首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The northern margin of the Inland Branch of the Pan-AfricanDamara Orogen in Namibia shows dramatic along-strike variationin metamorphic character during convergence between the Congoand Kalahari Cratons (M3 metamorphic cycle). Low-P contact metamorphismwith anticlockwise PT paths dominates in the westerndomains (Ugab Zone and western Northern Zone), and high-P Barrovianmetamorphism with a clockwise PT path is documented fromthe easternmost domain (eastern Northern Zone). The sequenceof M3 mineral growth in contact aureoles shows early growthof cordierite porphyroblasts that were pseudomorphed to biotite–chlorite–muscoviteat the same time as an andalusite–biotite–muscovitetransposed foliation was developed in the matrix. The peak-Tmetamorphic assemblages and fabrics were overprinted by crenulationsand retrograde chlorite–muscovite. The KFMASH PTpseudosection for metapelites in the Ugab Zone and western NorthernZone contact aureoles indicates tight anticlockwise PTloops through peak metamorphic conditions of 540–570°Cand 2·5–3·2 kbar. These semi-quantitativePT loops are consistent with average PT calculationsusing THERMOCALC, which give a pooled mean of 556 ± 26°Cand 3·2 ± 0·6 kbar, indicating a high averagethermal gradient of 50°C/km. In contrast, the eastern NorthernZone experienced deep burial, high-P/moderate-T Barrovian M3metamorphism with an average thermal gradient of 21°C/kmand peak metamorphic conditions of c. 635°C and 8·7kbar. The calculated PT pseudosection and garnet compositionalisopleths in KFMASH, appropriate for the metapelite sample fromthis region, document a clockwise PT path. Early plagioclase–kyanite–biotiteparageneses evolved by plagioclase consumption and the growthof garnet to increasing XFe, XMg and XCa and decreasing XMncompositions, indicating steep burial with heating. The developedkyanite–garnet–biotite peak metamorphic parageneseswere followed by the resorption of garnet and formation of plagioclasemoats, indicating decompression, which was followed by retrogressivecooling and chlorite–muscovite growth. The clockwise PTloop is consistent with the foreland vergent fold–thrustbelt geometry in this part of the northern margin. Earlier formed(580–570 Ma) pervasive matrix foliations (M2) were overprintedby contact metamorphic parageneses (M3) in the aureoles of 530± 3 Ma granites in the Ugab Zone and 553–514 Magranites in the western Northern Zone. Available geochronologicaldata suggest that convergence between the Congo and KalahariCratons was essentially coeval in all parts of the northernmargin, with similar ages of 535–530 Ma for the main phaseof deformation in the eastern Northern Zone and Northern Platformand 538–505 Ma high-grade metamorphism of the CentralZone immediately to the south. Consequently, NNE–SSW-directedconvergent deformation and associated M3 metamorphism of contrastingstyles are interpreted to be broadly contemporaneous along thelength of the northern margin of the Inland Branch. In the westheat transfer was dominated by conduction and externally drivenby granites, whereas in the east heat transfer was dominatedby advection and internally driven radiogenic heat production.The ultimate cause was along-orogen variation in crustal architecture,including thickness of the passive margin lithosphere and thicknessof the overlying sedimentary succession. KEY WORDS: Pan-African Orogeny; PT paths; pseudosections; low-P metamorphism; contact metamorphism; Barrovian metamorphism  相似文献   

2.
Petrological studies and electron microprobe dating of monazitefrom the mafic Andriamena unit, north–central Madagascar,indicate that an apparently continuous PT path inferredfor Mg-granulites is actually discontinuous, resulting fromthe superposition of two distinct metamorphic events at 2·5Ga and  相似文献   

3.
The Menderes Massif and the overlying Lycian Nappes occupy anextensive area of SW Turkey where high-pressure–low-temperaturemetamorphic rocks occur. Precise retrograde PT pathsreflecting the tectonic mechanisms responsible for the exhumationof these high-pressure–low-temperature rocks can be constrainedwith multi-equilibrium PT estimates relying on localequilibria. Whereas a simple isothermal decompression is documentedfor the exhumation of high-pressure parageneses from the southernMenderes Massif, various PT paths are observed in theoverlying Karaova Formation of the Lycian Nappes. In the uppermostlevels of this unit, far from the contact with the MenderesMassif, all PT estimates depict cooling decompressionpaths. These high-pressure cooling paths are associated withtop-to-the-NNE movements related to the Akçakaya shearzone, located at the top of the Karaova Formation. This zoneof strain localization is a local intra-nappe contact that wasactive in the early stages of exhumation of the high-pressurerocks. In contrast, at the base of the Karaova Formation, alongthe contact with the Menderes Massif, PT calculationsshow decompressional heating exhumation paths. These paths areassociated with severe deformation characterized by top-to-the-eastshearing related to a major shear zone (the Gerit shear zone)that reflects late exhumation of high-pressure parageneses underwarmer conditions. KEY WORDS: exhumation; high-pressure–low-temperature metamorphism; multi-equilibrium PT estimates; Lycian Nappes; Menderes Massif  相似文献   

4.
A combined petrological and geochronological study was carriedout on mafic granulites and associated felsic gneisses fromthe McKaskle Hills, eastern Amery Ice Shelf, East Antarctica.Garnet-bearing mafic granulites exhibit reaction textures andexsolution textures that indicate two-stage metamorphic evolution.Thermobarometric estimates from matrix and symplectite assemblagesyield peak and retrograde PT conditions of 9·0–9·5kbar and 880–950°C and 6·6–7·2kbar and 700–750°C, respectively. Similar but slightlyscattered peak PT estimates of 7·9–10·1kbar and 820–980°C are obtained from the core compositionsof minerals from felsic para- and orthogneisses. Evidence forthe prograde history is provided by muscovite inclusions ingarnet from a paragneiss. Sensitive high-resolution ion microprobeU–Pb zircon dating reveals an evolutionary history forthe granulites, including a mafic and felsic igneous intrusionat 1174–1019 Ma, sedimentation after 932–916 Ma,and a high-grade metamorphism at 533–529 Ma. In contrast,Sm–Nd mineral–whole-rock dating mainly yields asingle age population at 500 Ma. This suggests that the McKaskleHills form part of the Prydz Belt, and that the relatively highpeak PT conditions and a decompression-dominated PTpath for the rocks resulted from a single Cambrian metamorphiccycle, rather than two distinct metamorphic events as formerlyinferred for the granulites from Prydz Bay. The age data alsoindicate that the Precambrian history of the McKaskle Hillsis not only distinct from that of the early Neoproterozoic terranein the northern Prince Charles Mountains, but also differentfrom that of other parts of the Prydz Belt. The existence ofmultiple basement terranes, together with considerable crustalthickening followed by tectonic uplift and unroofing indicatedby the clockwise PTt evolution, suggests thatthe Prydz Belt may represent a collisional orogen that resultedin the assembly of Gondwana during the Cambrian period. KEY WORDS: Mesoproterozoic basement; Cambrian metamorphism; P–T path; Prydz Belt; East Antarctica  相似文献   

5.
In the southern periphery of the Sausar Mobile Belt (SMB), thesouthern component of the Central Indian Tectonic Zone (CITZ),a suite of felsic and aluminous granulites, intruded by gabbro,noritic gabbro, norite and orthopyroxenite, records the polymetamorphicevolution of the CITZ. Using sequences of prograde, peak andretrograde reaction textures, mineral chemistry, geothermobarometricresults and petrogenetic grid considerations from the felsicand the aluminous granulites and applying metamorphosed maficdyke markers and geochronological constraints, two temporallyunrelated granulite-facies tectonothermal events of Pre-Grenvillianage have been established. The first event caused ultrahigh-temperature(UHT) metamorphism (M1) (T 950°C) at relatively deepercrustal levels (P 9 kbar) and a subsequent post-peak near-isobariccooling PT history (M2). M1 caused pervasive biotite-dehydrationmelting, producing garnet–orthopyroxene and garnet–rutileand sapphirine–spinel-bearing incongruent solid assemblagesin felsic and aluminous granulites, respectively. During M2,garnet–corundum and later spinel–sillimanite–biotiteassemblages were produced by reacting sapphirine–spinel–sillimaniteand rehydration of garnet–corundum assemblages, respectively.Applying electron microprobe (EMP) dating techniques to monazitesincluded in M1 garnet or occurring in low-strain domains inthe felsic granulites, the UHT metamorphism is dated at 2040–2090Ma. Based on the deep crustal heating–cooling PTtrajectory, the authors infer an overall counterclockwise PTpath for this UHT event. During the second granulite event,the Palaeoproterozoic granulites experienced crustal attenuationto 6·4 kbar at T 675°C during M3 and subsequentnear-isothermal loading to 8 kbar during M4. In the felsic granulites,the former is marked by decomposition of M1 garnet to orthopyroxene–plagioclasesymplectites. During M4, there was renewed growth of garnet–quartzsymplectites in the felsic granulites, replacing the M3 mineralassemblage and also the appearance of coronal garnet–quartz–clinopyroxeneassemblages in metamorphosed mafic dykes. Using monazites frommetamorphic overgrowths and metamorphic recrystallization domainsfrom the felsic granulite, the M4 metamorphism is dated at 1525–1450Ma. Using geochronological and metamorphic constraints, theauthors interpret the M3–M4 stages to be part of the sameMesoproterozoic tectonothermal event. The result provides thefirst documentation of UHT metamorphism and Palaeo- and Mesoproterozoicmetamorphic processes in the CITZ. On a broader scale, the findingsare also consistent with the current prediction that isobaricallycooled granulites require a separate orogeny for their exhumation. KEY WORDS: Central Indian Tectonic Zone; UHT metamorphism; counterclockwise PT path; monazite chemical dating  相似文献   

6.
The Kyffhäuser Crystalline Complex, Central Germany, formspart of the Mid-German Crystalline Rise, which is assumed torepresent the Variscan collision zone between the East Avalonianterrane and the Armorican terrane assemblage. High-precisionU–Pb zircon and monazite dating indicates that sedimentaryrocks of the Kyffhäuser Crystalline Complex are youngerthan c. 470 Ma and were intruded by gabbros and diorites between345 ± 4 and 340 ± 1 Ma. These intrusions had magmatictemperatures between 850 and 900°C, and caused a contactmetamorphic overprint of the sediments at PT conditionsof 690–750°C and 5–7 kbar, corresponding toan intrusion depth of 19–25 km. At 337 ± 1 Ma themagmatic–metamorphic suite was intruded by granites, syenitesand diorites at a shallow crustal level of some 7–11 km.This is inferred from a diorite, and conforms to PT pathsobtained from the metasediments, indicating a nearly isothermaldecompression from 5–7 to 2–4 kbar at 690–750°C.Subsequently, the metamorphic–magmatic sequence underwentaccelerated cooling to below 400°C, as constrained by garnetgeospeedometry and a previously published K–Ar muscoviteage of 333 ± 7 Ma. With respect to PTDtdata from surrounding units, rapid exhumation of the KCC canbe interpreted to result from NW-directed crustal shorteningduring the Viséan. KEY WORDS: contact metamorphism; U–Pb dating; hornblende; garnet; Mid-German Crystalline Rise; PT pseudosection  相似文献   

7.
In the Ranmal migmatite complex, non-anatectic foliated graniteprotoliths can be traced to polyphase migmatites. Structural–microtexturalrelations and thermobarometry indicate that syn-deformationalsegregation–crystallization of in situ stromatic and diatexiteleucosomes occurred at 800°C and 8 kbar. The protolith,the neosome, and the mesosome comprise quartz, K-feldspar, plagioclase,hornblende, biotite, sphene, apatite, zircon, and ilmenite,but the modal mineralogy differs widely. The protolith compositionis straddled by element abundances in the leucosome and themesosome. The leucosomes are characterized by lower CaO, FeO+MgO,mg-number, TiO2 , P2O5 , Rb, Zr and total rare earth elements(REE), and higher SiO2 , K2O, Ba and Sr than the protolith andthe mesosome, whereas Na2O and Al2O3 abundances are similar.The protolith and the mesosome have negative Eu anomalies, butprotolith-normalized abundances of REE-depleted leucosomes showpositive Eu anomalies. The congruent melting reaction for leucosomeproduction is inferred to be 0·325 quartz+0·288K-feldspar+0·32 plagioclase+0·05 biotite+0·014hornblende+0·001 apatite+0·001 zircon+0·002sphene=melt. Based on the reaction, large ion lithophile element,REE and Zr abundances in model melts computed using dynamicmelting approached the measured element abundances in leucosomesfor >0·5 mass fraction of unsegregated melts withinthe mesosome. Disequilibrium-accommodated dynamic melting andequilibrium crystallization of melts led to uniform plagioclasecomposition in migmatites and REE depletion in leucosome. KEY WORDS: migmatite; REE; trace element; partial melting; P–T conditions  相似文献   

8.
The Variscan metamorphism in the Pyrenees is dominantly of the low‐pressure–high‐temperature (LP‐HT) type. The relics of an earlier, Barrovian‐type metamorphism that could be related to orogenic crustal thickening are unclear and insufficiently constrained. A microstructural and petrological study of micaschists underlying an Ordovician augen orthogneiss in the core of the Canigou massif (Eastern Pyrenees, France) reveals the presence of two syntectonic metamorphic stages characterized by the crystallization of staurolite (M1) and andalusite (M2), respectively. Garnet is stable during the two metamorphic stages with a period of resorption between M1 and M2. The metamorphic assemblages M1 and M2 record similar peak temperatures of 580°C at different pressure conditions of 5.5 and 3 kbar, respectively. Using chemical zoning of garnet and calculated P–T pseudosections, a prograde P–T path is constrained with a peak pressure at ~6.5 kbar and 550°C. This P–T path, syntectonic with respect to the first foliation S1, corresponds to a cold gradient (of ~9°C/km), suggestive of crustal thickening. Resorption of garnet between M1 and M2 can be interpreted either in terms of a simple clockwise P–T path or a polymetamorphic two‐stage evolution. We argue in favour of the latter, where the medium‐pressure (Barrovian) metamorphism is followed by a period of significant erosion and crustal thinning leading to decompression and cooling. Subsequent advection of heat, probably from the mantle, leads to a new increase in temperature, coeval with the development of the main regional fabric S2. LA‐ICP‐MS U–Th–Pb dating of monazite yields a well‐defined date at c. 300 Ma. Petrological evidence indicates that monazite crystallization took place close to the M1 peak pressure conditions. However, the similarity between this age and that of the extensive magmatic event well documented in the eastern Pyrenees suggests that it probably corresponds to the age of monazite recrystallization during the M2 LP‐HT event.  相似文献   

9.
Migmatitic granulites and arc-related felsic intrusives of Pan-Africanage form the bedrock in the Rio de Janeiro area, SE Brazil.These rocks preserve a partial record of three parageneses.The earliest assemblage (M1) grew during fabric formation inthe rocks (D1) and is characterized by the mineral assemblagePl + Bt + Sil + Kfs + Qtz. Peak metamorphic conditions (M2)are characterized by the assemblage Bt + Crd + Kfs + Pl + Grt+ liq + Qtz and are inferred to have developed during D2 foldingof the rocks at T = 750–800°C and P = 7 kbar. M3 reactiontextures overprint the M2 assemblage and comprise symplectiticintergrowth of cordierite(II) and quartz that formed after garnet,whereas secondary biotite formed as a result of reactions betweengarnet and K-feldspar. By comparing the observed modal abundanceswith modal contours of garnet, cordierite and quartz on therelevant pseudosection a post M2 PT vector indicatingcontemporaneous cooling and decompression can be deduced. Theinferred equilibrium assemblage and reaction textures are interpretedto reflect a clockwise PT path involving heating followedby post-peak decompression and associated cooling. We inferthat metamorphism occurred in response to advective heatingby the abundant syn-collisional (arc-related) I-type granitoidsin the region, consistent with the unusually high peak T/P ratio. KEY WORDS: advective heating; Ribeira belt; granulite; partial melting; PT pseudosection  相似文献   

10.
The Southern Yenisey Range (Eastern Siberia) consists of thegranulite-facies Kanskiy complex bordered by the lower-gradeYeniseyskiy and Yukseevskiy complexes. Samples of metapeliteof the Kanskiy complex typically show characteristic garnet-formingreaction textures and near-isobaric cooling PT paths.An important new result of this study concerns the differencein shape of the PT paths from different parts of theKanskiy granulite complex: metapelites collected 8 km from theboundary with the Yeniseyskiy complex followed a linear pathwith dP/dT 0·006 kbar/°C; metapelites collected3 km from this boundary reveal a kinked PT path withan interval of burial cooling (dP/dT –0·006 kbar/°C).The difference in the shape of the PT paths is supportedby the chemical zoning of garnet studied in the second groupof samples. A mechanism of buoyant exhumation of granulite issuggested by comparison with the results of numerical modelling,which indicate that such a diversity of PT paths mayresult from a transient disturbance of the thermal structureby rapid differential movement of material from different crustallevels. To arrive at a correct tectonic interpretation, thewhole assemblage of interrelated PT paths of metamorphicrocks collected from different localities within the same complexmust be studied. KEY WORDS: crustal diapirism; exhumation; granulites; numerical modelling; PT path  相似文献   

11.
Metapelitic rock samples from the NE Shackleton Range, Antarctica,include garnet with contrasting zonation patterns and two agespectra. Garnet porphyroblasts in K-rich kyanite–sillimanite–staurolite–garnet–muscovite–biotite schistsfrom Lord Nunatak show prograde growth zonation, and give Sm–Ndgarnet, U–Pb monazite and Rb–Sr muscovite ages of518 ± 5, 514 ± 1 and 499 ± 12 Ma, respectively.Geothermobarometry and PT pseudo-section calculationsin the model system CaO–Na2O–K2O– TiO2–MnO–FeO–MgO–Al2O3–SiO2–H2Oare consistent with garnet growth during prograde heating from540°C/7 kbar to 650°C/7·5 kbar, and partial resorptionduring a subsequent PT decrease to <650°C at <6kbar. All data indicate that rocks from Lord Nunatak were affectedby a single orogenic cycle. In contrast, garnet porphyroblastsin K-poor kyanite–sillimanite– staurolite–garnet–cordierite–biotite-schistsfrom Meade Nunatak show two growth stages and diffusion-controlledzonation. Two distinct age groups were obtained. Laser ablationplasma ionization multicollector mass spectrometry in situ analysesof monazite, completely enclosed by a first garnet generation,yield ages of c. 1700 Ma, whereas monazite grains in open garnetfractures and in most matrix domains give c. 500 Ma. Both agegroups are also obtained by U–Pb thermal ionization massspectrometry analyses of matrix monazite and zircon, which fallon a discordia with lower and upper intercepts at 502 ±1 and 1686 ± 2 Ma, respectively. Sm–Nd garnet datingyields an age of 1571 ± 40 Ma and Rb–Sr biotiteanalyses give an age of 504 ± 1 Ma. Integrated geochronologicaland petrological data provide evidence that rocks from MeadeNunatak underwent a polymetamorphic Barrovian-type metamorphism:(1) garnet 1 growth and subsequent diffusive garnet annealingbetween 1700 and 1570 Ma; (2) garnet 2 growth during the RossOrogeny at c. 500 Ma. During the final orogenic event the rocksexperienced peak PT conditions of about 650°C/7·0kbar and a retrograde stage at c. 575°C/4·0 kbar. KEY WORDS: garnet microtexture; PT pseudosection; geochronology; polymetamorphism; Shackleton Range; Antarctica  相似文献   

12.
Magmatic accretion is potentially an important mechanism inthe growth of the continental crust and the formation of granulites.In this study, the thermal evolution of a magmatic arc in responseto magmatic accretion is modeled using numerical solutions ofthe one-dimensional heat conduction equation. The initial andboundary conditions used in the model are constrained by geologicalobservations made in the Kohistan area, NW Himalayas. Takingconsideration of the preferred intrusion locations for basalticmagmas, we consider two plausible modes of magmatic accretion:the first involves the repeated intrusion of basalt at mid-crustaldepths (‘intraplate model’), and the second evaluatesthe simultaneous intrusion of basalt and picrite at mid-crustaldepths and the base of the crust respectively (‘double-platemodel’). The results of the double-plate model accountfor both the inferred metamorphic PT paths of the Kohistanmafic granulites and the continental geotherm determined frompeak PT conditions observed for granulite terranes. Thedouble-plate model may be applicable as a key growth processfor the production of thick mafic lower crust in magmatic arcs. KEY WORDS: thermal model; magmatic underplating; PT path; granulite; lower crust  相似文献   

13.
The Luobusa ophiolite, Southern Tibet, lies in the Indus–YarlungZangbo suture zone that separates Eurasia to the north fromthe Indian continent to the south. The ophiolite contains awell-preserved mantle sequence consisting of harzburgite, clinopyroxene(cpx)-bearing harzburgite and dunite. The harzburgite containsabundant pods of chromitite, most of which have dunite envelopes,and the cpx-bearing harzburgites host numerous dunite dykes.Dunite also exists as a massive unit similar to those of themantle–crust transition zones in other ophiolites. Allof the dunites in the ophiolite have a similar mineralogy, comprisingmainly olivine with minor orthopyroxene and chromite and tracesof clinopyroxene. They also display similar chemical compositions,including U-shaped chondrite-normalized REE patterns. Mantle-normalizedPGE patterns show variable negative Pt anomalies. Detailed analysisof a chromite-bearing dunite dyke, which grades into the hostcpx-bearing harzburgite, indicates that LREE and Ir decrease,whereas HREE, Pd and Pt increase away from the dunite. Thesefeatures are consistent with formation of the dunite dykes byinteraction of MORB peridotites with boninitic melts from whichthe chromitites were formed. Because the transition-zone dunitesare mineralogically and chemically identical to those formedby such melt–rock reaction, we infer that they are ofsimilar origin. The Luobusa ultramafic rocks originally formedas MORB-source upper mantle, which was subsequently trappedas part of a mantle wedge above a subduction zone. Hydrous meltsgenerated under the influence of the subducted slab at depthmigrated upward and reacted with the cpx-bearing harzburgitesto form the dunite dykes. The modified melts ponded in smallpockets higher in the section, where they produced podiformchromitites with dunite envelopes. At the top of the mantlesection, pervasive reaction between melts and harzburgite producedthe transition-zone dunites. KEY WORDS: melt–rock interaction; REE; PGE; hydrous melt; mantle; ophiolite; Tibet  相似文献   

14.
Extensive high-grade polydeformed metamorphic provinces surroundingArchaean cratonic nuclei in the East Antarctic Shield recordtwo tectono-thermal episodes in late Mesoproterozoic and lateNeoproterozoic–Cambrian times. In Western Dronning MaudLand, the high-grade Mesoproterozoic Maud Belt is juxtaposedagainst the Archaean Grunehogna Province and has traditionallybeen interpreted as a Grenvillian mobile belt that was thermallyoverprinted during the Early Palaeozoic. Integration of newU–Pb sensitive high-resolution ion microprobe and conventionalsingle zircon and monazite age data, and Ar–Ar data onhornblende and biotite, with thermobarometric calculations onrocks from the H.U. Sverdrupfjella, northern Maud Belt, resultedin a more complex PTt evolution than previouslyassumed. A c. 540 Ma monazite, hosted by an upper ampibolite-faciesmineral assemblage defining a regionally dominant top-to-NWshear fabric, provides strong evidence for the penetrative deformationin the area being of Pan-African age and not of Grenvillianage as previously reported. Relics of an eclogite-facies garnet–omphaciteassemblage within strain-protected mafic boudins indicate thatthe peak metamorphic conditions recorded by most rocks in thearea (T = 687–758°C, P = 9·4–11·3kbar) were attained subsequent to decompression from P >12·9 kbar. By analogy with limited U–Pb singlezircon age data and on circumstantial textural grounds, thisearlier eclogite-facies metamorphism is ascribed to subductionand accretion around 565 Ma. Post-peak metamorphic K-metasomatismunder amphibolite-facies conditions is ascribed to the intrusionof post-orogenic granite at c. 480 Ma. The recognition of extensivePan-African tectonism in the Maud Belt casts doubts on previousRodinia reconstructions, in which this belt takes a pivotalposition between East Antarctica, the Kalahari Craton and Laurentia.Evidence of late Mesoproterozoic high-grade metamorphism duringthe formation of the Maud Belt exists in the form of c. 1035Ma zircon overgrowths that are probably related to relics ofgranulite-facies metamorphism recorded from other parts of theMaud Belt. The polymetamorphic rocks are largely derived froma c. 1140 Ma volcanic arc and 1072 ± 10 Ma granite. KEY WORDS: Maud Belt; Pan-African orogeny; geochronology; PTt path, East Antarctica  相似文献   

15.
A light-coloured, fine-grained eclogite sample from near thevillage of Hammerunterwiesenthal in the Erzgebirge (NW BohemianMassif) preserves the low-variance mineral assemblage of garnet,omphacite, phengite, talc, amphibole, clinozoisite, quartz,rutile, and accessory phases. Porphyroblasts of amphibole, clinozoisite,and phengite formed during a late stage (III) of metamorphism.Paragonite joined the assemblage late in this stage (IIIb).The chemical zonation of the minerals was carefully studied.Various geothermobarometric methods were applied, especiallyinvolving phengite and talc. The constrained PT pathfor the eclogite starts at about 480°C and 25 kbar (stageIb), followed by a significant temperature rise (stage II) atslightly increasing pressure. At the peak PT conditionsof 720°C and 27 kbar, blastesis of amphibole, clinozoisite,and phengite was caused by infiltrating hydrous fluids. Theresulting density reduction may have allowed buoyant upliftof the eclogite. Subsequently, significant cooling occurredat high pressures. Stage IIIb is characterized by PTconditions around 520°C and 18 kbar at reduced water activities.This unusual late PT evolution might explain the freshnessof the eclogite, including the preservation of chemical zonationon the micrometre scale. KEY WORDS: eclogite; Saxonian Erzgebirge; PT evolution; talc; phengite  相似文献   

16.
The basement of Sardinia represents a nearly complete sectionof a segment of the Variscan belt that experienced a polyphasetectono-metamorphic evolution and Barrovian metamorphism. Thisbasement is well suited to investigate the relationship betweentectono-metamorphic evolution and argon isotope records in whitemica. Micaschists from the garnet zone (maximum T of up to 520–560°C)contain two texturally and chemically resolvable generationsof white mica: (1) deformed celadonite-rich flakes, defininga relict S1 foliation preserved within the main S2 foliationor enclosed in rotated albite porphyroblasts; (2) celadonite-poorwhite micas aligned along the main S2 foliation. The S1 foliationdeveloped earlier and at a deeper crustal level with respectto that at which the thermal peak was reached. From the staurolitezone (T of up to 590–625°C) to the sillimanite + K-feldsparzone, white mica is nearly uniform in composition (muscovite)and is predominantly aligned along the S2 foliation or is oflater crystallization. In situ 40Ar–39Ar laser analysesof white mica yielded ages of  相似文献   

17.
The Central Zone (CZ) of the Limpopo Complex of southern Africais characterized by a complex deformational pattern dominatedby two types of fold geometries: large sheath folds and crossfolds. The sheath folds are steeply SSW-plunging closed structureswhereas the cross folds are north–south-oriented withnear-horizontal fold axes. In the area south of Messina thiscomplexly folded terrain grades continuously towards the southinto a crustal-scale ENE–WSW-trending ductile shear zonewith moderate dip towards the WSW. All sheath folds documentconsistent top-to-the-NE thrust movement of high-grade material.The timing of this shear deformational event (D2) and thus ofthe gneissic fabric (S2) is constrained (at  相似文献   

18.
Stratigraphically well-constrained sequences of late shield-buildingstage lavas from West Maui volcano, Hawaii, show age-dependentcompositional variability distinct from that seen in shield-stagelavas from any other Hawaiian volcano. These distinctions aredefined by 206Pb/204Pb–208Pb/204Pb variation as well as87Sr/86Sr correlation with 206Pb/204Pb and trace element compositions.The West Maui lavas from stratigraphically higher in the sequencehave major and trace element and Sr–Pb–Hf–Ndisotopic compositions similar to Kea-type lavas sampled at theyounger Mauna Kea and Kilauea volcanoes, indicating that theKea compositional end-member of Hawaiian lavas has remainedhomogeneous over  相似文献   

19.
We report experimental results and whole-rock trace-elementcharacteristics of a corundum-bearing mafic rock from the Horomanperidotite complex, Japan. Coronitic textures around corundumin the sample suggest that corundum was not stable in maficrock compositions during the late-stage PT conditionsrecorded in the complex (P < 1 GPa, T < 800°C). Basedon the experimental results, corundum is stable in aluminousmafic compositions at pressures of 2–3 GPa under dry conditions,suggesting that the corundum-bearing mineral assemblages developedunder upper-mantle conditions, probably within the surroundingperidotite. Variations in the trace-element compositions ofthe corundum-bearing mafic rock and related rocks can be controlledby modal variations of plagioclase, clinopyroxene and olivine,suggesting that they formed as gabbroic rocks at low-pressureconditions, and that the corundum-bearing mafic rock was derivedfrom a plagioclase-rich protolith. A complex PT trajectory,involving metamorphism of the plagioclase-rich protolith ata pressure higher than that at which it was first formed, isneeded to explain the origin of the corundum-bearing mafic rocks.They show no evidence for partial melting after their formationas low-pressure cumulates. The Horoman complex is an exampleof a large peridotite body containing possible remnants of subductedoceanic lithosphere still retaining their original geochemicalsignatures without chemical modification during subduction andexhumation. KEY WORDS: Horoman; mafic rock; corundum; experiment; PT history; recycling  相似文献   

20.
In the nappe zone of the Sardinian Variscan chain, the deformation and metamorphic grade increase throughout the tectonic nappe stack from lower greenschist to upper amphibolite facies conditions in the deepest nappe, the Monte Grighini Unit. A synthesis of petrological, structural and radiometric data is presented that allows us to constrain the thermal and mechanical evolution of this unit. Carboniferous subduction under a low geothermal gradient (~490–570 °C GPa?1) was followed by exhumation accompanied by heating and Late Carboniferous magma emplacement at a high apparent geothermal gradient (~1200–1450 °C GPa?1). Exhumation coeval with nappe stacking was closely followed by activity on a ductile strike‐slip shear zone that accommodated magma intrusion and enabled the final exhumation of the Monte Grighini Unit to upper crustal levels. The reconstructed thermo‐mechanical evolution allows a more complete understanding of the Variscan orogenic wedge in central Sardinia. As a result we are able to confirm a diachronous evolution of metamorphic and tectonic events from the inner axial zone to the outer nappe zone, with the Late Variscan low‐P/high‐T metamorphism and crustal anatexis as a common feature across the Sardinian portion of the Variscan orogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号