首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 856 毫秒
1.
Temporal sequential analyses of the hydrological observational data in the Tarim Basin over the last forty years revealed an annual increase of 2× 107m3 in the water quantities at the three headstreams of the upper courses and an annual decrease of 3 × 107m3 in the water flow from Alaer, which is on the upper main stream. A prediction of the trends indicates that there can be severe situations under which intermittent water interceptions occur. By means of approximate estimations on vegetative water consumption through phreatic evaporation combined with a quota assessment, the ecological water demands required to maintain the ecological environment in the mainstream area over the three different targeted years of 2005, 2010 and 2030 are defined as standing at 31.86 × 108m3, 36.27 × 108m3 and 41.04 × 108m3 respectively. Ecological fragility indexes are established on the basis of the selection of environmental sensitivity factors. Rational evaluations give proof that the lower reaches of the mainstream have already turned into zones where their ecological environments are gravely damaged. Multi-objective optimization should be conducted and protective schemes be framed within the threshold limits of the bearing capacities of water resources and the environment  相似文献   

2.
不同生活型水生植物对水环境的影响和碳固持能力不同,开展大尺度范围内不同生活型水生植物的时空分布和动态变化研究,是全面掌握湖泊水生态环境变化趋势、准确核算水生生态系统碳源/碳汇的前提。以长江中下游10 km2以上(共131个)的湖泊为研究对象,基于野外调查和先验知识,通过光谱分析,研发了不同生活型水生植物遥感高精度机器学习识别算法,解析了长江中下游湖泊群不同生活型水生植物的时空变化规律。研究表明,长江中下游湖泊群不同生活型水生植物遥感监测精度为0.81,Kappa系数为0.74;1986—2020年长江中下游湖泊群水生植物面积为2541.58~4571.42 km2,占湖泊总面积的15.99%~28.77%,沉水植物是优势类型(Max1995=2649.21 km2,Min2005=921.38 km2),其次是挺水植物(Max2005=1779.44 km2,Min2020=569.05 km2)和浮叶植物(Max2015=685.68 km2,Min2000=293.04 km2);水生植物主要分布在长江干流流域湖泊群,其次是鄱阳湖流域、洞庭湖流域、太湖流域和汉江流域;变化趋势上,1986—2020年长江中下游湖泊群水生植物面积呈现先增长(1986—1995年)、后下降(1995—2010年)、再增加(2010年后)的趋势。本研究可为长江中下游湖泊群生态环境调查及水环境管理提供重要参考。  相似文献   

3.
Based on multi-temporal topographic maps, remote sensing images and field surveys covering the entire coastal zone of mainland China, the coastlines of six periods since the early 1940 s were extracted. Coastline changes over the last 70 years were then analyzed in terms of coastline structure, coastline fractals, coastline change rates, land-sea patterns, and bay areas. The results showed that mainland coastline structure changed dramatically, and due to the significant coastline artificialization mainly driven by sea reclamation and coastal engineering, the remaining natural coastline merely accounts for less than one third at present. Coastline fractal dimension represented an overall spatial pattern of "north entirety south"; however, the discrepancy between the north and south coast was apparently narrowed due to dramatic coastline artificialization of northern China which in turn altered the whole pattern. Patterns and processes of land-sea interchange along the mainland coast were complex and varied spatially and temporally, with over 68% advancing toward sea and 22% retreating toward land. The net growth of land area was nearly 14.2 ×103 km2 with an average growth rate of 202.82 km2 a??; and coast retreat was characterized by area decrease of 93 bays with a magnitude of 10.1 ×103 km2 and an average shrinking rate up to 18.19% or an average shrinking speed up to 144.20 km2 a??, among which the total area of Bohai shrunk by 7.06%, with an average annual loss amounting to 82 km2. The dramatic coastline changes along mainland China have brought about kinds of challenges to the coastal environment, therefore the integrated management, effective environment protection and sustainable utilization of coastlines is urgent.  相似文献   

4.

Sandy desertification is a land degradation characterized by wind erosion, mainly resulted from the excessive human activities in arid, semiarid and part of sub-humid regions in North China. It is one of main kinds of desertification/land degradation as well as water-soil erosion and salinization in China. Rapid and continuous spread of sandy desertification during last 50 years has created a major environmental and socio-economic problem in North China. Remote sensing monitored results in 2000 showed that the sandy desertified land area has been 38.57 × 104 km2. The area of potential to slightly sandy desertified land is 13.93 × 104 km2, moderately land 9.977 ×104 km2, severely land 7.909 × 104 k2 and very severely land 6.756 × 104 km2. Sandy desertification mainly occurs in the semi-arid mixed farming-grazing zone and its northern rangeland zone, semi-arid dryland rainfed cropping zone and arid oasis-desert margin zone. The average annually developmental rate of sandy desertified land increased from 2,100 km2 · a-1 in 1976–1988 to 3,600 km2 · a-1 in 1988–2000. The basic status of sandy desertification in North China is “overall deterioration, while local rehabilitation”. Already achieved rehabilitation results and monitoring assessment show that about 60% of desertified land in North China can be restored under the conditions of rational land-use ways and intensity.

  相似文献   

5.
Artificial surfaces, characterized with intensive land-use changes and complex landscape structures, are important indicators of human impacts on terrestrial ecosystems. Without high-resolution land-cover data at continental scale, it is hard to evaluate the impacts of urbanization on regional climate, ecosystem processes and global environment. This study constructed a hierarchical classification system for artificial surfaces, promoted a remote sensing method to retrieve subpixel components of artificial surfaces from 30-m resolution satellite imageries(Globe Land30) and developed a series of data products of high-precision urban built-up areas including impervious surface and vegetation cover in Asia in 2010. Our assessment, based on multisource data and expert knowledge, showed that the overall accuracy of classification was 90.79%. The mean relative error for the impervious surface components of cities was 0.87. The local error of the extracted information was closely related to the heterogeneity of urban buildings and vegetation in different climate zones. According to our results, the urban built-up area was 18.18×104 km2, accounting for 0.59% of the total land surface areas in Asia; urban impervious surfaces were 11.65×104 km2, accounting for 64.09% of the total urban built-up area in Asia. Vegetation and bare soils accounted for 34.56% of the urban built-up areas. There were three gradients: a concentrated distribution, a scattered distribution and an indeterminate distribution from east to west in terms of spatial pattern of urban impervious surfaces. China, India and Japan ranked as the top three countries with the largest impervious surface areas, which respectively accounted for 32.77%, 16.10% and 11.93% of the urban impervious surface area of Asia. We found the proportions of impervious surface and vegetation cover within urban built-up areas were closely related to the economic development degree of the country and regional climate environment. Built-up areas in developed countries had relatively low impervious surface and high public green vegetation cover, with 50–60% urban impervious surfaces in Japan, South Korea and Singapore. In comparison, the proportion of urban impervious surfaces in developing countries is approaching or exceeding 80% in Asia. In general, the composition and spatial patterns of built-up areas reflected population aggregation and economic development level as well as their impacts on the health of the environment in the sub-watershed.  相似文献   

6.
In the Négron River catchment area (162 km2), surface‐sediment stores are composed of periglacial calcareous ‘grèze’ (5 × 106 t) and loess (21 × 106 t), and Holocene alluvium (12·6 × 106 t), peat (0·6 × 106 t) and colluvium (18·5 × 106 t). Seventy‐five per cent of the Holocene sediments is stored along the thalwegs. Present net sediment yield, calculated from solid discharge at the Négron outlet, is low (0·6 t km?2 a?1) due to the dominance of carbonate rocks in the catchment. Mean sediment yield during the Holocene period is 7·0 t km?2 a?1 from alluvium stores and 7·6 t km?2 a?1 from colluvium stores. Thus, the gross sediment yield during the Holocene period is about 18·7 t km?2 a?1 and the sediment delivery ratio 3 per cent. The yield considerably varies from one sub‐basin to another (3·9 to 24·5 t km?2 a?1) according to lithology: about 25 per cent and 50 per cent of initial stores of periglacial grèze and loess respectively were reworked during the Holocene period. Sediment yield has increased by a factor of 6 in the last 1000 years, due to the development of agriculture. The very high rate of sediment storage on the slope during that period (88 per cent of the yield) can be accounted for by the formation of cultivation steps (‘rideaux’). It is predicted that the current destruction of these steps will result in a sediment wave reaching the valley floors in the coming decades. Subboreal and Subatlantic sediments and pollen assemblages in the Taligny marsh, where one‐third of the alluvium is stored, show the predominant influence of human activity during these periods in the Négron catchment. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
Satellite ocean color images were used to determine the space-time variability of the Amazon River plume from 2000–2004. The relationship between sea-surface salinity (SSS) and the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) absorption coefficient for dissolved and detrital material (adg) (r2=0.76, n=30, rmse=0.4) was used to identify the Amazon River plume low-salinity waters (<34 psu). The plume's spatial information was extracted from satellite bi-weekly time series using two metrics: plume area and plume shape. These metrics identified the seasonal variability of plume dimensions and dispersion patterns. During the study period, the plume showed the largest areas from July to August and the smallest from December to January. The mean annual amplitude and the mean, maximum and minimum plume areas were 1020×103 km2, 680×103 km2, 1506×103 km2 and 268×103 km2, respectively. Three main shapes and dispersion pattern periods were identified: (1) flow to the northeastern South American coast, in a narrow band adjacent to the continental shelf, from January to April; (2) flow to the Caribbean region, from April to July; and (3) flow to the Central Equatorial Atlantic Ocean, from August to December. Cross-correlation techniques were used to quantify the relationship between the plume's spatial variability and environmental forcing factors, including Amazon River discharge, wind field and ocean currents. The results showed that (1) river discharge is the main factor influencing plume area variability, (2) the wind field regulates the plume's northwestward flow velocity and residence time near the river mouth, and (3) surface currents have a strong influence over river plume dispersion patterns.  相似文献   

8.
The range of relative sea level rise in the northwestern South China Sea since the Last Glacial Maximum was over 100 m. As a result, lowland regions including the Northeast Vietnam coast, Beibu Gulf, and South China coast experienced an evolution from land to sea. Based on the principle of reconstructing paleogeography and using recent digital elevation model, relative sea level curves, and sediment accumulation data, this paper presents a series of paleogeographic scenarios back to 20 cal. ka BP for the northwestern South China Sea. The scenarios demonstrate the entire process of coastline changes for the area of interest. During the late glacial period from 20 to 15 cal. ka BP, coastline slowly retreated, causing a land loss of only 1×104 km2, and thus the land-sea distribution remained nearly unchanged. Later in 15–10 cal. ka BP coastline rapidly retreated and area of land loss was up to 24×104km2, causing lowlands around Northeast Vietnam and South China soon to be underwater. Coastline retreat continued quite rapidly during the early Holocene. From 10 to 6 cal. ka BP land area had decreased by 9×104km2, and during that process the Qiongzhou Strait completely opened up. Since the mid Holocene, main controls on coastline change are from vertical crustal movements and sedimentation. Transgression was surpassed by regression, resulting in a land accretion of about 10×104km2. Supported by Key Laboratory of Marginal Sea Geology, Chinese Academy of Sciences (Grant No. MSGL0711), the Guangdong Natural Science Foundation (Grant No. 04001309) and Open Fund of the Key Laboratory of Marine Geology and Environment, Chinese Academy of Sciences (Grant No. MGE2007KG04)  相似文献   

9.
We have investigated the contributions of three dominant macrophyte species, Deyeuxia angustifolia, Carex lasiocarpa, and Carex pseudocuraica (covering about 10 304 km2), to carbon (C), nitrogen (N), and phosphorus (P) stocks in the largest freshwater marsh (17 300 km2) in China for a 3‐year period (from 2002 to 2004). The monthly biomass, seasonal, and annual net primary productivity (NPP), and nutrient concentrations of three species were measured. All three plant species showed rapid growth in the rainy season. The maximum and minimum production rates in the freshwater marsh were ~36.19 and ~9.92 g m?2 day?1, respectively. The total NPP accounts 1900–2700 g m?2 year?1 in the studied area. Total organic carbon (TOC), total nitrogen (TN), and total phosphorus (TP) concentrations in roots were higher than those in stem and leaf tissues. The vast beds of the three studied species comprise 80% of the grass covered marsh of Sanjiang plain, contributing annual nutrient stocks of ~10.99 × 106, ~788.36 × 103, and ~18.10 × 103 t (tonnes) for TOC, TN, and TP, respectively. Our results suggest that the nutrient bioaccumulation capacity in freshwater marshes depend mainly on plant species, which are decided by hydrological conditions. The nutrient stocks in the Sanjiang plain marsh have been greatly reduced because some of the area occupied by C. lasiocarpa was replaced by D. angustifolia as a result of succession caused by the changes of water table.  相似文献   

10.
The late Cenozoic orogeny in Japan is briefly reviewed. Amounts of volcanic materials in the three periods of the orogeny are estimated at: early Neogene 150 × 103 km3 (mafic 40 %, salic 60 %), middle and late Neogene 20 × 103 km3 (mafic 70 %, salic 30 %), Quaternary 5 × 103 km3 (mafic 80 %, salic 20 %). The largest volume per unit time is in the early Neogene, and the smallest in the middle and late Neogene. Volume per unit area becomes larger towards the southeastern margin or «front» of the volcanic belt. Thermal energy transported by volcanic materials is compared with the terrestrial heat flow in the belt.  相似文献   

11.
At longer periods, scattered ScS waves sometimes dominate over coda waves at large lapse times. Examining recordings of seismic envelopes at 9 IRIS seismic stations of regional earthquakes with focal depths deeper than 150 km in periods from 1 to 20 s for a wide lapse time range up to 2000 s, we found significant frequency dependence. The coda decay gradient at short periods is steeper than that at longer periods; however, the change of coda gradient associated with the ScS arrival becomes distinct as the period becomes longer. In particular, a clear offset of coda amplitude appears in central Asia for 10 and 15 s period bands. The multiple isotropic scattering process of S-waves in the heterogeneous mantle can be simply simulated by using the Monte Carlo simulation method based on the radiative transfer theory in scattering media. Assuming a two-plane-layer attenuation structure and smoothed velocity model of the PREM, we estimated the average total scattering coefficients of S-waves such as 7.52 × 10 4∼1.32 × 10 3 km 1 and 2.08 × 10 4∼6.23 × 10 4 km 1 at 4 s, and 4.51 × 10 4∼7.37 × 10 4 km 1 and 2.80 × 10 5∼2.71 × 10 4 km 1 at 10 s, for the lithosphere and the upper mantle and for the lower mantle, respectively. Our results indicate that scattering occurs mostly in the lithosphere and the upper mantle and support that medium heterogeneity spreads over the whole mantle though its scattering power is small. Strong scattering occurs beneath central Asia and Papua New Guinea, whereas the scattering beneath Italy and regions of east Russia is much weaker. The numerical calculation enables us to confirm that much stronger scattering than intrinsic attenuation causes the offset behavior with coda decay gradient change after the ScS arrival for 4 and 10 s period bands in some regions.  相似文献   

12.
In‐stream sediment transport plays an important role in delivery of sediment‐associated terrestrial elements. Investigating the history of fluvial sediment regime responding to changes in natural and anthropogenic driving forces provides a theoretical basis for establishment of optimal strategies on catchment management. The present study aims to systematically detect the patterns of change in sediment load at two key hydrological stations (Pengshan and Gaochang) in the Minjiang River and quantitatively evaluate the relative contributions of regional precipitation change and multiple local human activities to the observed sediment variations. Abrupt change in annual sediment load was detected in 1990 at Pengshan and in 1968, 1980 and 1992 at Gaochang. Compared with the baseline period of 1957–1990, precipitation decline and human activities had respectively contributed to 5 × 106 t and 2 × 106 t of reduction in mean annual sediment load at Pengshan during 1991–2007. For the entire Minjiang basin, taking 1956–1968 as the baseline period, precipitation decline and human activities had relatively contributed to 10 × 106 t and 18 × 106 t of reduction in mean annual sediment load at Gaochang during 1969–1980. During 1981–1992, precipitation decline had relatively contributed to 5 × 106 t of reduction in mean annual sediment load, but human activities had led to 3 × 106 t of increase in mean annual sediment load. During 1993–2009, 13 × 106 t and 17 × 106 t of reduction in mean annual sediment load may be attributed to precipitation decline and human activities, respectively. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
The 1968–73 (and continuing) eruption of Arenal Volcano, Costa Rica, a small 1633 m strato-volcano with long periods of repose, defines an eruptive cycle which is typical of Arenal’s pre-historic eruptions. An intense, short explosive phase (July 29–31, 1968) grades into an effusive phase, and is followed by a block lava flow. The eruptive rocks become increasingly less differentiated with time in a given cycle, ranging from andesite to basaltic andesite. Nuées ardentes are a characteristic of the initial explosions, and are caused by fall-back ejecta on slopes around the main crater — an explosion crater in the 1968 eruption — which coalesce into hot avalanches and descend major drainage channels. Total volume of pyroclastic flows was small, about 1.8 ± 0.5 × 10n m3, in the July 29–31 explosions, and are block and ash flows, with much accidental material. Overpressures, ranging up to perhaps 5 kilobars just prior to major explosions, were estimated from velocities of large ejected blocks, which had velocities of up to 600 m/sec. Total kinetic energy and volume of ejecta of all explosions are an estimated 3 × 1022 ergs and 0.03 km3, respectively. The block lava flow, emitted from Sept., 1968 to 1973 (and continuing) has a volume greater than 0.06 km3, and covers 2.7 km2 at thicknesses ranging from 15 to over 100 m. The total volumes of the explosive and effusive phases for the 1968–73 eruption are about 0.05 km3 and 0.06 km3, respectively. The last eruption of Arenal occurred about 1500 AD. based on radiocarbon dating and archaeological means, and was about twice as voluminous as the current one (0.17 km3 versus 0.09 km3). The total thermal energies for this pre-historic eruption and the current one are 8 × 1023 and 18 × 1023, respectively. The total volume of Arenal’s cone is about 6 km3 from 1633 m (summit) to 500 m, and, estimates of age based on the average rate of cone growth from these two eruptions, suggest an age between 20,000 to 200,000 years.  相似文献   

14.
This paper presents the results from the detailed analysis of aerial photographs and space images for the Kizimen area, which characterize the geologic and geomorphologic effects of the ongoing eruption over the 2010–2011 period. It is shown that the total volume (>0.5 km3) and total mass (>109 t) of the discharged (resurgent plus juvenile) material makes this eruption the most productive in Kamchatka for the first 12 years of the 21st century. The dominant component (>90%) is juvenile material with andesitic composition. The pyroclastics (tephra, deposits of the juvenile pyroclastic avalanches and incandescent debris avalanches) comprise >0.3 km3and >0.45× 109 t, the lava (a very thick block lava flow 3.052 km long and 2.163 km2 in area) occupies about 0.195 km3 and 0.45 × 109 t. With the exception of the tephra, which fell over an area of about 100000 km2, the rest of the material was accumulated on the Kizimen cone and at its base. The mean discharge rate of juvenile ejecta was about 15 m3/s (29 t/s) for 13 months (November 11, 2010 to December 11, 2011). Appreciable changes also occurred at the near-summit part of the volcano’s cone.  相似文献   

15.
《国际泥沙研究》2020,35(4):408-416
The magnitude of soil erosion and sediment load reduction efficiency of check dams under extreme rainstorms is a long-standing concern. The current paper aims to use check dams to deduce the amount of soil erosion under extreme rainstorms in a watershed and to identify the difference in sediment interception efficiency of different types of check dams. Based on the sediment deposition at 12 check dams with 100% sediment interception efficiency and sub-catchment clustering by taking 12 dam-controlled catchments as clustering criteria, the amount of soil erosion resulting from an extreme rainstorm event on July 26, 2017 (named “7·26” extreme rainstorm) was estimated in the Chabagou watershed in the hill and gully region of the Loess Plateau. The differences in the sediment interception efficiency among the check dams in the watershed were analyzed according to field observations at 17 check dams. The results show that the average erosion intensity under the “7–26” extreme rainstorm was approximately 2.03 × 104 t/km2, which was 5 times that in the second largest erosive rainfall in 2017 (4.15 × 103 t/km2) and 11–384 times that for storms in 2018 (0.53 × 102 t/km2 - 1.81 × 103 t/km2). Under the “7–26” extreme rainstorm, the amount of soil erosion in the Chabagou watershed above the Caoping hydrological station was 4.20 × 106 t. The sediment interception efficiency of the check dams with drainage canals (including the destroyed check dams) and with drainage culverts was 6.48 and 39.49%, respectively. The total actual sediment amount trapped by the check dams was 1.11 × 106 t, accounting for 26.36% of the total amount of soil erosion. In contrast, 3.09 × 106 t of sediment were input to the downstream channel, and the sediment deposition in the channel was 2.23 × 106 t, accounting for 53.15% of the total amount of soil erosion. The amount of sediment transport at the hydrological station was 8.60 × 105 t. The Sediment Delivery Ratio (SDR) under the “7·26” extreme rainstorm was 0.21. The results indicated that the amount of soil erosion was huge, and the sediment interception efficiency of the check dams was greatly reduced under extreme rainstorms. It is necessary to strengthen the management and construction technology standards of check dams to improve the sediment interception efficiency and flood safety in the watershed.  相似文献   

16.
River deltas are the major repositories of terrestrial sediment flux into the world's oceans. Reduction in riverine inputs into the deltas due to upstream damming might lead to a relative dominance of waves, tides and currents that are especially exacerbated by coastal subsidence and sea‐level rise ultimately affecting the delta environment. Analysis of multi‐date satellite imagery and maps covering the Krishna and Godavari deltas along the east coast of India revealed a net erosion of 76 km2 area along the entire 336‐km‐long twin delta coast during the past 43 years (1965–2008) with a progressively increasing rate from 1·39 km2 yr?1 between 1965 and 1990, to 2·32 km2 yr?1 during 1990–2000 and more or less sustained at 2·25 km2 yr?1 during 2000–2008. At present the Krishna has almost become a closed basin with decreased water discharges into the delta from 61·88 km3 during 1951–1959 to 11·82 km3 by 2000–2008; and the suspended sediment loads from 9 million tons during 1966–1969 to as low as 0·4 million tons by 2000–2005. In the case of the Godavari delta, although the water discharge data do not show any major change, there was almost a three‐fold reduction in its suspended sediment loads from 150·2 million tons during 1970–1979 to 57·2 million tons by 2000–2006. A comparison of data on annual sediment loads recorded along the Krishna and Godavari Rivers showed consistently lower sediment quantities at the locations downstream of dams than at their upstream counterparts. Reports based on bathymetric surveys revealed considerable reduction in the storage capacities of reservoirs behind such dams. Apparently sediment retention at the dams is the main reason for the pronounced coastal erosion along the Krishna and Godavari deltas during the past four decades, which is coeval to the hectic dam construction activity in these river basins. Copyright © 2010 John Wiley and Sons, Ltd.  相似文献   

17.
浑善达克沙地处于季风边缘区,其气候特性和人类活动决定了该地区生态系统的脆弱和环境变化的敏感性.目前,该区湖泊生态环境问题十分严重,对研究区的水资源、草原景观以及当地居民生产生活造成了严重影响.选取1969年1∶50000地形图所指示的面积≥0.01 km~2的175个湖泊为研究对象,结合1973-2013年的17期Landsat MSS/TM/ETM/OLI卫星遥感影像数据,对1969-2013年间的湖泊群变化进行了系统的研究和初步探讨.结果表明:1969年湖泊群总面积为502.04 km~2,而2013年其面积为303.42 km~2,总体呈萎缩趋势.其中面积萎缩和干涸的湖泊分别为88和85个,而面积扩张的湖泊仅有2个(人工筑坝所致).近45 a间,1970s-1980s湖泊面积波动性减少,而在1990s初期则出现持续上升状态.在1995-2011年湖泊面积总体下降,到2013年则出现微弱的扩张现象.从湖泊变化空间分布格局来看,萎缩和干涸的湖泊集中在该沙地腹地.  相似文献   

18.
Desert coexists with oasis in long time, and the existence and development of oasis system demand better oasis vegetation ecological system. Oasis scale of arid zone plain encircling water should be determined in case of desertification caused by land over-reclamation under the circumstance of water resources shortage. Steady oasis with virtuous circle must have appropriate land use structure for agriculture, forestry and graziery. The study on the suitable scale and developmental space of oasis will provide theoretical and applicable foundation for effective construction of oases. By analyzing the hydrothermal, water and soil balance, an optimal mathematical model has been established. Based on hydrometeorology data collected for years in Weigan River plain, and by the principle of water balance, a calculation has been made of the water resources for evapotranspiration and the optimal acreage of oasis and cultivated land, which shows that the water resources for evapotranspiration in the Weigan River plain oasis is 22.32×108 m3 and the optimal oasis acreage under the condition of conventional irrigation mode is 3716.06 km2, in which the suitable cultivated land acreage is 1564.79 km2. Under the condition of water-saving irrigation, the suitable oasis acreage is 5515.49 km2, in which the suitable cultivated land acreage is 2322.31 km2. The oasis area had reached 4123 km2, and the cultivated land acreage had reached 1507 km2 after the Agriculture Irrigation Drainage Water Project of World Bank Loan in Weigan River basin was finished in 1997. The oasis and cultivated land acreage will be more suitable, and the oasis scale can be enlarged moderately by means of water saving irrigation.  相似文献   

19.
Measurements made on the floors of the temporarily-drained Glenfarg and Glenquey Reservoirs indicate that sediments with wet volumes of 63.94 × 103 m3 and 12.64 × 103 m3 were deposited in 56 and 73 years respectively. These figures represent 2.5 per cent and 1.1 per cent losses of original storage capacity. When corrected for water, organic, and diatom skeleton contents, and reservoir trap efficiency inorganic sediment yields of at least 31.3 tonnes km?2 yr?1 and of 9.0 tonnes km?2 yr?1 are suggested. The difference is probably related to contrasts of land use.  相似文献   

20.
2000-2010年东北地区湖泊动态变化及驱动力分析   总被引:2,自引:0,他引:2  
李宁  刘吉平  王宗明 《湖泊科学》2014,26(4):545-551
以2000、2005和2010年的Landsat TM和ETM遥感影像为主要数据源,利用面向对象的分类方法,提取3期东北地区湖泊数据;在GIS技术的支持下,分析了过去10年东北地区湖泊的时空变化特征,并对导致湖泊面积变化的自然和人文驱动因素进行分析.结果表明:2000-2010年间,东北地区湖泊面积由12234.02 km2减少至11307.58 km2,其中,2005-2010年间湖泊萎缩剧烈程度大于2000-2005年;湖泊数量先增加后减少,10年间共减少了4092个;10年间天然湖泊面积大幅减少,人工湖泊面积略增加;研究区内西北方向湖泊萎缩程度小于东南方向,质心向西北偏移;湖泊变化受自然因素和人类活动的共同影响,人类活动叠加在自然因素之上,对湖泊变化产生了放大作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号