首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
To determine the mobility of natural radionuclides in boreal forest soil, a five-step sequential extraction procedure was carried out on soil samples taken from various depths down to 3 m on Olkiluoto Island, Finland, where there are plans to construct a spent nuclear fuel disposal repository in the bedrock. The extracted fractions studied were exchangeable, acid-soluble, reducible, oxidizable and tightly bound. It was found that the extractability of most of the radionuclides studied was dependent on the sample grain size and depth. All the elements were concentrated in the smallest grain size samples (<0.063 mm). The extraction behaviour of Th, however, did not vary with sample depth, and only about 10% of the Th was extracted by the time of the final extraction step. Stable Pb and 210Pb, as well as Ba and Ra concentrations were strongly correlated in the extractions. Radium and Ba were leached more readily than the other elements; approximately 17% of the total Ra was found in the first fraction extracted, representing exchangeable ions. Uranium was more mobile in the topsoil horizons than in the lower horizons. In the topsoil samples, an average of 51% of the extractable U was leached in the second extraction step, representing the elements soluble in weak acids, whereas only 13% of the U in the subsoil samples was extracted in this step. This is probably due to changes in soil redox conditions lower down the soil profile. The extraction behaviour of Pb and Fe also suggests the presence of more reducing conditions in the deeper soil horizons, because the percentage of extractable Pb and Fe in the oxidizable fraction increased with sample depth.  相似文献   

2.
安永龙  黄勇  孙朝  邓凯文  李迪  黄丹 《地质通报》2018,37(6):1142-1149
为了监测北京市平原区2015年和2016年土壤中5种重金属As、Cd、Hg、Pb、Zn化学形态的变化趋势,运用Tessier连续提取法对土壤重金属进行了形态分析,并对影响重金属元素生物有效性的因素进行研究。结果表明,2年内研究区表层土壤重金属元素的形态变化微弱,有效态含量以Cd元素最高,达到45.67%,故潜在生态危害性最大;其次为Zn元素,达12.16%,其中碳酸盐结合态占比虽大,但由于研究区土壤呈偏碱性,Zn元素的迁移能力较弱,潜在危害性较小;As、Hg、Pb均以难迁移态存在,故潜在危害性也较小。土壤重金属元素的生物活性系数及迁移系数分别为:CdZnPbAsHg和CdAsZnPb=Hg,其中Cd元素2年的生物活性系数和迁移系数最高,展现出较强的生物活性和迁移能力,其余重金属元素的活性系数和迁移系数较低,潜在危害性较弱。影响重金属元素生物有效性的因素较复杂,以重金属元素全量为主,p H、有机质、CEC等理化性质次之。  相似文献   

3.
滁州地区土壤地球化学基准值与背景值研究   总被引:3,自引:0,他引:3  
基于滁州地区多目标区域地球化学调查数据资料,统计获得了表、深层土壤地球化学基准值、背景值及相关的地球化学参数。研究表明:成土母质类型对土壤元素地球化学基准值影响显著,表层土壤元素含量相对于深层土壤既有继承性,又有差异性。在不同的土壤层的一些元素含量明显不同。土壤的形成过程和人类活动已经对土壤中元素含量的分布有显著的影响。因此,土壤地球化学基准值与背景值研究中应多考虑地质背景、物质来源等因素的影响,  相似文献   

4.
《Applied Geochemistry》2005,20(7):1258-1267
Distributions of 21 major and trace elements in HNO3 extracts of different horizons were studied in 13 podzol profiles from the boreal forest in different parts of Norway using ICP–MS. On the basis of ratios between the HNO3-extractable fractions in the various horizons some general trends were elucidated. Two different groups of elements concentrated in the humus layer relative to the mineral horizons were identified, one mainly associated with contributions from air pollution (As, Cd, Sb, Pb), another one with plant nutrient circulation (K, Ca, Mn and to a lesser extent Mg, Co, Ni, Rb) and some with both mechanisms (Cu, Zn, Tl). The elements most clearly enriched along with Fe in the B horizon were V, Pb, Al, and Cr in that order, Pb partly because of leaching from the polluted organic surface soil. Four soils in the far south showed a behaviour distinctly different from the rest and were treated as a separate group. Relative to the more northerly sites the surface horizons of these soils were strongly depleted in lithogenic elements (Mg, Al, K, Ca, Sc, V, Cr, Mn, Fe, Co, La) and enriched in elements typical of long-range transport of pollutants (As, Cd, Sb, Tl, Pb). Also the B horizon in the southern soils was strongly depleted in the lithogenic group elements, including Fe and the associated metals. The main reason for this difference is assumed to be the greater influence of transboundary air pollution and associated metals and stronger soil acidification in the far south of the country.  相似文献   

5.
This work aims to elucidate the factors governing the mobility of metals in soils of a lateritic nickel ore deposit in New Caledonia. The transfer of nickel and associated metals is determined along a topographic sequence ranging from a plateau to a thalweg. Mining exploration borehole data and soil pit data enabled us to define the general geochemical trends of the lateritic weathering. The homogeneous topsoil, which consists mainly of iron oxy-hydroxides, exhibits various amounts of plant available metals. Two interrelated factors control the differences in metal availability: (1) the presence of nickel-rich soil horizons underlying the topsoil and formed of silicate minerals, and (2) the biological cycling of metals from these horizons to the surface. These results have major implications for topsoil management during the mining activity where it is important to minimise metal inputs to water systems and to restore endemic vegetation after mining.  相似文献   

6.
The paper presents the first data on the zoning of modern volcanic soils on the Kamchatka Peninsula according to the age and composition of volcanic ashes in which the surface organogenic horizons of the soils were formed. The following soil provinces are recognized: Northern, Central, Western, and Southeastern. Parameters of their regional geochemical background (concentrations of trace elements) are determined. The main factor controlling the background concentrations of trace elements in these soils is the composition of the ashes underlying the soils. The geochemical specifics of the surface organogenic horizons of volcanic soils on Kamchatka may be variably affected only by the concentrations of trace elements whose average contents in magmatic rocks are the highest: Cr, Cu, Mn, Sc, Zn, Co, V, and Ag. The maximum concentrations of excess elements were determined in the soils underlain by ashes of basic composition, and the minimum concentrations of these elements occur in the soils formed in silicic ashes. All soil provinces recognized on Kamchatka are characterized by pervasively elevated Cu concentrations. It is proposed to identify volcanic soils formed in the peninsula in ashes of various composition with the application of a multiplicative geochemical coefficient.  相似文献   

7.
Vertical profiles of 210Po in soils near the Midwest uranium deposit and an associated surficial radioactive sandstone boulder train in northern Saskatchewan show a high 210Po background in air-dried forest litter (24 pCi/g) and Ah horizon soil (11 pCi/g) relative to lower soil horizons (<1 pCi/g). These high levels mask the 210Po signal from the radioactive boulders in the near-surface soil horizons. Only in the Bf and C horizons can the existence of the radioactive boulders be inferred from 210Po determinations. For comparative purposes profiles for 226Ra, U, Ni, and other trace elements are also presented.Escape of most of the Rn from near surface soils into the atmosphere, homogenization and decay of Rn, and precipitation of decay products back onto surface soils satisfactorily explain the field observations discussed here.Compared to the highly anomalous 222Rn signal in soil gases over this boulder train the 210Po contrast is very weak and is of little use for prospecting for this type of boulder train. The relatively high 210Po background in surficial materials relative to lower soil horizons dictates that great care be taken with the 210Po method; the deepest possible horizons should be sampled.  相似文献   

8.
The contamination of soils by metals issuing from municipal solid waste (MSW) disposal in tropical environments has hardly been studied with regard to the particular problems associated with them, i.e., generally a high permeability of soils despite the abundance of clay, and the role of reactive Fe compounds. From a previous geotechnical and chemical survey, three latosol profiles differently affected by MSW leachates in the region of Londrina (Paraná, Brazil) were selected. The aims were to evaluate the extent of their contamination, to better understand the fate of potentially harmful metals in tropical soils and rank the determining factors. Samples between 0.5 and 7 m depth were analyzed for their physical, mineralogical and chemical properties, and their micro-morphology was described by optical and transmission electron microscopy. Two steps of a sequential extraction procedure helped to assess the mobility of elements and to better discriminate between metals originating from pedogenesis and issued from MSW. These combined approaches showed that exposed soil profiles have been impacted at various depths, down to 7 m, through increased metal content, especially enhanced mobility of Zn, Co, Mn, Cu and Fe, and through increased salinity and organic matter. The mobility of potentially harmful metals should decrease with pH, which significantly increased in some impacted horizons, but other factors can reverse this trend.  相似文献   

9.
Agricultural soil (Ap-horizon, 0–20 cm) and grazing land soil (Gr-horizon, 0–10 cm) samples were collected from a large part of Europe (33 countries, 5.6 million km2) as part of the GEMAS (GEochemical Mapping of Agricultural and grazing land Soil) soil mapping project. GEMAS soil data have been used to provide a general view of element mobility and source rocks at the continental scale, either by reference to average crustal abundances or to normalized patterns of element mobility during weathering processes. The survey area includes a diverse group of soil parent materials with varying geological history, a wide range of climate zones, and landscapes.The concentrations of Ge in European soil were determined by ICP-MS after an aqua extraction, and their spatial distribution patterns generated by means of a GIS software.The median values of Ge and its spatial distribution in Ap and Gr soils are almost the same (0.037 vs. 0.034 mg/kg, respectively). The majority of Ge anomalies is related to the type of soil parent material, namely lithology of the bedrock and minor influence of soil parameters such as pH, TOC and clay content. Metallogenic belts with sulphide mineralisation provide the primary source of Ge in soil in several regions in Europe, e.g. in Scandinavia, Germany, France, Spain and Balkan countries.Comparison with total Ge concentrations obtained from the Baltic Soil Survey shows that aqua regia is a very selective method with rather low-efficiency and cannot provide a complete explanation for Ge geochemical behaviour in soil. Additionally, large differences in Ge distribution are to be expected when different soil depth horizons are analysed.  相似文献   

10.
Selenium and heavy metals content in some Mediterranean soils   总被引:1,自引:0,他引:1  
The study of metal contents in industrial, agricultural or/and polluted soils compared with natural or unpolluted soils is currently necessary to obtain reference values and to assess soil contamination. Nonetheless, very few works published appear in international journals on elements like Se, Li and Sr in Spanish soils. This study determines the total levels of Se, Li, Sr, As, Cd, Co, Cr, Cu, Ni, Pb, V, Zn, Fe, Mn and Ba in 14 natural (unpolluted) soils (Gypsisols, Leptosols, Arenosols and Acrisols), 14 agricultural soils (Anthrosols, Fluvisols and Luvisols), and 4 industrial–urban affected-surface soil horizons (Anthrosols and Fluvisols) of Eastern Spain. The geochemical baseline concentrations (GBC) and reference values (RV) have been established, and the relationships among elements and also between soil properties and elemental concentrations have been analysed. The RV obtained in this study were (mg kg−1): Se 2.68, Li 115, Sr 298, Cd 0.97, Co 35, Cr 217, Cu 46, Ni 50, Pb 137, V 120, Zn 246, Fe 124,472, Mn 2691, and Ba 743. The RV for Se and Li were used as a preliminary approach to assess soil contamination in Spanish soils. The results confirm human impact on Sr, As, Cd, Cr, Cu, Ni, Pb and Zn soil concentrations, but evidence no deviation from natural Se, Li, Co, V, Fe, Mn and Ba concentrations. The results obtained from the statistical analysis reveal significant correlations between some elements and clay and soil organic matter (SOM) contents, indicating that metal concentrations are controlled by soil composition. One particularly interesting finding is the high correlation coefficients obtained between SOM and Se, Cd, Cr, V, Fe, and Mn, and between clay and Cd, Zn, V, Fe and Mn. Once again, these facts confirm the role of SOM and clay minerals in soil functions and that soil is an ecosystem element responsible for maintaining environmental quality.  相似文献   

11.
This paper discusses the distribution of trace elements in certain genetic horizons of flooded soils and riverside soil cover and compares it with the heavy metal distribution in bottom sediments of the Ivankovo Reservoir area in the Volga River valley. We present data on the chemical and grain-size compositions of bottom sediments and the concentrations of biophile elements and humus in these sediments. Correlation and factor analyses were applied to reveal the relationships between the abundances of heavy metals and humus and the grain-size composition.  相似文献   

12.
Through a systematic study on trace elements and REE geochemistry of mudstone deposited in the basin and lower slope environments during Upper Proterozoic to Triassic in the Southwest Yangtze Mssif,three geochemical abnormal horizons of which the geochemical characteristics are quite different from those of other horizons have been established for the first time.They are the Lower Cambrian,the Upper Devonian and the Upper Permian,As compared with the crustal evolution in this area.these three geochemical abnormal horizons are corresponding to the pulling-apart periods of geotectonic cycles.which illustrates that uncommon depositional sources puring into the basin from the earth‘s interior may be one of the most important causes to originate the geochemical anomalies in these lhrizons.Thus it can be realized that the geochemistry of post-Archean sedimentary rocks has a great deal to do with the crustal evolution and it can be used as a tracer to analyze the crustal evolution.The elements in this area are mainly concentrated in these geochemical abnormal horizons,and the degree of enrichment and deficiency of trace elements in other horizons is very limited.A series of research on mineralization indicates that the main strata-bound ore deposits discovered in the Southwest Yangtze Massif occur in the Cambrian,Devonian and Permian-Trassic strata.The results of isotope tracer resarch have also proved that most of the metallogenic elements in these ore deposits came from the host strata.which illustrates that the geochemical abnormal horizons may have made great contributions to these ore-forming processes.Thus it can be concluded that it is only the particular horizons corresponding to the particular periode of earth‘s evolution that can they be the significant source beds because only in these uncommon horizons there can be highly enriched metallogeinc elements.which may be one of the most important reasons for explaining the time-bound nature of mineralization.  相似文献   

13.
Heavy metal distribution in karst soils from Croatia and Slovakia   总被引:1,自引:1,他引:0  
With the use of the optimised three-step BCR sequential-extraction procedure it was possible to assess the mobility of selected elements in soil profiles from Croatian and Slovakian karst terrains. The soils in the Croatian karst were enriched in Cr, Ni, V, Mn, Cu, Cd and Mo, while soils from the Slovak Karst had high Pb and Zn concentrations. It was determined that the elements were most readily mobilised from the topsoil and the degree of mobility decreased with depth. Cr and Ni were mainly bound to the residual fraction, and Pb in the oxidisable fraction. Cu mobility was high in samples treated with agrochemicals throughout the soil profile.  相似文献   

14.
There is a broad correlation between the εNd values for rivers (including both the water and the particulate material it carries) and the age of the source terrain. This paper presents Nd isotope distribution data for soil, soil water, groundwater, and stream water samples gathered in a small catchment in northern Sweden. The results show that the release of Nd and Sm from boreal forests into streams and, eventually, into the oceans is more complicated than previously realized. The weathering of till causes changes in both the Nd isotopic composition and Sm/Nd ratios. Both the Sm/Nd ratio and εNd were higher in strongly weathered soils horizons than in less weathered till, since minerals with high Sm/Nd ratios were, on average, more resistant to weathering than those with low Sm/Nd ratios. In contrast to the situation for the main minerals and the major elements, the weathering of rare earth elements (REE) was not restricted to the E-horizon: the measured REE concentrations continued to increase with depth in the C-horizon. In addition, REE released by weathering in the upper parts of the soil profile were partly secondarily retained at deeper levels. Therefore, the dissolved Nd released by weathering in the upper soil horizons was trapped and did not enter the groundwater directly. Rather, the Nd in the groundwater largely originated from weathering within the groundwater zone. However, this was not the only source of Nd in the stream water. The Nd isotope composition and Sm/Nd ratio were determined by the mixing between of Nd and Sm in the groundwater and REE-carrying organic material washed out of the soil profile. The groundwater close to the stream reaches the upper soil horizons during high discharge events such as snowmelts, and organic matter carrying Nd and Sm is washed out of the soils and thus released into the stream. Therefore, the Nd exported from catchment is derived from both the weathering within the groundwater zone, and the organic matter washed out from the soil. If longer timescales with more advanced weathering stages in the groundwater zone are considered, it cannot be ruled out that there will be a shift towards more radiogenic values in the exported Nd. Recorded shifts in the Nd isotopic composition in the ocean may thus not only reflect changed source regions, but also the weathering history of the same source region.  相似文献   

15.
Sixteen elements (Ca, K, Mg, Na, Al, Fe, Mn, P, Co, Cu, Li, Ni, Rb, Sr, Ti, Zn, determined by atomic absorption) were identified in 453 pumice fragments recovered from Holocene strandplains in southeast Queensland and New South Wales. Eight pumice groups and 13 subgroups are recognised by numerical analysis. Some pumices record known eruptions. Others come from known centres in Tonga and Vanuatu. Several pumice eruptions have occurred from some centres, but there are instances of single episodes. The numerical analyses, combined with carbon dating and soil identification, identify marker horizons in the development of the strandplains. These horizons provide a time‐scale for soil development. Pumice that occurs in middens has an archaeological value. Coke was found with recent pumice. It conveniently identifies the modern industrial age.  相似文献   

16.
Four paleosols, and soil horizons within paleosols, were clearly identified in the thick calcium carbonate-free loess sections at Timaru, South Island, New Zealand, by changes in the distribution of total phosphorus and calcium phosphate in the upper 2 m to each paleosol. Extractable manganese was also sensitive in identifying paleosols, particularly the upper horizons. The distribution of bulk density values was useful in identifying paleosols; however, the maximum bulk density (>1.7 g/cc) occurred in horizons identified as B2 rather than fragipan horizons in three of four cases. The distribution of clay particles was useful in understanding the genesis of the modern soil and paleosols, but not in identifying paleosols.  相似文献   

17.
Plants and soils derived from different kinds of parent materials in South China were collected for analyses of rare earth elements (REEs) by inductively coupled plasma-mass spectrometry (ICP-MS). The distribution patterns and transportation characteristics of REEs in the soil–plant system were studied. The results show that geochemical characteristics of REEs depend on the types of soils, soils derived from granite being the highest in REE concentration. In a soil profile, REE concentrations are higher in B and C horizons than those in A horizon, with Eu negative anomaly and Ce positive anomaly. Plants of different genera growing in the same sampling site have quite similar REE distribution pattern, but plants of the same genera growing in different soils show considerable variation in characteristics of REEs. The patterns of the different parts of plant resemble each other, but the slope of the patterns becomes different. REEs have fractionated when they were transported and migrated from soil to plant root, stem and leaf, revealing that heavy REEs are relatively less available. REEs distributions in plants are influenced by the soil they grow in and also characterized by their individual biogeochemical characteristics. Biological absorption coefficients indicate difference of REE absorption capacity of plants. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
Soil chronofunctions are often quasilinear, but those relationships may be only gross, fortuitous generalizations that ignore changes in soils resulting from climatic and other cyclic external influences that govern soil formation or soil degradation. In the Rocky Mountains, soil development has been extensively used to estimate the age of sediments, but the number of soils is usually few, and large ranges in values for soil data may be dismissed as “normal variation.” In a detailed study of soils in the Wind River Range and Wind River Basin, characteristics of near-surface horizons do not follow age trends. However, the underlying carbonate-bearing horizons do have age-related characteristics. This “soil paradox” may be related to glacial–interglacial cycles in which (1) wind erodes near-surface horizons and then provides new parent material and (2) cryoturbation disrupts carbonate horizons, remobilizing carbonate and changing carbonate morphology but with only minimal loss of carbonate from the soil.  相似文献   

19.
Pleistocene red soil horizons were exposed in different areas of the Barind Tract in north-west Bangladesh. X-ray diffractions of twenty seven samples from different depths of these soil horizons revealed that the soil horizons consisted of kaolinite, illite and chrysotile with significant amount of opal-CT. Samples from Maddhapara, Bogra, and Nachole contain kaolinite, illite, quartz and opal-CT, and the samples from Kantabari contain chrysotile instead of kaolinite. Clay mineral compositions of different soil horizons indicated two different types of clay assemblages, viz. (a) illitekaolinite and (b) illite-chrysotile. In the village of Kantabari, illite-chrysotile clay mineral assemblage indicate that soil horizons were formed under low temperatures with alkaline and reducing conditions. However, other soil horizons of illite-kaolinite clay mineral assemblage indicate that soils were possibly formed under humid, temperate and welldrained conditions. These two soil horizons were formed under different geochemical, geomorphological and climatic conditions from different parent materials. Scanning Electron Microscopy photographs showing the presence of glass shards and no opal-A were found using XRD, suggesting that the opal-A might not be a precursor to opal-CT in the red soil horizon of the study area. This opal-CT along with the general lack of fossils and presence of glass shards was indicative of a volcanogenic rather than biogenic origin for the Opal-CT in the study area, and X-ray fluorescence data reveals higher percentages of silica which is comparable to the Toba Ash of Toba Caldera, Indonesia of about 75,000 B.P.  相似文献   

20.
We conducted a modified Bureau Commun Reference (BCR) sequential extraction on a basaltic soil (phono-tephrite) from Mt. Meru in Northern Tanzania in order to determine the relative contribution of water soluble, carbonate and exchangeable, oxide and organic fractions to the bulk composition of the soil. Elemental compositions were determined by ICP-MS and corrected for loss on ignition. Relatively immobile elements, such as Zr, Hf and Al, are enriched by 10–30% compared to the unweathered protolith, consistent with soil formation being accompanied by mass loss due to chemical weathering. However, superimposed on this mass loss appears to be enrichment of elements such as Fe, Ca and Mg, especially towards the surface. In some cases, the bulk concentrations of these elements at the surface exceed that of the protolith. These data suggest that the surface of the Meru soil columns may have experienced “re-fertilization” by the deposition of volcanic ash. From the carbonate and exchangeable extraction, we found evidence of clay rich horizons which may sequester as much as 5% of the bulk K. The concentration of calcium carbonate appears to decrease with depth, but the largest incorporation of Sr and Ba into carbonates occurs below 114 cm. Fe and Mn oxides scavenge more than 10–20% of total Ti, V, Co, Cu, Zr and Pb below 114 cm. The organic fraction sequestered significant fractions of total Al, Cu, REE’s and Pb throughout the soil column.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号