首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文主要描述和讨论了四川省攀枝花市沿金沙江分布、并以炳草岗地龙箐剖面为代表的昔格达组湖相沉积下伏的砾石层的沉积特征及其河流相成因.根据前人对昔格达组湖相沉积的磁性地层学研究结果,为4.2/3.28~2.6/2.12/1.78 MaBP的上新世中、晚期或至早更新世早期,表明其下伏厚达50 m的砾石层的形成时代约为4.2~4.5/5 MaBP的上新世早期.早上新世金沙江河流相砾石层在接近金沙江谷底位置的发现,表明金沙江很早就已经从青藏高原主夷平面下切了2000 m以上、已在接近其现今谷底的位置上存在.这对于探讨古金沙江的河谷发育及其与青藏高原隆升的关系,具有重要的指示意义.  相似文献   

2.
The fluviatile Pleistocene of the lower Wye valley, below the Devensian glacial limit near Hereford, consists almost entirely of coarse gravels, situated both above and below the level of the modern flooplain. Those above the floodplain are largely composed of pebbles from the Ordovician and Silurian of east-central Wales. Around Hereford they are associated with well-preserved terraces; further downstream they are fragmentary and have also undergone some displacement. It is suggested that the high-level gravels comprise remants of four distinct aggradational units. Correlations are proposed with the Severn valley Pleistocene sequence, from which it is concluded that the lower Wye gravels represent a series of cold, perhaps glacial, periods ranging in age from pre-Hoxnian to Devension. This confirms the pre-Hoxnian age of fragmentary glacial deposits in northeast Herefordshire. Relations between the gravels and some geomorphological features are discussed, with special attention to abandoned incised meanders.  相似文献   

3.
Abstract Oligocene to Miocene fluvial sandstones from the Swiss Molasse Basin were analysed for sandstone framework composition, heavy minerals, whole‐rock geochemistry and detrital chrome spinel chemistry. Samples were taken from the proximal part of the basin close to the Alpine main thrust and are chronostratigraphically calibrated between 31 and 13 Ma. Sandstone composition allows the identification of different source rocks, and their variation in time and space place constraints on the Oligocene to Miocene evolution of the Central Alps. In the eastern part of the basin, sandstones document a normal unroofing sequence with the downcutting from Austroalpine sedimentary cover into Austroalpine crystalline rocks and, slightly later at ≈ 21 Ma, into Penninic ophiolites. In the central part, downcutting into crystalline basement rocks occurred at ≈ 25 Ma, and the removal of the sedimentary cover was much more advanced than in the east. This may be interpreted as a first signal from the doming of the Lepontine area. At ≈ 20 Ma, extensional tectonics in the hinterland led to the first exposure of low‐grade metamorphic rocks from the footwall of the Simplon Fault in the Central Alps. Erosion of these rocks persisted up to the youngest sediments at ≈ 13 Ma. In the western part of the basin, a contribution from granitoid and (ultra)mafic rocks is documented as early as ≈ 28 Ma. The source for the (ultra)mafic detritus is Penninic ophiolites from the Piemonte zone of the western Alps, which were already exposed at the surface at that time.  相似文献   

4.
The North Penninic basin was a subbasin in the northern part of the Mesozoic Tethys ocean. Its significance within the framework of this ocean is controversial because it is not clear whether it was underlain by thinned continental or oceanic crust. Remnants of the eastern North Penninic basin are preserved in the Alps of eastern Switzerland (Grisons) as low metamorphic "Bündnerschiefer" sediments and associated basaltic rocks which formed approximately 140–170 Ma ago (Misox Bündnerschiefer zone, Middle Jurassic to Early Cretaceous). Nb/U, Zr/Nb, and Y/Nb ratios, as well as Nd–Sr isotopic and REE data of most of the metabasalts point to a depleted MORB-type mantle origin. They have been contaminated by magmatic assimilation of Bündnerschiefer sediments and by exchange with seawater, but do not prove the existence of a subcontinental lithospheric mantle or continental crust beneath the North Penninic basin. This suggests that the studied part of the North Penninic realm was underlain by oceanic crust. Only the metabasalts from two melange zones (Vals and Grava melanges) show a more important contamination by crustal material. Since this type of contamination cannot be observed in the other tectonic units, we suggest that its occurrence is related to melange formation during the subduction of the North Penninic basin in the Tertiary. The North Penninic basin was probably, despite the occurrence of oceanic crust, smaller than the South Penninic ocean where the presence of oceanic crust is well established. Modern analogues for the North Penninic basin could be the transitional zone of the Red Sea or the pull-apart basins of the southernmost Gulf of California where local patches of oceanic crust with effusive volcanism have been described.  相似文献   

5.
Pebble counts of the lithology of glacial sediments in the King Valley show that the content of distantly derived erratics of many sections decreases upwards in near surface sediments. Two factors that contribute to this lithological stratification are dilution of the erratic content of surface sediments by locally derived rocks and lithological stratification of debris within the Pleistocene King Glacier. The common diluting mechanism appears to have been slope detritus derived from the valley sides and small hills that crop out on the valley floor. Lithological stratification of debris in the King Glacier resulted from the altitude of the equilibrium line of the King Glacier relative to the position and altitude of the rock source areas and the thermal regime at the ice-bed interface. The Jurassic dolerite and Permian sediments that crop out above the equilibrium line altitude were transported in subglacial and englacial positions. In contrast, below the equilibrium line sediments that accumulated and were transported in a supraglacial position contained no erratic lithologies. When deposited, the supraglacial sediments formed a siliceous, non-erratic cover over sediments that were transported in subglacial and englacial positions. The model of the mode of sediment transport in the King Valley may have application to areas of alpine glaciation where the distribution of some rock types is restricted to areas above the equilibrium lines of glaciers.  相似文献   

6.
黄河源区第四纪地质研究的新进展   总被引:8,自引:1,他引:8  
通过对黄河源区的钻孔、自然露头的研究, 建立了黄河源区的第四纪地层层序。第四纪地层可划分为下更新统、中更新统、上更新统和全新统。下更新统为河湖相沉积; 中更新统主要有湖积物、冰碛物和冰水沉积物; 上更新统主要有湖积物、冰碛物、冰水沉积物、洪积物和河流沉积物; 全新统主要由河流沉积物、洪积物和湖积物构成。黄河源区的冰期可划分为3期, 即末次冰期、倒数第二次冰期、倒数第三次冰期, 末次冰期又可分为2个冰阶。黄河源区的湖泊演化可划分为早更新世、中更新世和晚更新世—全新世3个阶段: 早更新世的湖泊范围小; 中更新世的湖泊范围明显扩大, 在位置上也较早更新世的湖泊南移; 晚更新世的湖泊经历了两次的扩张—收缩变化, 到了全新世, 除现今还发育的几个湖泊外, 大多数地区的湖水已退出, 基本上转变为河流环境。在晚更新世末期到全新世初期, 封闭黄河源区的多石峡被切开, 湖水外泄, 现今的黄河形成了, 同时发生了袭夺长江水系的水流。  相似文献   

7.
New 40Ar/39Ar geochronology places time constraints on several stages of the evolution of the Penninic realm in the Eastern Alps. A 186±2 Ma age for seafloor hydrothermal metamorphic biotite from the Reckner Ophiolite Complex of the Pennine–Austroalpine transition suggests that Penninic ocean spreading occurred in the Eastern Alps as early as the Toarcian (late Early Jurassic). A 57±3 Ma amphibole from the Penninic subduction–accretion Rechnitz Complex dates high-pressure metamorphism and records a snapshot in the evolution of the Penninic accretionary wedge. High-pressure amphibole, phengite, and phengite+paragonite mixtures from the Penninic Eclogite Zone of the Tauern Window document exhumation through ≤15 kbar and >500 °C at 42 Ma to 10 kbar and 400 °C at 39 Ma. The Tauern Eclogite Zone pressure–temperature path shows isothermal decompression at mantle depths and rapid cooling in the crust, suggesting rapid exhumation. Assuming exhumation rates slower or equal to high-pressure–ultrahigh-pressure terrains in the Western Alps, Tauern Eclogite Zone peak pressures were reached not long before our high-pressure amphibole age, probably at ≤45 Ma, in accordance with dates from the Western Alps. A late-stage thermal overprint, common to the entire Penninic thrust system, occurred within the Tauern Eclogite Zone rocks at 35 Ma. The high-pressure peak and switch from burial to exhumation of the Tauern Eclogite Zone is likely to date slab breakoff in the Alpine orogen. This is in contrast to the long-lasting and foreland-propagating Franciscan-style subduction–accretion processes that are recorded in the Rechnitz Complex.  相似文献   

8.
The traditional pre-Illinoian glacial stratigraphy in the central United States has been abandoned, which leaves a void in the Pleistocene stratigraphy of Kansas. The Independence Formation is proposed as a tithostratigraphic unit in northeastern Kansas. The Independence Formation consists of all diamictons and stratified sediments interbedded with diamictons. The Independence Formation vanes greatly in thickness and texture, but it always contains erratics derived from the Canadian Shield. At least two glacial advances took place in northeastern Kansas, first by the Minnesota lobe coming from the northeast, and later by the Dakota lobe from the northwest. During the first advance, glacial Lake Atchison was dammed in a now-buried valley. Overflow from this lake cut spillways that form parts of the Blue, Kansas, and Missouri valleys. During the later ice advance, the Kansas valley was blocked, and temporary lakes formed, from which catastrophic flooding took place. The age of the Independence Formation is interpreted as 0.7 to 0.6 million years BP. It is considered equivalent in age and stratigraphic position to type A2 and A3 tills of Nebraska and western Iowa and to the McCredie Formation of northern Missouri. This age range corresponds to oxygen-isotope stages W16.  相似文献   

9.
In the area of Arosa?CDavos?CKlosters (Eastern Switzerland) the different tectonic elements of the Arosa zone mélange e.g. the Austroalpine fragments, the sedimentary cover of South Penninic ophiolite fragments, as well as the matrix (oceanic sediments and flysch rocks) show distinctively different metamorphic histories and also different climaxes (??peaks??) of Alpine metamorphism. This is shown by a wealth of Kübler-Index, vitrinite and bituminite reflectance measurements, and K-white mica b cell dimension data. At least six main metamorphic events can be recognized in the area of Arosa?CDavos?CKlosters: (1) A pre-orogenic event, typical for the Upper Austroalpine and for instance found in the sediments at the base of the Silvretta nappe but also in some tectonic fragments of the Arosa zone (Arosa zone mélange). (2) An epizonal oceanic metamorphism observed in the close vicinity of oceanic basement rocks units of the Arosa zone (South Penninic) is another pre-orogenic process. (3) A metamorphic overprint of the adjacent Lower Austroalpine nappes and structural fragments of the Lower Austroalpine in the Arosa zone. This metamorphic overprint is attributed to the orogenic metamorphic processes during the Late Cretaceous. (4) A thermal climax observed in the South Penninic sediments of the Arosa zone can be bracketed by the Austroalpine Late Cretaceous event (3) and the middle Tertiary event (5) in the Middle Penninic units and predates Oligocene extension of the ??Turba phase??. (6) North of Klosters, in the northern part of our study area, the entire tectonic pile from the North Penninic flysches to the Upper Austroalpine is strongly influenced by a late Tertiary high-grade diagenetic to low-anchizone event. In the Arosa zone mélange an individual orogenic metamorphic event is evidenced and gives a chance to resolve diagenetic?Cmetamorphic relations versus deformation. Six heating episodes in sedimentary rocks and seven deformation cycles can be distinguished. This is well explained by the propagation of the Alpine deformation front onto the foreland units. Flysches at the hanging wall of the mélange zone in the north of the study area (Walsertal zone) show data typical for low-grade diagenetic thermal conditions and are therefore sandwiched between higher metamorphic rock units and separated from theses units by a disconformity. The Arosa zone s.s., as defined in this paper, is characterised by metamorphic inversions in the hanging wall and at the footwall thrust, thus shows differences to the Walsertal zone in the north and to the Platta nappe in the south.  相似文献   

10.
Pleistocene sediments at Leet Hill, southern Norfolk are examined in terms of their sedimentary structures, palaeocurrent indicators, clast and heavy mineral lithology and litho- and morphostratigraphic position. Colour of the quartzite and vein-quartz clasts is used to differentiate the Bytham and the Kesgrave sands and gravels, with the Bytham sands and gravels having a significantly higher proportion of coloured material. The Kirby Cane sands and gravels are the lower sedimentary unit and were deposited by the Bytham river, which drained a catchment extending into central England. At Leet Hill, erosion of the Kesgrave Sands and Gravels by the Bytham river has given the Kirby Cane sands and gravels a distinctive lithological assemblage. Trace clast lithologies suggest that the Kesgrave Sands and Gravels in the region of Leet Hill were deposited in a coastal location with an input from northern sources as well as southern and Welsh sources diagnostic of the Thames catchment. The glaciofluvial Leet Hill Sands and Gravels were deposited by outwash from the Anglian Scandinavian ice sheet. Initially the flow direction of the outwash was determined by the Bytham river valley, but this changed to a southerly direction once the valley had been infilled. This paper provides the first indication of the location of the boundary (Early Pleistocene coastline) between the fluvial Kesgrave Sands and Gravels and the marine equivalent reworked by coastal processes, and demonstrates the way the pre-glacial relief initially controlled patterns of glaciofluvial sedimentation during the early part of the Anglian glaciation. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

11.
This paper records the findings at a temporary exposure at Thorpe St Andrew near Norwich, Norfolk, UK in Early and early Middle Pleistocene Crag deposits. The British Geological Survey (BGS) describes the particular formation exposed as Norwich Crag consisting of Early Pleistocene shallow marine sediments. The section shows a succession of sorted sands and gravels overlain by a sandy diamicton. Based on field evidence and clast analysis, the sands and gravels are interpreted as the product of point bar and overbank sedimentation and represent the product of a river cutting into and aggrading within the more widespread shallow marine deposits. Composition of the sediments indicates derivation, primarily from Wroxham Crag Formation, with a contribution from Norwich Crag. The sandy diamicton is interpreted as late Middle Pleistocene Corton Till that is recorded in the area. A distinct pattern of colour changes at the top of the sands and gravels is interpreted as a soil that developed on the fluvial sediments before being overridden by the glacier that deposited the Corton Till. The existence of the fluvial sediments within the regional shallow marine deposits suggests that a fall of sea-level, possibly due to climate cooling, while the elevation of the sediments and the adjacent Crag implies that the site has been uplifted since sedimentation. This is the first observation of terrestrial sediments within the shallow marine Crag. The paper also makes a contribution to understanding the diagenetic processes that give deposits within this region some distinctive colour and sediment patterns.  相似文献   

12.
青藏高原早更新世末期的快速隆升对全球气候变化、中国西部盆山地貌形成与荒漠化的发展有着重大影响。高原东北缘敦煌盆地早更新世河湖相沉积物粒度分析和红色泥岩36Cl 断代法定年结果表明:早更新世晚期(1.164 ~1.087 Ma B.P.),青藏高原北部党金山快速隆升,砾石层和粗砂层发育,沉积速率加快;1.087~ 0.809 Ma B. P.,山脉隆升速度变缓,沉积速率降低;0.809 Ma B. P.以来,受山脉隆升的影响,敦煌盆地气候逐渐变得干旱,沙漠形成。区域分析表明,沉积速率所反映的中国中西部山脉隆升最新的年代存在差别,不同时期高原的隆升产生不同的气候效应。因此,构造隆升和气候变化的细节尚待进一步研究。  相似文献   

13.
This is a synthesis of the glacial history of the northern Urals undertaken using published works and the results of geological surveys as well as recent geochronometric and remote sensing data. The conclusions differ from the classical model that considers the Urals as an important source of glacial ice and partly from the modern reconstructions. The principal supporting evidence for the conventional model – Uralian erratics found on the adjacent plains – is ambiguous because Uralian clasts were also delivered by a thick external ice sheet overriding the mountains during the Middle Pleistocene. Alternative evidence presented in this paper indicates that in the late Quaternary the Ural mountains produced only valley glaciers that partly coalesced in the western piedmont to form large piedmont lobes. The last maximum glaciation occurred in the Early Valdaian time at c. 70–90 ka when glacial ice from the Kara shelf invaded the lowlands and some montane valleys but an icecap over the mountains was not formed. The moraines of the alpine glaciation are preserved only beyond the limits of the Kara ice sheet and therefore cannot be younger than MIS 4. More limited glaciation during MIS 2 generated small alpine moraines around the cirques of the western Urals (Mangerud et al. 2008: Quaternary Science Reviews 27, 1047). The largest moraines of Transuralia were probably produced by the outlet glaciers of a Middle Pleistocene ice sheet that formed on the western plains and discharged across the Polar Urals. The resultant scheme of limited mountain glaciation is possibly also applicable as a model for older glacial cycles.  相似文献   

14.
Quaternary sands and gravels form important, yet often highly heterogeneous economic deposits. Detailed 3-D analysis of the sedimentary structure and stratigraphy of these deposits allows for an accurate estimation of exploitable material. This paper presents a case study in SW Germany reconstructing the 3-D distribution of glacial sediments based on a high-resolution, process-orientated sedimentary facies classification and lithostratigraphy integrated within the geo-modelling package gOcad. Situated along the maximal ice-extent of the Rhine glacier during the last glaciation, the study area is characterised by a morphologically prominent terminal moraine and its associated sandur, which form the stratigraphically youngest sediments of a glacial basin, partially exposed in two gravel pits. These outcrops helped to reconstruct the complex sedimentary architecture of the northern part of the glacial basin. The regional analysis is based on core data, as well as geoelectric and geomagnetic surveys. All data were integrated into km-scale, high-resolution geological 3-D models, depicting the large-scale dynamics of multiple glacier advances and retreats during the Early to Late Pleistocene. These models allow quantifying the thickness and volume distribution of exploitable sandy gravel and help to evaluate the occurrence of non-exploitable interbedded diamicton horizons. The high quality and quantity of gravels particularly north of the terminal moraine classifies the investigated area as very prospective for raw materials exploitation in the future.  相似文献   

15.
周口店太平山北坡早更新世洞穴地层的划分   总被引:3,自引:0,他引:3  
程捷  曹伯勋 《现代地质》1995,9(4):441-449
1985年,曹伯勋等在周口店太平山北坡发现了一个早更新世洞穴-洼地堆积地点(东洞),并作了初步报导。1992~1993年,笔者又对该剖面进行了哺乳动物化石的系统采集工作,获得了丰富的化石,为确定东洞动物群的性质及该剖面地层时代提供了确凿证据。研究表明该地点堆积物形成于1.67~0.97MaB.P,太平山组应包括整个剖面。  相似文献   

16.
High resolution seismic lines from the inner and mid-shelf of the Durban Bight reveal an unprecedented view of the seismic stratigraphy of the central KwaZulu-Natal uppermost continental margin. Seven units are recognised from the shelf on the basis of their stratal architecture and bounding unconformities. These comprise four incompletely preserved sequences consisting of deposits of the highstand systems tract (Unit B), falling stage systems tracts (Unit C), the transgressive systems tract (Units A, D and G) and lowstand systems tracts (early fill of the incised valleys and strike diachronous prograding reflectors of Unit A). Seismic facies recognised as incised valley fills correspond to the lowstand and transgressive systems tracts. When integrated with published accounts of onshore and offshore lithostratigraphy and local sea level curves, we recognise an Early Santonian transgression (Unit A to Unit B), superimposed by uplift-induced pulses of forced regression. A Late Campanian relative sea level fall (Unit C) followed. Sediments of the Tertiary period are not evident on the Durban Bight shelf except for isolated incised valley fills of Unit D lying within incised valleys of Late Pliocene age. Overlying these are two stages of Pleistocene shoreline deposits of indeterminate age. Erosion concurrent with relative sea level fall towards the last glacial maximum shoreline carved a third set of incised valleys within which sediments of the Late Pleistocene/Holocene have infilled.  相似文献   

17.
The Adula nappe belongs to the Lower Penninic domain of the Central Swiss Alps. It consists mostly of pre-Triassic basement lithologies occurring as strongly folded and sheared gneisses of various types with mafic boudins. We propose a new lithostratigraphy for the northern Adula nappe basement that is supported by detailed field investigations, U–Pb zircon geochronology, and whole-rock geochemistry. The following units have been identified: Cambrian clastic metasediments with abundant carbonate lenses and minor bimodal magmatism (Salahorn Formation); Ordovician metapelites associated with amphibolite boudins with abundant eclogite relicts representing oceanic metabasalts (Trescolmen Formation); Ordovician peraluminous metagranites of calc-alkaline affinity ascribed to subduction-related magmatism (Garenstock Augengneiss); Ordovician metamorphic volcanic–sedimentary deposits (Heinisch Stafel Formation); Early Permian post-collisional granites recording only Alpine orogenic events (Zervreila orthogneiss). All basement lithologies except the Permian granites record a Variscan + Alpine polyorogenic metamorphic history. They document a complex Paleozoic geotectonic evolution consistent with the broader picture given by the pre-Mesozoic basement framework in the Alps. The internal consistency of the Adula basement lithologies and the stratigraphic coherence of the overlying Triassic sediments suggest that most tectonic contacts within the Adula nappe are pre-Alpine in age. Consequently, mélange models for the Tertiary emplacement of the Adula nappe are not consistent and must be rejected. The present-day structural complexity of the Adula nappe is the result of the intense Alpine ductile deformation of a pre-structured entity.  相似文献   

18.
The formation and structural evolution of the Jungfrau syncline is described, based on excellent outcrops occurring in the Lötschental, in the Central Alps of Switzerland. The quality of the outcrops allows us to demonstrate that the External Massifs of the Swiss Alps have developed due to internal folding. The Jungfrau syncline, which separates the autochtonous Gastern dome from the Aar massif basement gneiss folds, is composed of slivers of basement rocks with their Mesozoic sedimentary cover. In the Inner Faflertal, a side valley of the Lötschental, the 200 m thick syncline comprises four units, the Gastern massif with a reduced Mesozoic sedimentary cover in a normal stratigraphic succession, two units of overturned basement rocks with their Mesozoic sedimentary cover, and the overturned lower limb of the Tschingelhorn gneiss fold of the Aar massif with lenses of its sedimentary cover. Stratigraphy shows that the lower units, related to the Gastern massif, are condensed and that the upper units, deposited farther away from a Gastern paleo-high, form a more complete sequence, linked to the Doldenhorn Meso-Cenozoic basin fill. The integration of these local observations with published regional data leads to the following model. On the northern margin of the Doldenhorn basin, at the northern fringe of the Alpine Tethys, the pre-Triassic crystalline basement and its Mesozoic sedimentary cover were folded by ductile deformation at temperatures above 300 °C and in the presence of high fluid pressures, as the Helvetic and Penninic nappes were overthrusted towards the northwest during the main Alpine deformation phase. The viscosity contrast between the basement gneisses and the sediments caused the formation of large basement anticlines and tight sedimentary synclines (mullion-type structures). The edges of basement blocks bounded by pre-cursor SE-dipping normal faults at the northwestern border of the Doldenhorn basin were deformed by simple shear, creating overturned slices of crystalline rocks with their sedimentary cover in what now forms the Jungfrau syncline. The localisation of ductile deformation in the vicinity of pre-existing SE-dipping faults is thought to have been helped by the circulation of fluids along the faults; these fluids would have been released from the Mesozoic sediments by metamorphic dehydration reactions accompanied by creep and dynamic recrystallisation of quartz at temperatures above 300 °C. Quantification of the deformation suggests a strain ellipsoid with a ratio (1+ e1 / 1+ e3) of approximately 1000. The Jungfrau syncline was deformed by more brittle NW-directed shear creating well-developed shear band cleavages at a late stage, after cooling by uplift and erosion. It is suggested that the external massifs of the Alps are basement gneiss folds created at temperatures of 300 °C by detachment through ductile deformation of the upper crust of the European plate as it was underthrusted below the Adriatic plate.  相似文献   

19.
Joseph Bonaparte Gulf is a large embayment on the northwestern continental margin of Australia. It is approximately 300 km east‐west and 120 km north‐south with a broad continental shelf to seaward. Maximum width from the southernmost shore of Joseph Bonaparte Gulf to the edge of the continental shelf is 560 km. Several large rivers enter the gulf along its shores. The climate is monsoonal, sub‐humid, and cyclone‐prone during the December‐March wet season. A bedrock high (Sahul Rise) rims the shelf margin. The sediments within the gulf are carbonates to seaward, grading into clastics inshore. A seaward‐thinning wedge of highstand muds dominates the sediments of the inner shelf of Joseph Bonaparte Gulf. Mud banks up to 15m thick have developed inshore. Coarse‐grained sand ridges up to 15 m high are found off the mouth of the Ord River. These overlie an Upper Pleistocene transgressive lag of mixed carbonate and gravelly siliciclastic sand. Four drowned strandlines are present on the inner shelf at depths of 20, 25, 28 and 30 m below datum. These are interpreted as having formed during stillstands in the Late Pleistocene transgression. Older strandlines at great depths are inferred as having formed during the fall in sea‐level following the last highstand. For the most part the Upper Pleistocene‐Holocene marine sediments overlie an erosion surface cut into older Pleistocene sediments. Incised valleys cut into this erosion surface are up to 5 km wide and have a relief of at least 20 m. The largest valley is that cut by the Ord River. Upper Pleistocene sediments deposited in the incised valleys include interpreted lowstand fluvial gravels, early transgressive channel sands and floodplain silts, and late transgressive estuarine sands and gravels. Older Pleistocene sediments are inferred to have been deposited before and during the 120 ka highstand (isotope stage 5). They consist of sandy calcarenites deposited in high‐energy tide‐dominated shelf environments. Still older shelf and valley‐fill sediments underlie these. The contrast between the Holocene muddy clastic sediments and the sandy carbonates deposited by the 120 ka highstand suggests that either the climate was more arid in the past, with less fluvial transport, or that mud was more effectively trapped in estuaries, allowing development of carbonate depositional environments inshore.  相似文献   

20.
着重论述了鄂西建始高坪龙骨洞的堆积 ,并建立了一个新的岩石地层单位——高坪组。高坪组为一套水动力条件较弱的暗河沉积 ,岩性为黏土、亚黏土、砂质黏土 ,含巨猿化石 ,属早更新世早期 ,可与柳城巨猿洞堆积、周口店第 18地点、元谋组下部对比。龙骨洞的地层时代早于 1.93Ma  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号