首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Our view of how water quality effects ecosystems of the Great Barrier Reef (GBR) is largely framed by observed or expected responses of large benthic organisms (corals, algae, seagrasses) to enhanced levels of dissolved nutrients, sediments and other pollutants in reef waters. In the case of nutrients, however, benthic organisms and communities are largely responding to materials which have cycled through and been transformed by pelagic communities dominated by micro-algae (phytoplankton), protozoa, flagellates and bacteria. Because GBR waters are characterised by high ambient light intensities and water temperatures, inputs of nutrients from both internal and external sources are rapidly taken up and converted to organic matter in inter-reefal waters. Phytoplankton growth, pelagic grazing and remineralisation rates are very rapid. Dominant phytoplankton species in GBR waters have in situ growth rates which range from approximately 1 to several doublings per day. To a first approximation, phytoplankton communities and their constituent nutrient content turn over on a daily basis. Relative abundances of dissolved nutrient species strongly indicate N limitation of new biomass formation. Direct ((15)N) and indirect ((14)C) estimates of N demand by phytoplankton indicate dissolved inorganic N pools have turnover times on the order of hours to days. Turnover times for inorganic phosphorus in the water column range from hours to weeks. Because of the rapid assimilation of nutrients by plankton communities, biological responses in benthic communities to changed water quality are more likely driven (at several ecological levels) by organic matter derived from pelagic primary production than by dissolved nutrient stocks alone.  相似文献   

2.
During the warm seasons of 1998–2004, the naturally-acidic (pH2.2) Lake Caviahue was sampled for conductivity, temperature, oxygen, light, nutrients, and phytoplankton (density, biomass and chlorophyll a) with a view to studying the summer phytoplankton population changes with relation to environmental factors, as well as the significance of nitrogen limitation on the phytoplankton yield. Lake Caviahue is characterized by its low transparency, CO2, and N concentration; significant P values; a distinctive vertical distribution of phytoplankton biomass with high values along the water column; and sometimes maximum meta-hypolimnion values. Biodiversity is very low as a result of extreme environmental conditions, Chlorophyceae being the prevailing algae group. Two types of bioassays were carried out to assess nitrogen limitation. For the first bioassay, a solution of ammonium–nitrogen chloride and/or wastewater (rich in ammonium and phosphorus) was used, while one of the lake's sediments was the source of nutrients for the second bioassay. Contrary to the case of acidic mining lakes, N-ammonium proved to be a significant supportive capacity limiting factor as to phytoplankton yield. The present paper provides for the first time information on phytoplankton nitrogen limitation in a naturally-acidic lake.  相似文献   

3.
During the warm seasons of 1998-2004, the naturally-acidic (pH∼2.2) Lake Caviahue was sampled for conductivity, temperature, oxygen, light, nutrients, and phytoplankton (density, biomass and chlorophyll a) with a view to studying the summer phytoplankton population changes with relation to environmental factors, as well as the significance of nitrogen limitation on the phytoplankton yield. Lake Caviahue is characterized by its low transparency, CO2, and N concentration; significant P values; a distinctive vertical distribution of phytoplankton biomass with high values along the water column; and sometimes maximum meta-hypolimnion values. Biodiversity is very low as a result of extreme environmental conditions, Chlorophyceae being the prevailing algae group. Two types of bioassays were carried out to assess nitrogen limitation. For the first bioassay, a solution of ammonium-nitrogen chloride and/or wastewater (rich in ammonium and phosphorus) was used, while one of the lake's sediments was the source of nutrients for the second bioassay. Contrary to the case of acidic mining lakes, N-ammonium proved to be a significant supportive capacity limiting factor as to phytoplankton yield. The present paper provides for the first time information on phytoplankton nitrogen limitation in a naturally-acidic lake.  相似文献   

4.
水温、光能对春季太湖藻类生长的耦合影响   总被引:3,自引:2,他引:3  
环境因素对藻类生长的影响机制是探讨蓝藻水华暴发的基础,其中水温和光能均是影响藻类生长的关键物理因子.基于2015年春季于太湖观测的11次藻类总初级生产力、水温廓线和营养盐浓度等,探讨水温、光能及营养盐对藻类生长过程的影响.结果表明:春季,水温、光能是影响藻类生长的关键因素,而营养盐的影响贡献相对较弱.深层水体中光能是藻类生长的关键性限制因子,浅层表现为水温、光能的共同影响,而表层主要表现为光能的抑制.水温的升高促进藻类对光能的获取和利用,提高光抑制的光能阈值,造成深层水体中光能限制程度的加强,藻类生长呈现光限制的深度变浅.本研究有利于确定气候变化下水生生态系统演变的方向,为水生生态系统的恢复提供理论依据.  相似文献   

5.
In 2001, the Hong Kong government implemented the Harbor Area Treatment Scheme (HATS) under which 70% of the sewage that had been formerly discharged into Victoria Harbor is now collected and sent to Stonecutters Island Sewage Works where it receives chemically enhanced primary treatment (CEPT), and is then discharged into waters west of the Harbor. The relocation of the sewage discharge will possibly change the nutrient dynamics and phytoplankton biomass in this area. Therefore, there is a need to examine the factors that regulate phytoplankton growth in Hong Kong waters in order to understand future impacts. Based on a historic nutrient data set (1986-2001), a comparison of ambient nutrient ratios with the Redfield ratio (N:P:Si=16:1:16) showed clear spatial variations in the factors that regulate phytoplankton biomass along a west (estuary) to east (coastal/oceanic) transect through Hong Kong waters. Algal biomass was constrained by a combination of low light conditions, a rapid change in salinity, and strong turbulent mixing in western waters throughout the year. Potential stoichiometric Si limitation (up to 94% of the cases in winter) occurred in Victoria Harbor due to the contribution of sewage effluent with high N and P enrichment all year, except for summer when the frequency of stoichiometric Si limitation (48%) was the same as P, owing to the influence of the high Si in the Pearl River discharge. In the eastern waters, potential N limitation and N and P co-limitation occurred in autumn and winter respectively, because of the dominance of coastal/oceanic water with low nutrients and low N:P ratios. In contrast, potential Si limitation occurred in spring and a switch to potential N, P and Si limitation occurred in eastern waters in summer. In southern waters, there was a shift from P limitation (80%) in summer due to the influence of the N-rich Pearl River discharge, to N limitation (68%) in autumn, and to N and P co-limitation in winter due to the dominance of N-poor oceanic water from the oligotrophic South China Sea. Our results show clear temporal and spatial variations in the nutrient stoichiometry which indicates potential regulation of phytoplankton biomass in HK waters due to the combination of the seasonal exchange of the Pearl River discharge and oceanic water, sewage effluent inputs, and strong hydrodynamic mixing from SW monsoon winds in summer and the NE monsoon winds in winter.  相似文献   

6.
The model structure contains three compartments which are described by single models and are multiplicatively combined into an overall model of the net production of phytoplankton, the sedimentation of algae and the grazing by zooplankton being taken into account as loss quantities. The radiation and nutrients available (N, P, Si) are represented by Fourier models; the same holds for the water temperature. The light and temperature dependence of the growth rate are described by exponential equations, the nutrient dependence is described by the Monod statement. When the half-saturation constants and the sinking losses of the seasonally prevailing algae groups are taken into account, besides the total net production also the seasonal succession of the biomass of the different algae groups can be simulated realistically.  相似文献   

7.
《Marine pollution bulletin》2009,58(6-12):335-348
In 2001, the Hong Kong government implemented the Harbor Area Treatment Scheme (HATS) under which 70% of the sewage that had been formerly discharged into Victoria Harbor is now collected and sent to Stonecutters Island Sewage Works where it receives chemically enhanced primary treatment (CEPT), and is then discharged into waters west of the Harbor. The relocation of the sewage discharge will possibly change the nutrient dynamics and phytoplankton biomass in this area. Therefore, there is a need to examine the factors that regulate phytoplankton growth in Hong Kong waters in order to understand future impacts. Based on a historic nutrient data set (1986–2001), a comparison of ambient nutrient ratios with the Redfield ratio (N:P:Si = 16:1:16) showed clear spatial variations in the factors that regulate phytoplankton biomass along a west (estuary) to east (coastal/oceanic) transect through Hong Kong waters. Algal biomass was constrained by a combination of low light conditions, a rapid change in salinity, and strong turbulent mixing in western waters throughout the year. Potential stoichiometric Si limitation (up to 94% of the cases in winter) occurred in Victoria Harbor due to the contribution of sewage effluent with high N and P enrichment all year, except for summer when the frequency of stoichiometric Si limitation (48%) was the same as P, owing to the influence of the high Si in the Pearl River discharge. In the eastern waters, potential N limitation and N and P co-limitation occurred in autumn and winter respectively, because of the dominance of coastal/oceanic water with low nutrients and low N:P ratios. In contrast, potential Si limitation occurred in spring and a switch to potential N, P and Si limitation occurred in eastern waters in summer. In southern waters, there was a shift from P limitation (80%) in summer due to the influence of the N-rich Pearl River discharge, to N limitation (68%) in autumn, and to N and P co-limitation in winter due to the dominance of N-poor oceanic water from the oligotrophic South China Sea. Our results show clear temporal and spatial variations in the nutrient stoichiometry which indicates potential regulation of phytoplankton biomass in HK waters due to the combination of the seasonal exchange of the Pearl River discharge and oceanic water, sewage effluent inputs, and strong hydrodynamic mixing from SW monsoon winds in summer and the NE monsoon winds in winter.  相似文献   

8.
浅水湖泊中的初级生产者主要由分布在底栖生境中的底栖植物和生活在敞水生境中的浮游植物组成.底栖植物主要包括维管束沉水植物和底栖藻类等,浮游植物则主要为浮游藻类.贫营养浅水湖泊湖水营养盐浓度低,透明度高,底栖植物因能直接从沉积物中获取营养盐,往往是浅水湖泊的优势初级生产者.随着外源营养盐负荷的增加,湖水中的营养盐浓度不断升高,浮游植物受到的营养盐限制作用减小,加上其在光照方面的竞争优势,逐步发展成为湖泊的优势初级生产者,湖泊逐步从底栖植物为优势的清水态转变为浮游植物为主的浑水态,即稳态转换.在稳态转换过程中,浅水湖泊生态系统结构与功能发生了一系列变化,本文综述了浅水湖泊沉积物性质和生物(浮游植物、底栖植物、底栖动物和鱼类等)群落结构的变化,分析了这些变化对底栖植物、浮游植物之间竞争优势和底栖敞水生境间磷交换的影响,探讨了富营养化驱动的底栖敞水生境耦合过程变化和稳态转换机理.了解浅水湖泊底栖敞水生境耦合过程与稳态转换机理对富营养化浅水湖泊修复有重要意义.富营养化浅水湖泊修复实际就是重建其清水态,在制定修复目标时应该关注评价清水态的指标,如透明度、浮游植物生物量、底栖植物的覆盖度或优势度等.在开展湖泊修复技术研发与工程应用时,应该重点关注对底栖敞水生境耦合有重要影响的关键技术,如沉积物磷释放和底栖生物食性鱼类控制以及底栖植物(尤其是沉水植物)恢复等有关技术.  相似文献   

9.
The main aim of this study was to develop a generic tool for assessing risks and impacts of nutrient enrichment in estuaries. A simple model was developed to predict the magnitude of primary production by phytoplankton in different estuaries from nutrient input (total available nitrogen and/or phosphorus) and to determine likely trophic status. In the model, primary production is strongly influenced by water residence times and relative light regimes. The model indicates that estuaries with low and moderate light levels are the least likely to show a biological response to nutrient inputs. Estuaries with a good light regime are likely to be sensitive to nutrient enrichment, and to show similar responses, mediated only by site-specific geomorphological features. Nixon's scale was used to describe the relative trophic status of estuaries, and to set nutrient and chlorophyll thresholds for assessing trophic status. Estuaries identified as being eutrophic may not show any signs of eutrophication. Additional attributes need to be considered to assess negative impacts. Here, likely detriment to the oxygen regime was considered, but is most applicable to areas of restricted exchange. Factors which limit phytoplankton growth under high nutrient conditions (water residence times and/or light availability) may favour the growth of other primary producers, such as macrophytes, which may have a negative impact on other biological communities. The assessment tool was developed for estuaries in England and Wales, based on a simple 3-category typology determined by geomorphology and relative light levels. Nixon's scale needs to be validated for estuaries in England and Wales, once more data are available on light levels and primary production.  相似文献   

10.
Seasonal variations in the biomass (Chl a) and primary production (14C-method) of phytoplankton were studied during 12 months of 2005 in the three Ethiopian Rift Valley Lakes (ERVL) Ziway, Awassa and Chamo. Chl a showed an average value of 40, 20, and 30 mg m−3 for the three lakes, respectively. Integrated areal primary production for the total phytoplankton (g C m−2 d−1) varied 2-fold in the three lakes but on different levels, from 0.67–1.8 in L. Ziway, 1.8–4.6 in L. Awassa, and 1.0–2.6 in L. Chamo. The overall photosynthetic efficiency of utilizing photosynthetically active radiation by the phytoplankton on molar basis (mmol C mol of photons−1) resulted in an average value of 1.4 for L. Ziway, 3.5 for L. Awassa and 1.6 for L. Chamo. Among the different factors regulating phytoplankton primary productivity, light penetration and nutrients were the most important in the three lakes. The seasonal variations of incident radiation (most values between 5 and 7 E m−2 h−1) and water temperature (most values between 22 and 24 °C) were small and unlikely to result in the marked differences in phytoplankton primary production. Although relative increase in nutrient concentrations occurred following the rainy periods, the major algal nutrients were either consistently low (nitrate and/or silicate) or high (phosphate and/or ammonium) and remained within a narrow range for most of the study period in all the three lakes. Consequently, phytoplankton biomass and primary production seem to be maintained more by nutrient regeneration or turnover (facilitated by high temperature) than by allochthonous nutrient input. This would be coupled with wind-induced mixing that would play an important role in determining hydrographic characteristics (water column structure) and the associated redistribution of nutrients and phytoplankton, the availability of light and subsequently the spatial (vertical) and temporal patterns of phytoplankton production in these three ERVL. Phytoplankton production (PP) is regarded as a good predictor of fish yield in lakes and seasonal measurements of PP is a prerequisite for good such estimates.  相似文献   

11.
《Continental Shelf Research》1999,19(9):1113-1141
Relationships among primary production, chlorophyll, nutrients, irradiance and mixing processes were examined along the salinity gradient in the Mississippi River outflow region. A series of six cruises were conducted during 1988–1992 at various times of year and stages of river discharge. Maximum values of biomass and primary production were typically observed at intermediate salinities and coincided with non-conservative decreases in nutrients along the salinity gradient. Highest values of productivity (>10 gC m−2 d−1) and biomass (>30 mg chlorophyll a m−3) were observed in April 1988, July–August 1990 and April–May 1992; values were lower in March and September 1991. Rates of primary production were apparently constrained by low irradiance and mixing in the more turbid, low salinity regions of the plume, and by nutrient limitation outside the plume. Highest values of primary production occurred at stations where surface nutrient concentrations exhibited large deviations from conservative mixing relationships, indicating that depletion of nutrients was related to phytoplankton uptake. Mixing and advection were important in determining the location and magnitude of primary production maxima and nutrient depletion. In addition to growth within plume surface waters, enhanced growth and/or retention of biomass may have occurred in longer residence time waters at the plume edge and/or beneath the surface plume. Vertical structure of some plume stations revealed the presence of subsurface biomass maxima in intermediate salinity water that was depleted in nutrients presumably by uptake processes. Exchange between subsurface water and the surface plume apparently contributed to the reduction in nutrients at intermediate salinities in the surface layer. DIN (=nitrate+nitrite+ammonium) : PO4 (=phosphate) ratios in river water varied seasonally, with high values in winter and spring and low values in late summer and fall. Periods of high DIN : PO4 ratios in river nutrients coincided with cruises when surface nutrient concentrations and their ratios indicated a high probability for P limitation. N limitation was more likely to occur at high salinities and during late summer and fall. Evidence for Si limitation was also found, particularly in spring.  相似文献   

12.
The chemical characteristics and phytoplankton biomass (measured as chlorophyll-a concentrations) of seven lakes and one reservoir in the Ethiopian rift-valley were studied during the wet and dry seasons between 1990 and 2000. Mean concentrations of three major plant nutrients (nitrate-nitrogen, soluble reactive phosphorus, and silicate) increased during the wet seasons in four of the seven lakes, presumably as a result of mixing events and input from runoff. The changes in the major nutrient concentrations in the rest of the lakes were variable, but concentrations were usually higher during the dry seasons, most likely as a response to temporal variation in the phytoplankton biomass. pH measurements of the lakes did not show marked differences between the wet and dry seasons. Salinity (measured as conductivity) and total ions seemed to increase during the wet seasons in some of the lakes, possibly as a result of inflows that might carry high concentrations of solutes due to the heavy rains. Chlorophyll-a concentrations were higher during the dry seasons in most lakes except in three relatively more productive lakes. The results suggest that there could be light limitation in some of the Ethiopian rift-valley lakes, and events associated with the wet and dry seasons could bring about contrasting changes in nutrient levels and phytoplankton biomass in lakes, depending on the physical characteristics of the lakes.  相似文献   

13.
Longitudinal heterogeneity in reservoirs is especially related to increase in sedimentation and water transparency along the river/dam axis. Consequently, primary production tends to reach higher values in intermediate regions where there is a balance between the availability of the main resources (light and nutrients) suitable for phytoplankton growth. Many factors such as reservoir morphometry, retention time, thermal stratification and geographical location can affect the boundaries between these regions. The tropical Funil Reservoir (Brazil), despite a low retention time, has experienced severe eutrophication in recent decades, with persistent cyanobacteria blooms. During the course of 1 year, samples were collected at four stations along the reservoir (fluvial, intermediate and lentic compartments) to evaluate if spatial heterogeneity could affect the occurrence and distribution of these blooms along the reservoir. Although the reservoir has a short annual retention time (mean 41.5 days), the typical zonation pattern was observed for the main abiotic variables and phytoplankton abundance. However, higher biomass occurred in the lentic compartment rather than in the intermediate zone. Despite the peculiar heterogeneity in total biomass, the phytoplankton composition and seasonal variability were very similar along the entire reservoir, with a few marked differences only in the fluvial zone. Phytoplankton total biomass in Funil Reservoir was high, even in periods of lower seasonal retention time (around 15 days), and was especially related to high input of nutrients. Moreover, retention time directly affects the spatial heterogeneity of phytoplankton biomass, since strong variability was only observed during the cold-dry season, corresponding to periods of longer retention time (around 80 days). While high availability of nutrients promoted high cyanobacterial biomass in the entire system, the few periods of heterogeneous spatiality seemed to be related to changes in retention time.  相似文献   

14.
Phytoplankton biomass is an important factor for short-term forecasts of algal blooms. Our new hydrodynamic-phytoplankton model is primarily intended for simulating the spatial and temporal distribution of phytoplankton in Lake Taihu within a time frame of 1-5 days. The model combines two modules: a simple phytoplankton kinetics module for growth and loss; and a mass-transport module, which defines phytoplankton transport horizontally with a two dimensional hydrodynamic model. To adapt field data for model input and calibration, we introduce two simplifications: (a) exclusion of some processes related to phytoplankton dynamics like nutrient dynamics, sediment resuspension, mineralization and nitrification, and (b) use of monthly measured data of the nutrient state. Chlorophyll-α concentration, representing phytoplankton biomass, is the only state variable in the model. A sensitivity analysis was carried out to identify the most sensitive parameter set in the phytoplankton kinetics module. The model was calibrated with field data collected in 2008 and validated with additional data obtained in 2009. A comparison of simulated and observed chlorophyll-α concentration for 33 grid cells achieved an accuracy of 78.7%. However, mean percent error and mean absolute percent error were 13.4% and 58.2%, respectively, which implies that further improvement is necessary, e.g. by reducing uncertainty of the model input and by an improved parameter calibration.  相似文献   

15.
In deep stratified coastal lagoons, hypoxic waters that result from phytoplankton decomposition in the stratified bottom waters are often associated with eutrophication. Decomposing biomass reaches the bottom sediments and enriches them with nutrients and organic matter. Nutrients trapped in sediments are released with time and promote excessive phytoplankton growth in the surface water. Because eutrophication in lentic ecosystems progresses in a self-fuelling cycle, outflow is the only available process for exporting excess nutrients to recover from eutrophication. Thus, rehabilitation of eutrophic coastal lagoons that have limited seawater interactions is a long term process. The importance of nutrient release from sediments on eutrophication and the delay effect of internal nutrient loading on the rehabilitation of a eutrophic coastal lagoon with limited seawater exchange were analysed in this study.An ecological model that couples the water column and the sediment diagenesis processes, was developed for water quality management purposes. Our findings indicate that the recovery of the Lagoon from eutrophication will be taken decades even in the absence of external nutrient loading. Therefore, we suggest applying rehabilitation strategies that control the nutrient fluxes from sediments for a faster recovery from heavily eutrophic conditions. Land-based nutrient sources must also be controlled because they feed water column and the bottom sediments with nutrients.  相似文献   

16.
17.
水生高等植物-浮游植物关系和湖泊营养状态   总被引:24,自引:5,他引:24  
章宗涉 《湖泊科学》1998,10(4):83-86
本文根据中国一些湖泊的资料,从湖泊营养化角度分析了水生高等植物的生物量,分布和优势种以及浮游植物,透明度和湖泊营养状态的关系,表明高等植物和浮游藻类这两种初级生产者的生产在浅水湖泊中呈负相关,并反映在水质指标和湖泊营养状态下,同是,简要讨论了光限制,营养供给和生化抑制作用在浮游植物与水生高等植物关系中的作用。  相似文献   

18.
全球变暖对淡水湖泊浮游植物影响研究进展   总被引:3,自引:6,他引:3  
全球变暖对湖泊生态系统的影响已经成为近年来湖沼学领域的研究热点.本文首先列举了目前研究全球变暖对淡水湖泊浮游植物影响的常用方法:监测数据分析、时空转换、遥感信息提取、控制实验、模型预测和古湖沼学技术等.研究结果表明气候变暖导致的气温升高、湖泊热力分层提前破坏以及无冰期提前等因素可导致春季物候提前;在全球变暖大背景下浮游植物群落结构正朝着蓝藻占优的方向发展,但是不同地区以及不同物种对全球变暖的响应不一致.在营养盐充足的湖泊中,由于全球变暖延长了浮游植物生长季节等,从而能提高浮游植物初级生产力;但在贫营养湖泊中,浮游植物初级生产力与变暖趋势甚至可能呈负相关.由于生态系统往往是多因子的共同作用,这也使得全球变暖对浮游植物群落的影响效应复杂化,区分各因子的净影响份额是目前研究的一个难点;全球变暖引起的风场改变会促进浅水湖泊中营养盐从底泥的释放,同时也会增加水体中悬浮物的浓度而影响水下光场,因此开展气候变化对再悬浮及浮游植物群落结构的影响可能是将来研究的一个切入点.  相似文献   

19.
Nutrient Dynamics and Productivity in Three European Estuaries   总被引:3,自引:0,他引:3  
The Scheldt, Gironde and Sado estuaries exhibit quite different characteristics regarding the annual river discharges, nutrient loads and oxygen conditions. Distribution patterns of nutrients, dissolved oxygen, suspended matter and chlorophyll a as well as the nutrient ratios and half saturation constants, allow the identification and comparison of specific processes. The Scheldt emerges as the most eutrophic estuary being, in general, not nutrient limited and functions as a source of phosphorus and nitrogen. Intense biogeochemical processes take place in this system. The Sado is shown to be a moderately productive system, the upper part being enriched in nutrients and chlorophyll a and showing a tendency for oxygen depletion in summer. Different factors seem to control phytoplankton production along the salinity gradient: light regime landwards and nitrogen seawards. By contrast, the Gironde does not show clearly the presence of sinks or sources regarding nutrients and exhibits a reduced productivity essentially controlled by turbidity. The high amounts of particles seem also to be responsible for localized processes such as phosphate sorption/desorption and silicate regeneration.  相似文献   

20.
An idealised model is presented and analysed to gain more fundamental understanding about the dynamics of phytoplankton blooms in well-mixed, suspended sediment dominated estuaries. The model describes the behaviour of subtidal currents, suspended sediments, nutrients and phytoplankton in a channel geometry. The initial growth of phytoplankton and its spatial distribution is calculated by solving an eigenvalue problem. The growth rates depend on the position in the estuary due to along-estuary variations in nutrient concentration and suspended sediment concentration. The model yields an insight into how the onset of blooms in the model depends on physical and biological processes (turbulent mixing, fresh water discharge, light attenuation, imposed nutrient concentrations at the river and sea side). In particular, the model demonstrates that the joint action of spatial variations in turbidity and in nutrients causes the maximum phytoplankton concentrations to occur seaward of the estuarine turbidity maximum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号