建筑物表面的光伏发电容量在建筑物能源供给中具有重要作用。同时,文章对实验区域建筑物光伏发电潜力月度容量进行分析,得出一年中的高峰时段为5—7月,而冬季的11月份到次年2月份是低谷期。文章利用机载激光雷达数据批量获取建筑物屋顶定量信息,对区域建筑物尺度光伏发电潜力评估做了初步的尝试及若干思考,实践证明该方法是引导太阳能资源开发利用的一种有效途径。 相似文献
17.
18.
19.
Road markings are used to provide guidance and instruction to road users for safe and comfortable driving. Enabling rapid, cost-effective and comprehensive approaches to the maintenance of route networks can be greatly improved with detailed information about location, dimension and condition of road markings. Mobile Laser Scanning (MLS) systems provide new opportunities in terms of collecting and processing this information. Laser scanning systems enable multiple attributes of the illuminated target to be recorded including intensity data. The recorded intensity data can be used to distinguish the road markings from other road surface elements due to their higher retro-reflective property. In this paper, we present an automated algorithm for extracting road markings from MLS data. We describe a robust and automated way of applying a range dependent thresholding function to the intensity values to extract road markings. We make novel use of binary morphological operations and generic knowledge of the dimensions of road markings to complete their shapes and remove other road surface elements introduced through the use of thresholding. We present a detailed analysis of the most applicable values required for the input parameters involved in our algorithm. We tested our algorithm on different road sections consisting of multiple distinct types of road markings. The successful extraction of these road markings demonstrates the effectiveness of our algorithm. 相似文献