首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
海水中过氧化氢(H2O2)能与多种痕量金属发生氧化还原反应并改变其存在状态,从而间接影响海洋生态系统。综述了过去30多年的研究结果并提出进一步研究方向。H2O2在100~200m以浅的上层海洋中普遍存在,浓度介于0~102nmol/L之间。H2O2在表层含量最高,随深度增加而减小;近岸海区H2O2浓度通常高于寡营养大洋;并且海水中H2O2出现典型的周日波动(白天浓度增加,于午后达到最大值后逐渐降低,至黎明达到最低值)。海水中H2O2的来源包括光化学生产、大气沉降和生物生产,一般以光化学生产为主。去除过程包括生物分解、光化学分解和化学分解,以生物分解为主。目前对H2O2在受河流影响的近岸陆架海区中的生物地球化学、光化学生产的影响因素以及H2O2的去除机制尚缺乏全面认识,在这些方面还需更多研究。  相似文献   

2.
在痕量元素的海洋生物地球化学循环过程中,有机配体直接控制痕量元素在不同形态及粒径范围内的分配,进而影响痕量元素的迁移转化过程和生物可利用性。深入研究海水中痕量元素-有机配体的配分特征及影响因素,明确有机配体分子量组分及其对痕量元素的配合作用差异,对于了解痕量元素的生物地球化学行为,评估痕量元素的生物可利用性和毒性效应均具有十分重要的意义。对海水中痕量元素-有机配体的分布规律、配分特征及盐度、pH、氧化还原条件和生物活动对配体的影响进行了系统总结。海水中的有机配体一般以低分子量部分为主体,配合能力因元素性质差异存在随分子量增加而提高或降低的不同趋势。除此之外,有机配体的结构、配合能力及分子量分布随水体各物理化学参数的变化而改变。盐度的增加会降低有机配体相邻官能团的静电排斥力从而降低配体的配合能力,还会导致高分子量金属有机配合物发生絮凝和降解而去除。pH的增加不仅可以促使有机配体离子化,还能促进部分痕量元素水解为与有机配体亲和力更高的形式,提高有机配体配合率。氧化还原环境同时影响了痕量元素的价态和有机配体的浓度,间接影响痕量元素-有机配体的配合率。浮游植物利用及微生物分解可以增加低分子量有机配体的比例,从而提高其配合能力,但当生物遭受过量金属离子的毒性胁迫时,其细胞内会释放胞内配体,将致毒元素转化为配合物并排出体外,从而增加水体中痕量元素高分子量有机配体的浓度。未来应结合有机物结构分析技术及痕量元素分离检测技术,系统研究海洋环境中不同分子量有机配体的结构及与痕量元素配合强度的相互关系,进一步揭示痕量元素的迁移转化过程与生态学意义。  相似文献   

3.
张卫华 《岩矿测试》1992,11(3):246-248
介绍了微堆中子活化法对多金属结核及其伴生海洋沉积物样品中痕量元素的测定条件,讨论了误差来源。实验结果给出了某些元素的地球化学特征,为研究多金属结核的形成提供了依据。  相似文献   

4.
笔者利用宏量组分、微量组分、痕量金属组分的化学总量、环境因子等测试资料,深入讨论了胶州湾不同介质痕量金属的生物地球化学总体特征及各介质痕量金属组分在平面上的分布,揭示了胶州湾水生系统对陆源物质输入的响应。整个水生系统从垂向上看,表层沉积物是所有痕量金属组分的富集带;该系统中的生物相对于其所处水环境具有显著的富集痕量金属组分作用,生物体中Cu、Hg和As生物浓缩系数依次为1385、93和725。从横向上看,痕量金属组分化学场的研究揭示了痕量金属组分总量在底层水和沉积物介质中的分布主要受控于河口,即高值区分布于胶州湾的各个主要河口区,特别是沉积物中金属组分浓度的高值区主要集中分布于胶州湾的东部。而孔隙水中Cu的高值主要分布于水交替较弱的海域,如红岛前缘。但生物体中的痕量金属组分化学场空间分布规律与上述各介质的化学场均不吻合,亦即生物体中痕量金属组分的浓度与其所处环境中的同名金属组分浓度无关。生物对痕量金属组分的富集并不简单地取决于它所处环境介质中同名金属组分的总量,而存在形态上的选择性。并且通过回归分析揭示了底层水对生物体中Cu、Hg和As的富集贡献较大。  相似文献   

5.
正磷是生命必需元素,不仅影响光合作用还对海洋中碳循环起着关键的调节作用。在现代海洋中,磷一般通过陆壳风化获得,并通过在光带被海洋生物吸收和生物质沉降以及无机颗粒表面吸附所去除。对古代海洋中的磷浓度主要受条带磁铁矿中磷的含量控制,然而我们对于古代海水中的磷的清除过程及其相关的沉积相却不清楚。一般认为条带磁铁矿中的氧化铁/氢氧化物颗粒从海洋水中强烈地吸附磷。  相似文献   

6.
羟胺(NH2OH)是海洋中极为活跃的痕量氮素之一,是氨氧化、硝酸盐异化还原成铵和厌氧氨氧化等诸多氮循环过程的关键中间产物,是构架海洋氮循环网络的重要组成。同时,NH2OH也是温室气体氧化亚氮(N2O)的重要前体物,与海洋N2O的产生与释放紧密关联。因此,系统理解NH2OH在海洋中的源汇格局、时空变异及其调控机理,对刻画海洋氮循环以及气候效应至关重要。然而,由于NH2OH在海洋中纳摩尔级别浓度及其复杂、活跃的迁移转化过程,使得海洋学界对于NH2OH的认识仍不清晰。系统综述了当前关于海洋NH2OH的研究进展,重点总结了NH2OH潜在的源汇过程、测定方法及其对海洋N2O产生的可能贡献,以及海洋中NH2OH的分布特征及其潜在影响因素。最后,梳理了关于NH2OH测定和影响其分布的可能机理等方面存在的问题和难点,提出未来海洋NH...  相似文献   

7.
利用同站位多介质同采的资料分析研究了各环境介质中的不同痕量金属对生物富集的贡献。提出底层水中Cu、Hg、As对生物体中同名组分富集的贡献较大。采用PHREEQC软件模拟了底层水中Cu、Hg、As三种元素的组分存在形态,结果表明:Cu(OH2)、HgCl3-、HAsO42-分别为底层水中Cu、Hg、As的优势态,但其生物有效形态依次为Cu2 、HgCl42-、HAsO42-,提出生物对其所处环境介质中痕量金属的富集并不取决于痕量金属的总量或其相应的优势态浓度的多寡,而是取决于痕量金属的生物有效态的浓度大小。  相似文献   

8.
海洋频率域可控源电磁法作为海底石油勘探一项新的技术手段,在深海油气勘探中已经取得许多成功的实例。但是,目前在海底地层电磁正演、反演技术中,很少考虑上部海水的电阻率分层对接收数据的影响。这里利用海洋电磁一维正演程序,研究了海水分层情况对理论数据的影响。通过比较分析,可以发现考虑海水电阻率分层对海洋电磁响应有较强的影响,因此,在实际海洋正反演过程中,海水电阻率层应该与地下地层一起参与反演解释,才能提高整体反演解释精度。  相似文献   

9.
海水硝酸盐氮、氧同位素组成研究进展   总被引:2,自引:0,他引:2  
杨志  陈敏 《地球科学进展》2012,27(3):268-275
海洋中氮的生物地球化学循环影响着海洋生态系统的结构和功能,并和全球气候变化有着密切的联系,一直是海洋科学研究的重点和热点。海水硝酸盐的15N/14N和18O/16O比值可以反映海洋中氮循环的主要过程,因而成为研究海洋氮循环的一个重要手段。综述海水硝酸盐氮、氧同位素组成的测定方法,同化吸收作用、硝化作用、反硝化作用、生物固氮作用等氮循环过程所导致的氮、氧同位素分馏及其在海洋学研究中的应用。海洋生态系中硝酸盐氮、氧同位素的分布可以提供支持生物生产力的氮来源信息,以及氮在不同储库迁移转化的路径与机制。未来的研究需要发展适用于低含量硝酸盐的同位素测量方法,构筑海洋氮的收支平衡,掌握影响上层海洋硝酸盐氮、氧同位素变化的过程,获取全球海域有关硝酸盐氮、氧同位素组成的更多数据。  相似文献   

10.
鲁静  李广玉  叶思源 《地球学报》2006,27(6):603-608
本文首先利用同站位多介质同采的资料分析研究了各环境介质中的不同痕量金属对生物富集的贡献,提出孔隙水中Pb、Zn、Cd、Cr对生物体中同名组分富集的贡献较大;进而采用PHREEQC软件模拟了孔隙水中Pb、Zn、Cd、Cr四种元素的组分存在形态,结果表明:PbCO3、Zn2 、CdCl2、Cr(OH)3分别为孔隙水中Pb、Zn、Cd、Cr的优势态,但其生物有效形态依次为PbSO4、ZnOHCl、CdCl 、Cr(OH)2 。最后作者提出生物对其所处环境介质中痕量金属的富集并不取决于痕量金属的总量或其相应的优势态浓度的多寡,而是取决于痕量金属的生物有效态的浓度大小。  相似文献   

11.
Distribution of colloidal trace metals in the San Francisco Bay estuary   总被引:11,自引:0,他引:11  
The size distribution of trace metals (Al, Ag, Cd, Cu, Fe, Mn, Ni, Sr, and Zn) was examined in surface waters of the San Francisco Bay estuary. Water samples were collected in January 1994 across the whole salinity gradient and fractionated into total dissolved (<0.2 μm colloidal (10 KDa–0.2 μm) and < 10 kDa molecular weight phases. In the low salinity region of the estuary, concentrations of colloidal A1, Ag, and Fe accounted for ≥84% of the total dissolved fraction, and colloidal Cu and Mn accounted for 16–20% of the total. At high salinities, while colloidal Fe was still relatively high (40% of the dissolved), very little colloidal Al, Mn, and Cu (<10%) and no colloidal Ag was detectable. Colloidal Zn accounted for <3% of the total dissolved along the estuary, and colloidal Ni was only detectable (<2%) at the river endmember. All of the total dissolved Cd and Sr throughout the estuary consisted of relatively low molecular weight (<10 kDa) species. The relative affinity of metals for humic substances and their reactivity with particle surfaces appear to determine the amounts of metal associated with colloids. The mixing behavior of metals along the estuary appears to be determined by the relative contribution of the colloidal phase to the total dissolved pool. Metals with a small or undetectable colloidal fraction showed a nonconservative excess (Cd, Cu, Ni, and Mn) or conservative mixing (Sr) in the total dissolved fraction, relative to ideal dilution of river water and seawater along the estuary.

The salt-induced coagulation of colloidal A1, Fe, and Cu is indicated by their highly nonconservative removal along the salinity gradient. However, colloidal metals with low affinity for humic substances (Mn and Zn) showed conservative mixing behavior, indicating that some riverine colloids are not effectively aggregated during their transport to the sea. While colloidal metal concentrations correlated with dissolved organic carbon, they also covaried with colloidal Al, suggesting that colloids are a mixture of organic and inorganic components. Furthermore, the similarity between the colloidal metal:A1 ratios with the crustal ratios indicated that colloids could be the product of weathering processes or particle resuspension. Distribution coefficients for colloidal particles (Kc) and for large, filter-retained particles (Kd) were of the same magnitude, suggesting similar binding strength for the two types of particles. Also, the dependence of the distribution coefficients on the amount of suspended particulate matter (the so-called particle concentration effect) was still evident for the colloids-corrected distribution coefficient (Kp+c) and for metals (e.g., Ni) without affinity for colloidal particles.  相似文献   


12.
The estuarine mixing of dissolved Fe, Cu, Ni, Si and surface-active organic matter has been investigated in the Taieri Estuary, New Zealand, simultaneously with measurements of the electrokinetic charge on colloidal particles. Dissolved Fe showed almost quantitative removal from solution characteristic of the coagulation of iron-containing colloids by seawater electrolytes. Surface active organic matter behaved conservatively, indicating that a relatively constant fraction of estuarine organic matter is surface active, but that organic species associated with iron during removal are a minor fraction. Results for Cu, Ni and Si were scattered but offered no evidence for gross removal during estuarine mixing. The negative charge on suspended colloids was not reversed by adsorption of seawater cations, but remained uniformly negative throughout the salinity range, decreasing sharply in magnitude during the first few %. salinity.  相似文献   

13.
天然气水合物分解及其生态环境效应研究进展   总被引:10,自引:2,他引:8  
了解大陆/大洋边缘地区天然气水合物形成与分解及其在海底沉积物、水体及海底化学自氧生物群落中的一系列物理、化学及生物作用有助于我们在全球和区域尺度上探讨天然气水合物分解对气候变化的影响;天然气水合物在碳循环中的作用和大陆边缘流体活动与物质交换机制等问题。从水合物分解与全球变暖、贫/缺氧甲烷氧化作用、自生矿物沉淀、化学自养生物群落等方面综述了水合物的环境生态效应研究进展。天然气水合物的形成/分解及 其对海洋乃至全球环境生态变化的影响,深刻地反映了地球上岩石圈、水圈、大气圈和生物圈之间相互联系与相互作用,生物,特别是微生物对全球CH 4的平衡和自生矿物沉淀至关重要。  相似文献   

14.
In the present study, the removal of dissolved and colloidal Cd, Co, Cu, Ni and Zn in Arvand River water during estuarine mixing with the Persian Gulf water is investigated. The flocculation process was investigated for a series of mixtures with salinities ranging from 0.48 to 30.3^. The flocculation rates were indicative of the non-conservative behavior of studied metals during estuarine mixing. Rapid flocculation in the low salinity regimes was observed. The order of the final flocculation rate of metals in the river water was as follows: Co (91.2%)> Cd (86.9%)> Zn (83%)> Cu (75.2%)> Ni (74.3%). Salinity, pH, EC and dissolved oxygen do not govern the flocculation of metals during estuarine mixing. The results of the present investigation show that estuarine processes can be considered as an effective mechanism in self purification of colloidal metals that are anthropogenically introduced into the fresh water ecosystem.  相似文献   

15.
《Applied Geochemistry》2000,15(7):1003-1018
Stream discharges and concentrations of dissolved and colloidal metals (Al, Ca, Cu, Fe, Mg, Mn, Pb, and Zn), SO4, and dissolved silica were measured to identify chemical transformations and determine mass transports through two mixing zones in the Animas River that receive the inflows from Cement and Mineral Creeks. The creeks were the dominant sources of Al, Cu, Fe, and Pb, whereas the upstream Animas River supplied about half of the Zn. With the exception of Fe, which was present in dissolved and colloidal forms, the metals were dissolved in the acidic, high-SO4 waters of Cement Creek (pH 3.8). Mixing of Cement Creek with the Animas River increased pH to near-neutral values and transformed Al and some additional Fe into colloids which also contained Cu and Pb. Aluminium and Fe colloids had already formed in the mildly acidic conditions in Mineral Creek (pH 6.6) upstream of the confluence with the Animas River. Colloidal Fe continued to form downstream of both mixing zones. The Fe- and Al-rich colloids were important for transport of Cu, Pb, and Zn, which appeared to have sorbed to them. Partitioning of Zn between dissolved and colloidal phases was dependent on pH and colloid concentration. Mass balances showed conservative transports for Ca, Mg, Mn, SO4, and dissolved silica through the two mixing zones and small losses (<10%) of colloidal Al, Fe and Zn from the water column.  相似文献   

16.
Changes in size distribution and elemental composition of 0.5-50 nm fresh water colloids during estuarine mixing have been studied by in-laboratory mixing of natural creek water and synthetic seawater, followed by size fractionation with Asymmetrical Flow Field-Flow Fractionation, and online elemental quantification by High-Resolution ICPMS. At least two types of colloids were present in the studied size region; 0.5-3 nm fluorescent dissolved organic matter (FDOM), and >3 nm colloids that were rich in Fe and colored dissolved organic matter (CDOM). Most trace elements were associated in different proportions to these two populations of colloids. Following mixing with synthetic seawater, the >3 nm Fe-rich colloids and CDOM were extensively removed from the studied size region by salt induced aggregation. The degree of removal with increasing salinity was greatest below 2.5‰ salinity, continued to a lesser degree between 2.5‰ and 15‰ salinity, above which only very small additional removal could be distinguished. At 25‰ salinity, the Fe concentration in the 0.5-50 size region had been reduced down to 15% of its original value in freshwater, while the amount of CDOM had been reduced to 55%. On the contrary, the concentration of the 0.5-3 nm FDOM was unchanged by the increased concentration of sea salt. Therefore, colloidally associated Al, P, Co, Cu, Zn, Ce, Lu and Pb were removed from the 0.5-50 nm size region according to their relative distributions between the FDOM and the Fe-rich colloids. Consequently, at 25‰ salinity, the 0.5-50 nm concentrations of Al, Mn, P and Pb, (mainly associated with the Fe-rich colloids) had been reduced down to 13-26 % of their values in freshwater, while the concentrations of Co and Cu (with higher preferences for FDOM) were less reduced, down to 46% and 57%, respectively. Changes in the elemental composition of the remaining colloidal matter were observed, the most pronounced were increased contents of P, Al and Pb in Fe-rich colloidal matter of medium size (∼3-15 nm) and increased Pb content in Fe-rich colloidal matter of larger size (∼5-50 nm).  相似文献   

17.
A dialysis procedure was used to assess the distribution coefficients of ∼50 major and trace elements (TEs) between colloidal (1 kDa–0.22 μm) and truly dissolved (<1 kDa) phases in Fe- and organic-rich boreal surface waters. These measurements allowed quantification of both TE partitioning coefficients and the proportion of colloidal forms as a function of solution pH (from 3 to 8). Two groups of elements can be distinguished according to their behaviour during dialysis: (i) elements which are strongly associated with colloids and exhibit significant increases of relative proportion of colloidal forms with pH increase (Al, Ba, Cd, Co, Cr, Cu, Fe, Ga, Hf, Mn, Ni, Pb, rare earth elements (REEs), Sr, Th, U, Y, Zn, Zr and dissolved organic C) and (ii) elements that are weakly associated with colloids and whose distribution coefficients between colloidal and truly dissolved phases are not significantly affected by solution pH (As, B, Ca, Cs, Ge, K, Li, Mg, Mo, Na, Nb, Rb, Sb, Si, Sn, Ti, V). Element speciation was assessed using the Visual MINTEQ computer code with an implemented NICA-Donnan humic ion binding model and database. The model reproduces quantitatively the pH-dependence of colloidal form proportion for alkaline-earth (Ba, Ca, Mg, Sr) and most divalent metals (Co, Cd, Mn, Ni, Pb, Zn) implying that the complexation of these metals with low molecular weight organic matter (<1 kDa fraction) is negligible. In contrast, model prediction of colloidal proportion (fraction of 1 kDa–0.22 μm) of Cu2+ and all trivalent and tetravalent metals is much higher than that measured in the experiment. This difference may be explained by (i) the presence of strong metal-binding organic ligands in the <1 kDa fraction whose stability constants are several orders of magnitude higher than those of colloidal humic and fulvic acids and/or (ii) coprecipitation of TE with Fe(Al) oxy(hydr)oxides in the colloidal fraction, whose dissolution and aggregation controls the pH-dependent pattern of TE partitioning. Quantitative modeling of metal – organic ligand complexation and empirical distribution coefficients corroborate the existence of two colloidal pools, formerly reported in boreal surface waters: “classic” fulvic or humic acids binding divalent transition metals and alkaline-earth elements and large-size organo-ferric colloids transporting insoluble trivalent and tetravalent elements.  相似文献   

18.
River water (Water of Luce, Scotland) is used in laboratory experiments designed to investigate physical and chemical properties of Fe. Mn, Cu, Ni, Co, Cd and humic acids in riverine and estuarine systems. Using NaCl, MgCl2 and CaCl2 as coagulating agents, coagulation of dissolved (0.4 μm filtered) Fe, Cu, Ni, Cd and humic acids increases in a similar matter with increasing salt molarily: Ca2+ is the most dominant coagulating agent. Removal by coagulation with Ca2+ at seawater concentrations ranges from large (Fe-80%. HA-60%, Cu-40%) to small (Ni, Cd-15%) to essentially nothing (Cd, Mn-3%). Destabilization of colloids is the indicated mechanism. Solubility-pH measurements show that between a pH of 3 and 9, Fe, Cu, Ni, Mn, Co and Cd are being held in the dissolved phase by naturally occurring organic substances. Between pH of 2.2 and 1.2 a large proportion of dissolved Fe, Cu. Ni and Cd (72, 35,44 and 36% respectively) is precipitated along with the humic acids; in contrast, Mn and Co show little precipitation (3%). Adsorption-pH experiments, using unfiltered river water spiked with Cu, indicate that adsorption of Cu onto suspended particles is inhibited to a large extent by the formation of dissolved Cu-organic complexes.The experimental results demonstrate that solubilities and adsorption properties of certain trace metals in freshwaters can be opposite to those observed with artificial solutions or predicted with chemical models. Interaction with organic substances is a critical factor.  相似文献   

19.
20世纪古生物学的重大进展及21世纪战略重点   总被引:4,自引:0,他引:4  
20世纪人类积累了大量的生物学、分类学和生物地层数据,这些数据的积累使用进化论和门德尔遗传学结合起来,如遗传学和物种起源、分类学和物种起源、演化的速率和模式、分支系统学等的运用使得古生物学在研究方法上有了新的进展。并提出了21世纪古生物学的战略重点。  相似文献   

20.
《Applied Geochemistry》2007,22(8):1636-1645
The ecological roles of dissolved organic matter (DOM) in seawater have not been well understood. One definite function of DOM stems from its complexation ability with trace metals under the conditions of seawater. A chemical complexation model of the marine system was introduced in order to clarify the ecological roles of strong organic ligands in DOM related to the acquisition of bioactive metals (Cu, Fe and Zn) by phytoplankton, assuming that two types of strong organic ligands coexist in oceanic DOM and complexes with bioactive metals. The results reveal that the weaker organic ligand, rather than the stronger one, plays a significant role in the reduction of Cu toxicity for phytoplankton growth. It is suggested that the presence of reactions with Cu that are competitive to the strong organic ligand causes extremely low Fe concentrations in seawater and leads to Fe deficiency for phytoplankton growth. Therefore, it is concluded that the strong ligands in DOM play a chemical role in controlling free ion concentration levels of bioactive metals in the marine environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号