首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Small pods of silica-undersaturated Al-rich and Mg-rich granulite facies rocks containing sapphirine, pleonastic spinel, kornerupine, cordierite, orthopyroxene, corundum, sillimanite and gedrite are scattered throughout the NE Strangways Range, Central Australia. These are divided into four distinct rock types, namely orthopyroxene-rich aluminous granofels and metapelitic gneisses containing sapphirine, spinel or kornerupine. Two granulite facies metamorphic events are recognized, of which only the first (M1) is considered in this paper. Peak metamorphic mineral parageneses indicate that the M1 thermal maximum occurred at approximately 900–950 °C and 8–9 kbar. All samples are characterized by profuse and diverse coronitic and symplectic reaction textures. These are interpreted as evidence for the sequential crossing of the following reactions in the system FMAS: cordierite + spinel + corundum = sapphirine + sillimanite, cordierite + spinel = orthopyroxene + sapphirine + sillimanite, sapphirine + spinel + sillimanite = orthopyroxene + corundum, sapphirine + sillimanite = cordierite + orthopyroxene + corundum. Phase stability relationships in FMAS and MASH indicate an anticlockwise P–T path terminated by isobaric cooling. Such a path is exemplified by early low-P mineral parageneses containing spinel, corundum and gedrite and the occurrence of both prograde and retrograde corundum. Reaction textures preserve evidence for an increase in aH2O and aB2O3 with progressive isobaric cooling. This hydrous retrogression resulted from crystallization of intimately associated M1 partial melt segregations. There is no evidence for voluminous magmatic accretion giving rise to the high M1 thermal gradient. The M1 P–T path may be the result of either lithospheric thinning after both crustal thickening and burial of the supracrustal terrane, or concomitant crustal thickening and mantle lithosphere thinning.  相似文献   

2.
Silica-deficient sapphirine-bearing rocks occur as an enclave within granulite facies Proterozoic gneisses and migmatites near Grimstad in the Bamble sector of south-east Norway (Hasleholmen locality). The rocks contain peraluminous sapphirine, orthopyroxene, gedrite, anthophyllite, sillimanite, sapphirine, corundum, cordierite, spinel, quartz and biotite in a variety of assemblages. Feldspar is absent.
Fe2+/(Fe2++ Mg) in the analysed minerals varies in the order: spinel > gedrite ≥ anthophyllite ≥ biotite > sapphirine>orthopyroxene > cordierite.
Characteristic pseudomorph textures indicate coexistence of orthopyroxene and sillimanite during early stages of the reaction history. Assemblages containing orthopyroxene-sillimanite-sapphirine-cordierite-corundum developed during a high-pressure phase of metamorphism and are consistent with equilibration pressures of about 9 kbar at temperatures of 750–800°C. Decompression towards medium-pressure granulite facies generated various sapphirine-bearing assemblages. The diagnostic assemblage of this stage is sapphirine-cordierite. Sapphirine occurs in characteristic symplectite textures. The major mineralogical changes can be described by the discontinuous FMAS reaction: orthopyroxene + sillimanite → sapphirine + cordierite + corundum.
The disequilibrium textures found in the Hasleholmen rocks are characteristic for reactions which have been in progress but then ceased before they run to completion. Textures such as reaction rims, symplectites, partial replacement, corrosion and dissolution of earlier minerals are characteristic of granulite facies rocks. They indicate that, despite relatively high temperatures (700–800° C), equilibrium domains were small and chemical communication and transport was hampered as a result of dry or H2O-poor conditions.  相似文献   

3.
In the Pulur complex, NE Turkey, a heterogeneous rock sequence ranging from quartz-rich mesocratic gneisses to silica- and alkali-deficient, Fe-, Mg- and Al-rich melanocratic rocks is characterized by granulite-facies assemblages involving garnet, cordierite, sillimanite, ilmenite, ±spinel, ±plagioclase, ±quartz, ±biotite, ±corundum, rutile and monazite. Textural evidence for partial melting in the aluminous granulites, particularly leucosomes, is largely absent or strongly obliterated by a late-stage hydrothermal overprint. However, inclusion relations, high peak PT conditions, the refractory modes, bulk and biotite compositions of the melanocratic rocks strongly support a model of partial melting. The melt was almost completely removed from the melanocratic rocks and crystallised within the adjacent mesocratic gneisses which are silica-rich, bear evidence of former feldspar and show a large range in major element concentrations as well as a negative correlation of most elements with SiO2. Peak conditions are estimated to be ≥800 °C and 0.7–0.8 GPa. Subsequent near-isothermal decompression to 0.4–0.5 GPa at 800–730 °C is suggested by the formation of cordierite coronas and cordierite–spinel symplectites around garnet and in the matrix. Sm–Nd, Rb–Sr and 40Ar/39Ar isotope data indicate peak conditions at 330 Ma and cooling below 300 °C at 310 Ma.  相似文献   

4.
M. Santosh  K. Sajeev   《Lithos》2006,92(3-4):447-464
We report three new localities of corundum and sapphirine-bearing hyper aluminous Mg-rich and silica-poor ultrahigh-temperature granulites formed during Late Neoproterozoic-Cambrian times within the Palghat–Cauvery Shear Zone system in southern India. From petrologic characteristics, mineral chemistry and petrogenetic grid considerations, the peak metamorphic conditions of these rocks are inferred to lie around 950–1000 °C (as suggested by Al in orthopyroxene thermometer) at pressures above 10 kbar (as indicated by the equilibrium orthopyroxene–sillimanite–gedrite ± quartz assemblage). These rocks preserve several remarkable reaction textures, the most prominent among which is the triple corona of spinel–sapphirine–cordierite on corundum, with the whole textural assembly embedded within the matrix of gedrite, suggesting the reaction: Ged + Crn = Spl + Spr + Crd. The formation of sapphirine–sillimanite assemblage/symplectite associated with relict corundum and porphyroblasitc cordierite is explained by the reaction: Crd + Crn = Spr + Sil. The association of sapphirine cordierite symplectite with gedrite–sillimanite assemblage as well as with aluminosilicate boundaries indicates the gedrite consuming reaction: Ged + Sil = Spr + Crd. Extensive growth of sapphirine–cordierite observed on the rim of gedrite porphyroblasts with spinel occurring as relict inclusions within the sapphirine indicates the reaction: Ged + Spl = Spr + Crd. The pressure–temperature (PT) path defined from the observed mineral assemblages and reaction texture is characterized by anticlockwise trajectory, with a prograde segment of initial heating and subsequent deep burial, followed by retrograde near-isothermal decompression. Such an anticlockwise trajectory is being reported for the first time from southern India and has important tectonic implications since these rocks were developed at the leading edge of the crustal block that was involved in collisional orogeny and subsequent extension during the final phase of assembly of the Gondwana supercontinent. We propose that the rocks were subjected to deep subduction and rapid exhumation, and the extreme thermal conditions were attained either through input from underplated mantle-derived magmas, or convective thinning or detachment of the lithospheric thermal boundary layer during or after crustal thickening.  相似文献   

5.
A high-grade metamorphic complex is exposed in Filchnerfjella (6–8°E), central Dronning Maud Land. The metamorphic evolution of the complex has been recovered through a study of textural relationships, conventional geothermobarometry and pseudosection modelling. Relicts of an early, high-P assemblage are preserved within low-strain mafic pods. Subsequent granulite facies metamorphism resulted in formation of orthopyroxene in rocks of mafic, intermediate to felsic compositions, whereas spinel + quartz were part of the peak assemblage in pelitic gneisses. Peak conditions were attained at temperatures between 850–885 °C and 0.55–0.70 GPa. Reaction textures, including the replacement of amphibole and garnet by symplectites of orthopyroxene + plagioclase and partial replacement of garnet + sillimanite + spinel bearing assemblages by cordierite, indicate that the granulite facies metamorphism was accompanied and followed by decompression. The observed assemblages define a clock-wise P-T path including near-isothermal decompression. During decompression, localized melting led to formation of post-kinematic cordierite-melt assemblages, whereas mafic rocks contain melt patches with euhedral orthopyroxene. The granulite facies metamorphism, decompression and partial crustal melting occurred during the Cambrian Pan-African tectonothermal event.  相似文献   

6.
Sapphirine/kornerupine-bearing rocks occur within the anorthosites of the Messina layered intrusion in the Limpopo mobile belt of Zimbabwe. The XMg range of the major minerals is as follows: cordierite (0.98-0.93); enstatite (0.97-0.86); chlorite (0.98-0.92); phlogopite (0.98-0.90); sapphirine (0.98-0.86); kornerupine (0.94-0.88); gedrite (0.96-0.85); spinel (0.92-0.78). There are four rock types, the constituent minerals of which have different values, which decrease in the above mineral order; other minerals are corundum, sillimanite and relict kyanite. We recognise twenty reactions without phlogopite and nine reactions involving phlogopite. The textural relations and the plots of the microprobe data of coexisting minerals in the MgO-Al2O3-SiO2-(H2O) system are consistent with the following sequence of main reactions: (1) enstatite+corundum cordierite+sapphirine; (4) sapphirine+sillimanite cordierite+corundum; (8) kornerupine+corundum cordierite+sapphirine; (13) kornerupine cordierite+sapphirine+enstatite; (15) enstatite+spinel chlorite+sapphirine; (18) cordierite+sapphirine chlorite+corundum; (20) sapphirine chlorite+corundum+spinel. The early reactions are shown by coarse-grained reaction intergrowths, kornerupine and gedrite breakdown is shown by finer-grained symplectites, and the latest reactions by very fine-grained products in micro-fractures. These selected reactions illustrate a remarkably steep trajectory from thePT peak close to 10 kbar and 800° C to the minimum observable at 3.5–4.5 kbar and 700° C as indicated by the pure MASH system. Very rapid uplift took place under nearly isothermal conditions. The protolith of this material was possibly sedimentary, derived from altered volcanic rocks. The bulk composition is close to the composition of kornerupine or to a mixture of alunite, chlorite and pyrophyllite. These texturally and mineralogically complex rocks contain a wealth of relevant data for documenting crustal uplift history.  相似文献   

7.
Spinel–cordierite symplectites partially replacing andalusite occur in metapelitic rocks within the cores of several country rock diapirs that have ascended into the upper levels of layered mafic/ultramafic rocks in the Bushveld Complex. We investigate the petrogenesis of these symplectites in one of these diapirs, the Phepane dome. Petrographic evidence indicates that at conditions immediately below the solidus the rocks were characterized by a cordierite‐, biotite‐ and K‐feldspar‐rich matrix and 5–10 mm long andalusite porphyroblasts surrounded by biotite‐rich fringes. Phase relations in the MnNCKFMASHT model system constrain the near‐solidus prograde path to around 3 kbar and imply that andalusite persisted metastably into the sillimanite + melt field, where the fringing relationship between biotite and andalusite provided spatially restricted equilibrium domains with silica‐deficient effective bulk compositions that focused suprasolidus reaction. MnNCKFMASHT pseudosections that model these compositional domains suggest that volatile phase‐absent melting reactions consuming andalusite and biotite initially produced a moat of cordierite surrounding andalusite; reaction progressed until all quartz was consumed. Spinel is predicted to grow with cordierite at around 720 °C. Formation of the aluminous solid products was strongly controlled by the receding edge of andalusite grains, with symplectites forming at the andalusite‐cordierite moat interface. Decompression due to melt‐assisted diapiric rise of the floor rocks into the overlying mafic/ultramafic rocks occurred close to the thermal peak. Re‐crossing of the solidus at P = 1.5–2 kbar, T > 700 °C resulted in preservation of the symplectites. Two features of the silica‐deficient domains inhibited resorption of spinel. First, the cordierite moat armoured the symplectites from reaction with crystallizing melt in the outer part of the pseudomorphs. Second, an up‐T step in the solidus at low‐P, which may be in excess of 100 °C higher than the quartz‐saturated solidus, resulted in high‐T crystallization of melt on decompression. Even in metapelitic rocks where melt is retained, preservation of spinel is favoured by decompression.  相似文献   

8.
Aluminous parageneses containing gedrite, cordierite, garnet, staurolite, biotite, sillimanite, kyanite, quartz or spinel plus corundum are found as dark colored lenses in the polymetamorphic, multideformed Archean complex at Ajitpura in northwest peninsular India. Staurolite, like kyanite, is a relict phase of earlier metamorphism and is excluded as a paragenetic mineral in view of its incompatibility with quartz and gedrite and its lower X Mg values than for garnet of the assemblage. Its stability here is attributed to zinc content of up to 3 wt%. The XMg in other ferromagnesian minerals decreases in the order: cordierite, biotite, gedrite, garnet, as found elsewhere in high grade rocks.The textural criteria and systematic partitioning of Fe and Mg in the ferromagnesian phases, excluding staurolite, indicate attainment of equilibrium during the second metamorphism. From tie line configurations in the phase diagrams, X Mg ratios in the constituent minerals, and other petrographic criteria, it is suggested that gedrite — cordierite-garnet — sillimanite — biotite assemblage has been produced by the reactions: Biotite+Sillimanite+Quartz = Cordierite+Garnet+K-feldspar+Vapor (1) and Biotite+Sillimanite+Quartz = Cordierite +Gedrite+K-feldspar+Vapor (2) which occurred during partial melting of the rocks at fixed P and T conditions.By isothermal P-X(Fe-Mg) sections it has been demonstrated that release of FeO, SiO2 and other components modified the composition of the reactant biotite presumably by the substitution FeSi2 Al, whereby reaction 1 was replaced by reaction 2. Cordierite with higher X Mg was produced with gedrite instead of with garnet, whose X Mg is less than X Mg of gedrite. Reaction 2 has been tentatively located in T-P space from the intersection of some continuous loops in the P-X(Fe-Mg) diagram at 700°C and also by other constraints. The discontinuous reaction 2 is located about 1–2 kilobars higher than reaction 1, which implies that it is difficult to distinguish between effects of pressure and those of melting on the X Mg ratios of the reaction phases.The P-T calibrations of garnet — cordierite, garnet — biotite and garnet — plagioclase equilibria and the calibrations from other dehydration curves give temperatures near 700°C and pressure (assuming ) about 6 kilobars.  相似文献   

9.
Gneiss domes are commonly cored by quartzofeldspathic rocks that provide little information about the pressure–temperature–fluid history of the domes. Three northern Cordilleran migmatite domes (Thor‐Odin and Valhalla/Passmore, British Columbia, Canada; Okanogan, Washington, USA), however, contain Mg–Al‐rich orthoamphibole‐cordierite gneiss as layers and lenses that record metamorphic conditions and pressure–temperature (PT) path information not preserved in the host migmatite. These Mg–Al‐rich rocks are therefore a valuable archive of metamorphic conditions during dome evolution, although refractory rocks such as these commonly contain reaction textures that may complicate the calculation of metamorphic conditions. In the Okanogan dome, Mg–Al‐rich layers are part of the Tunk Creek unit, which occurs at the periphery of an underlying migmatite domain. Bulk compositional layers (mm‐ to m‐scale) consist of gedrite‐dominated, hornblende‐dominated and biotite‐bearing layers that contain variable amounts of gedrite, hornblende, anorthite, cordierite, spinel, sapphirine, corundum, kyanite, biotite and/or staurolite. The presence of different compositional layers (some with reaction textures, some without) allows systematic analysis of metamorphic history by a combined petrographic and phase equilibrium analysis. Gedrite‐dominated layers containing relict kyanite preserve evidence of the highest‐P conditions; symplectitic and coronal reaction textures around kyanite indicate decompression at high temperature. Gedrite‐dominated layers lacking these reaction textures contain layers of sapphirine and spinel in apparent textural equilibrium and record a later high‐T–low‐P part of the path. Phase equilibria (pseudosection) analysis for layers that lack reaction textures indicates metamorphic conditions of 720–750 °C at a range of pressures (>8 to <4 kbar) following decompression. Elevated crustal temperatures and concordant structural fabrics in the Tunk Creek unit and underlying migmatite domain suggest that the calculated PT conditions recorded in Tunk Creek rocks were coeval with anatexis, extension, and dome formation in Palaeocene–Eocene time. In contrast to orthoamphibole‐cordierite gneiss in the other Cordilleran domes, the Tunk Creek unit occurs as a discontinuous km‐scale layer rather than as smaller (m‐scale) pods, is more calcic, and lacks garnet. In addition, kyanite did not transform to sillimanite, and spinel commonly occurs as a blocky matrix phase in addition to vermicules in symplectite. These differences, along with the compositional layering, allow an analysis of bulk composition v. tectonic (PT path) controls on mineral assemblages and textures. Pseudosection modelling of different layers in the Tunk Creek unit provides a basis for understanding the metamorphic history of these texturally complex, refractory rocks and their host gneiss domes, and other such rocks in similar tectonic settings.  相似文献   

10.
本文对山西五台山地区与超镁铁质岩密切共生的含蓝晶石的各类片岩进行了研究。研究发现,在蓝晶石铝直闪石片岩中存在一种特殊的冠状体结构,即蓝晶石和铝直闪石被它们之间内圈的十字石十刚玉十绿泥石和外圈的堇青石所包绕。这种特殊的反应边结构,说明岩石曾处于较高的压力条件下(0.9~1.4GPa),然后经历了明显的近等温的减压过程。其它类型的含蓝晶石片岩,也包含了高压变质矿物组合,并经历了同样的变质演化过程。这种演化历史与该区经历了古洋壳俯冲,消减,弧陆碰撞和伴随的迅速折返和抬升是密切有关的。  相似文献   

11.
In a granulite-facies spinel-bearing quartzite, corundum, orthopyroxene and sapphirine (and rarely cordierite and sillimanite) form partial rims separating spinel from quartz. Textures indicate the reactions:
spinel + quartz = orthopyroxene + corundum, and
spinel + quartz = orthopyroxene + sapphirine.
Thus, corundum and sapphirine are produced by reactions involving quartz. The low Al-content of the orthopyroxene (0.5–2.8 wt %) and low values for Mg–Fe distribution coefficient for spinel–sapphirine and spinel–orthopyroxene reflect low-temperature conditions during formation of the reaction products. Absence of zoning in spinel and a constant Mg–Fe distribution coefficient for spinel–sapphirine and spinel–orthopyroxene, over a compositional range, indicate Mg–Fe equilibration. It is suggested that stable reactions such as spinel + quartz = cordierite or spinel + quartz = garnet + sillimanite were over-stepped and that metastable reactions give rise to the anomalous juxtaposition of corundum + quartz.  相似文献   

12.
The cordierite-bearing gneisses occurring as elongate patches in an 8- to 10-km-wide zone along the Achankovil fault-lineament at the northern margin of the southern Kerala crustal segment represent an important lithological unit in the Archaean granulite terrane of south India. The textural relationships in these rocks are consistent with the following main reactions: (1) garnet+quartz=cordierite+hypersthene; (2) garnet+sillimanite+quartz=cordierite; (3) hypersthene+sillimanite+quartz=cordierite; (4) sillimanite+spinel=cordierite+corundum; and (5) biotite+quartz+sillimanite=cordierite+K-feldspar. Many of the mineral associations and reaction textures, including the remarkable preservation of symplectites, are indicative of partial replacement of high-pressure assemblages by cordierite-bearing lower-pressure ones during an event of rapid decompression. Temperature estimates from coexisting mineral phases show 710° (garnet-biotite), 791° (garnet-cordierite) and 788° C (garnet-orthopyroxene). Pressure estimates from mineral assemblages range from 5.4 to 7 kb. Detailed fluid inclusion studies in quartz associated with cordierite show high-density CO2 (0.80–0.95 g/cm3) as the dominant fluid phase, with traces of probable CH4 (?) in the sillimanite-bearing rocks. The isochore for the higher-density fluid inclusions defines a pressure of 5.5 kb. The fracture-bound CO2 and CO2-H2O (±CH4?) inclusions indicate simultaneous entrapment at 400° C and 1.7 kb in the cordierite-hypersthene assemblage and 340° C and 1.2 kb in the cordierite-sillimanite assemblage. The P-T path delineated from combined solid and fluid data corresponds to the piezothermic array of the gneisses and is characterized by T-convex nature, indicative of rapid and virtually isothermal crustal uplift, probably aided by extensional tectonics.  相似文献   

13.
Metapelitic country rocks were contact- and pyro-metamorphosed by the Tertiary Skaergaard Intrusion, East Greenland. In an initial stage of heating, while they were probably still in place within the host rock contact aureole, they overstepped a range of equilibrium and disequilibrium melting reactions and produced both a granitic melt and very refractory spinel+cordierite+plagioclase±corundum residuals. Parts of these refractory rocks were then subjected to another melting event after being entrained as xenoliths into the Skaergaard Marginal Border Group, where they experienced a temperature of about 1,000°C at a pressure of about 650 bars and at an oxygen fugacity about 0.2–0.5 log units below the FMQ buffer. Here, they underwent bulk melting, but did not mix with the Skaergaard magma, presumably because of the high viscosity contrast. The Al-rich melts crystallized to an assemblage of corundum+mullite+sillimanite+ plagioclase+spinel+rutile±tridymite±cordierite and they reacted with the surrounding basalt producing a strongly cryptically zoned rim of plagioclase (An55 close to the basalt to An90 close to the Al-rich melt). The assemblage in the inner parts of the xenoliths provides textural evidence for disequilibrium growth due to slow diffusivities in the highly viscous, probably water-free Al-rich melt. Later interaction of lower temperature ferrobasaltic to granophyric melts with the xenoliths along their margins and along cracks led to consumption of corundum and mullite and to the stable assemblage of spinel+cordierite+plagioclase+quartz+K-feldspar +magnetite+ilmenite at about 800°C.  相似文献   

14.
Ductilely deformed veins consisting of quartz+andalusite, in which the andalusite is partially replaced by fibrous sillimanite, locally occur in garnet–sillimanite schist near a margin of the Niğde metamorphic core complex in south-central Turkey. Mineral assemblages, reaction textures and structural features of the veins record low-pressure–high-temperature deformation during exhumation of mid-crustal rocks. The partial replacement of andalusite by sillimanite may indicate a late-stage increase in temperature and/or fluid pressure, possibly related to Miocene magmatism, during extensional unroofing of the core complex. Aluminosilicate-bearing veins are observed at the eastern margin of the massif where metapelitic rocks were deformed during unroofing of the core complex. Veins formed in aluminous rocks where deformation-enhanced permeability allowed fluid flow during extensional shear. The cm-scale veins are typically boudinaged and form asymmetric lenses concordant with the host rock foliation and are parallel to the down-dip lineation defined by sillimanite and stretched biotite. Aluminosilicate-bearing boudins record top-to-the-east shear sense, which is compatible with the extensional shear sense displayed by structures in the host rock.  相似文献   

15.
C.W. Oh  S.W. Kim  I.S. Williams 《Lithos》2006,92(3-4):557-575
Spinel granulite formed in the Fe–Al-rich layers in migmatitic gneiss adjacent to a late Paleozoic collision-related mangerite intrusion in the Odesan area, eastern Gyeonggi Massif, South Korea, contains the high-temperature (HT) assemblage Crd + Spl + Crn. Spinel and cordierite compositions indicate peak metamorphic conditions of 914–1157 °C. Retrograde metamorphism reached amphibolite facies where garnet and cordierite broke down to biotite, sillimanite and quartz. These conditions, and the reactions inferred from mineral textures, are consistent with a clockwise PT path. Metamorphic zircon overgrowths in the spinel granulite and enclosing migmatitic gneiss, dated by SHRIMP U–Pb, yield Permo-Triassic ages of 245 ± 10 and 248 ± 18 Ma respectively, consistent with the metamorphism being a product of the late Paleozoic collision between the North and South China blocks within South Korea. The zircon core ages and textures suggest that the ultimate source of the spinel granulite was a Paleoproterozoic (1852 ± 14 Ma) igneous rock. The protolith of the host migmatitic gneiss was a sediment derived principally from 2.49, 2.16 and 1.86 Ga sources. The age and conditions of spinel granulite metamorphism are similar to those of spinel-bearing granulite in the Higo terrane in west-central Kyushu (250 Ma, > 950 °C at 8–9 kbar), consistent with a continuation of the Dabie-Sulu collision zone into Japan through the Odesan area.  相似文献   

16.
Abstract In granulite facies metapelitic rocks in the Musgrave Complex, central Australia, reaction between S1 garnet and sillimanite involves the development in S2 of both garnet + cordierite + hercynitic spinel + biotite and hercynitic spinel + cordierite + sillimanite + biotite. The S2 assemblages occur either in coronas and symplectites, mainly around garnet, or, in rocks in which S2 is more strongly developed, as recrystallized assemblages. Ignoring the presence of biotite and ilmenite, the mineral textures can be accounted for qualitatively by a consideration of the model system FeO-MgO-Al2O3-SiO2 (FMAS); the textural relationships accord with decompression accompanying the change from S1 to S2. However, since biotite and ilmenite are involved in the assemblages, the parageneses are better accounted for in terms of equilibria in the expanded model system K2O-FeO-MgO-Al2O3-SiO2-H2-TiO2-Fe2O3 (KFMASHTO), i.e. AFM + TiO2+ Fe2O3. The coronas reflect the tectonic unroofing of at least part of the Musgrave Complex from peak S1 conditions of about 8 kbar to S2 conditions of about 4 kbar.  相似文献   

17.
High‐pressure kyanite‐bearing felsic granulites in the Bashiwake area of the south Altyn Tagh (SAT) subduction–collision complex enclose mafic granulites and garnet peridotite‐hosted sapphirine‐bearing metabasites. The predominant felsic granulites are garnet + quartz + ternary feldspar (now perthite) rocks containing kyanite, plagioclase, biotite, rutile, spinel, corundum, and minor zircon and apatite. The quartz‐bearing mafic granulites contain a peak pressure assemblage of garnet + clinopyroxene + ternary feldspar (now mesoperthite) + quartz + rutile. The sapphirine‐bearing metabasites occur as mafic layers in garnet peridotite. Petrographical data suggest a peak assemblage of garnet + clinopyroxene + kyanite + rutile. Early kyanite is inferred from a symplectite of sapphirine + corundum + plagioclase ± spinel, interpreted to have formed during decompression. Garnet peridotite contains an assemblage of garnet + olivine + orthopyroxene + clinopyroxene. Thermobarometry indicates that all rock types experienced peak P–T conditions of 18.5–27.3 kbar and 870–1050 °C. A medium–high pressure granulite facies overprint (780–820 °C, 9.5–12 kbar) is defined by the formation of secondary clinopyroxene ± orthopyroxene + plagioclase at the expense of garnet and early clinopyroxene in the mafic granulites, as well as by growth of spinel and plagioclase at the expense of garnet and kyanite in the felsic granulite. SHRIMP II zircon U‐Pb geochronology yields ages of 493 ± 7 Ma (mean of 11) from the felsic granulite, 497 ± 11 Ma (mean of 11) from sapphirine‐bearing metabasite and 501 ± 16 Ma (mean of 10) from garnet peridotite. Rounded zircon morphology, cathodoluminescence (CL) sector zoning, and inclusions of peak metamorphic minerals indicate these ages reflect HP/HT metamorphism. Similar ages determined for eclogites from the western segment of the SAT suggest that the same continental subduction/collision event may be responsible for HP metamorphism in both areas.  相似文献   

18.
Meta-graywacke and meta-argillite of Archean age near Yellowknife contain biotite, cordierite, gedrite and sillimanite isograds towards the Sparrow Lake granite pluton. The chemistry of biotite, cordierite, gedrite and garnet in rocks that up-grade from the cordierite isograd indicate a small range of chemical composition, particularly with reference to Mg, Fe and Mn. The analyses show further that among the coexisting ferromagnesian minerals Fe/Fe+ Mg ratio decreases in the sequence: garnet, gedrite, biotite, cordierite while Mn/Fe+Mg+Mn ratio decreases in the sequence garnet, gedrite, cordierite, biotite. The same order is also observed in the distribution diagrams. The regular distribution of Mg, Fe and Mn among the coexisting phases demonstrate that chemical equilibrium was attained and preserved in these Archean rocks. Mg-Fe distribution between cordierite and biotite appears to be dependent on the temperature of crystallization or metamorphic grade.  相似文献   

19.
http://www.sciencedirect.com/science/article/pii/S1674987112000060   总被引:2,自引:1,他引:1  
The Khondalite Belt within the Inner Mongolia Suture Zone(IMSZ) in the North China Craton is a classic example for Paleoproterozoic ultrahigh-temperature(UHT) metamorphism.Here we report new spinel-bearing metapelitic granulites from a new locality at Xumayao within the southern domain of the IMSZ.Petrological studies and thermodynamic modeling of the spinel+quartz-bearing assemblage shows that these rocks experienced extreme metamorphism at UHT conditions.Spinel occurs in two textural settings:(1) high XZn(Zn/(Mg+Fe+Zn)=0.071-0.232) spinel with perthitic K-feld-spar. sillimanite and quartz in the rock matrix;and(2) low XZn(0.045—0.070) spinel as inclusions within garnet porphyroblasts in association with quartz and sillimanite. Our phase equilibria modeling indicates two main stages during the metamorphic evolution of these rocks:(1) near-isobaric cooling from 975℃to 875℃around 8 kbar.represented by the formation of garnet porphyroblasts from spinel and quartz;and(2)cooling and decompression from 850℃.8 kbar to below 750℃.6.5 kbar,represented by the break-down of garnet.The spinel+quartz assemblage is considered to have been stable at peak metamorphisni.formed through the break-down of cordierite.indicating a near isothermal compression process.Our study confirms the regional extent of UHT metamorphisni within the IMSZ associated with the Paleoproterozoic subduction-collision process.  相似文献   

20.
‘Sakenites’ constitute a unique association of corundum‐, spinel‐ and sapphirine‐bearing anorthitic to phlogopitic rocks, first described in rocks from an exposure along the beds of the Sakena river to the NW of Ihosy, south Madagascar. The exposure has been revisited and subjected to a detailed petrological and geochemical study. The aluminous anorthitic rocks occur as boudinaged bands and lenses, closely associated with corundum‐, spinel‐ and sapphirine‐bearing phlogopitites, diverse calcsilicate rocks and marbles within a series of biotite‐sillimanite‐cordierite gneisses of the Ihosy granulite unit in the NW of the Pan‐African Bongolava‐Ranotsara shear zone. Bimineralic anorthite + corundum domains preserve the earliest record of a polyphasic evolutionary history that includes two distinct metasomatic episodes. Probable protoliths of these bimineralic rocks were kaolinite‐rich sediments or calcareous bauxites that were altered by Ca or Si infiltration‐metasomatism prior to or coeval with the development of the anorthite‐corundum assemblage. P–T pseudosection modelling of metapelitic gneisses suggests peak‐conditions around 800 °C and 6–7 kbar for the regional high‐grade metamorphism and deformation in the NW part of the Bongolava‐Ranotsara shear zone. The well‐annealed granoblastic‐polygonal textures indicate complete chemical and textural re‐equilibration of the foliated bimineralic rocks during this event. Subsequently, at somewhat lower P–T conditions (750–700 °C, 6 kbar), the influx of Mg‐, Si‐ and K‐bearing fluids into the anorthite‐corundum rocks caused significant metasomatic changes. In zones infiltrated by ‘primary’ potassic fluids, the bimineralic assemblage was completely replaced by phlogopite and Mg‐Al minerals, thereby producing corundum‐, spinel‐ and sapphirine‐bearing phlogopitites. Further advance of the resulting ‘residual’ Mg‐ and Si‐bearing fluids into anorthite‐corundum domains led to partial to complete replacement of corundum porphyroblasts by spinel, spinel + sapphirine or sapphirine, depending on the activities of the solutes. The static textures developed during this second metasomatic episode suggest fluid influx subsequent to intense ductile deformation in the Bongolava‐Ranotsara ductile shear zone c. 530–500 Ma ago.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号