首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We carried out a series of linear stability analyses of the radial and low-degree non-radial p modes for stellar models with initial masses of     . The stellar models were computed by using convective overshoot distance     , 0.25 and 0.40  H P. Our numerical results show that the β Cephei instability strip forms a horn-shaped region pointing upwards near the main sequence on the Hertzsprung–Russell diagram (HRD). The lower part of the instability strip for the radial modes join the zero-age main-sequence (ZAMS) at     , while the top of the instability strip extends up to     . The instability strip for the non-radial modes is even wider. The overall instability strip is dominated by the radial and non-radial fundamental modes. The first overtone (the radial-order index     is also pulsationally unstable. We have shown that the β Cephei stability is almost independent of the overshoot parameter d over used for the stellar models, while it depends critically on the metal abundance. With decreasing metal abundance, the instability region shrinks and eventually disappears for     .  相似文献   

3.
4.
We apply for the first time the time-dependent convection (TDC) treatment of Gabriel and Grigahcène et al. to the photometric mode identification in γ Doradus (γ Dor) stars. We consider the influence of this treatment on the theoretical amplitude ratios and phase differences. Comparison with the observed amplitudes and phases of the stars γ Dor, 9 Aurigae, HD 207223 = HR 8330, HD 12901 and 48501 is presented and enables us to identify the degree ℓ of the pulsation modes for four of them. We also determine the mode stability for different models of these stars. We show that our TDC models agree better with observations than with frozen convection models. Finally, we compare the results obtained with different values of the mixing-length parameter α.  相似文献   

5.
We present BV photometry and simultaneous high-resolution, high signal-to-noise ratio spectroscopy of the newly-discovered γ Doradus variable HR 8330 taken during the 1997 and 1998 observing seasons. We calculate power spectra for the B - and V -band data sets and for the time series defined throughout the observing season at each point across the Fe  ii λ 4508.289 and the Ti  ii λ 4501.278 line profiles to search for periodic variability. Period analysis reveals a single, 2.6-d period in both the photometric and the spectroscopic data, with a 237° phase lag between them. Based on the location of HR 8330 in the HR diagram and the characteristics of its photometric and spectroscopic variations, we conclude that HR  8330 is a bona fide γ Doradus-type pulsating variable.  相似文献   

6.
In an investigation of the starspot hypothesis as it applies to the 'slowly variable' F-type dwarfs, we spectroscopically observed eight promising γ Doradus candidates to search for Ca  ii H&K emission. We found that there are no significant emission reversals in the cores of these resonance lines. Based on the ceiling flux calculations of the Ca  ii K line and on calculations of the Rossby number, we conclude that there is no support for the presence of strong magnetic activity and the starspot hypothesis in these objects.  相似文献   

7.
We give an overview of past and present efforts to make seismology of δ Scuti and γ Doradus stars possible. Previous work has not led to the observational detection and identification of a sufficient number of pulsation modes for these pulsators for the construction of unique seismic models. However, recent efforts including large ground-based observational campaigns, work on pre-main sequence pulsators, asteroseismic satellite missions, theoretical advances on mode identification methods, and the discovery of a star showing simultaneous self-excited δ Scuti and γ Doradus oscillations suggest that we may be able to explore the interiors of these pulsators in the very near future.  相似文献   

8.
9.
We carried out a multicolour time-series photometric study of six stars claimed as 'hybrid' p and g mode pulsators in the literature. γ Peg was confirmed to show short-period oscillations of the β Cep type and simultaneous long-period pulsations typical of Slowly Pulsating B (SPB) stars. From the measured amplitude ratios in the Strömgren uvy passbands, the stronger of the two short period pulsation modes was identified as radial; the second is  ℓ= 1  . Three of the four SPB-type modes are most likely  ℓ= 1  or 2. Comparison with theoretical model calculations suggests that γ Peg is either a  ∼8.5 M  radial fundamental mode pulsator or a  ∼9.6 M  first radial overtone pulsator. HD 8801 was corroborated as a 'hybrid'δ Sct/γ Dor star; four pulsation modes of the γ Dor type were detected, and two modes of the δ Sct type were confirmed. Two pulsational signals between the frequency domains of these two known classes of variables were confirmed and another was newly detected. These are either previously unknown types of pulsation or do not originate from HD 8801. The O-type star HD 13745 showed small-amplitude slow variability on a time-scale of 3.2 d. This object may be related to the suspected new type of supergiant SPB stars, but a rotational origin of its light variations cannot be ruled out at this point. 53 Psc is an SPB star for which two pulsation frequencies were determined and identified with low spherical degree. Small-amplitude variability was formally detected for 53 Ari but is suspected not to be intrinsic. The behaviour of ι Her is consistent with non-variability during our observations, and we could not confirm light variations of the comparison star 34 Psc previously suspected. The use of signal-to-noise criteria in the analysis of data sets with strong aliasing is critically discussed.  相似文献   

10.
High-resolution spectral data of the Fe  II 5318 Å line in the γ Doradus star HD 164615 are presented. These show systematic changes in the spectral lineshapes with the photometric period of 0.8133 d which are modelled using either non-radial pulsations or cool star-spots. The non-radial modes that can fit the lineshape changes have m degree of 2–4. However, only the m = 2 mode seems to be consistent with the amplitude of the radial velocity variations measured for this star. The star-spot model, although it can qualitatively fit the lineshape changes, is excluded as a possible hypothesis on the basis of (1) poorer fits to the observed spectral line profiles, (2) an inability to account for the large changes in the spectral linewidth as a function of phase, (3) a predicted radial velocity curve that looks qualitatively different from the observed one, and (4) a predicted photometric curve that is a factor of 5 larger than the observed light curve (and with the wrong qualitative shape). Finally, a 'Doppler image' (assuming cool spots) derived from a sequence of synthetic line profiles having non-radial pulsations results in an image that is almost identical to the Doppler image derived for HD 164615. These results provide strong evidence that non-radial pulsations are indeed the explanation for the variability of HD 164615 as well as the other γ Dor variables.  相似文献   

11.
12.
13.
The following instability regions for blueward evolving-supergiants are outlined and compared. (1) Areas in the Hertzsprung–Russell (HR) diagram where stars are dynamically unstable. (2) Areas where the effective acceleration in the upper part of the photospheres is negative, hence directed outward. (3) Areas where the sonic points of the stellar winds (where     are situated inside the photospheres, at a level deeper than     . We compare the results with the positions of actual stars in the HR diagram and we find evidence that the recent strong contraction of the yellow hypergiant HR 8752 was initiated in a period during which     , whereupon the star became dynamically unstable. The instability and extreme shells around IRC+10420 are suggested to be related to three factors:     the sonic point is situated inside the photosphere; and the star is dynamically unstable.  相似文献   

14.
15.
Recent multisite campaigns of the Delta Scuti Network have revealed 34 frequencies of pulsation for the star 4 CVn. Our present knowledge of the frequencies makes it possible to reanalyse the shorter data sets in the literature, photometric observations from 1966 to 1997.
4 CVn shows strong amplitude variability with time-scales of ten years or longer, although for neighbouring years the amplitudes usually are similar. Seven of the eight dominant modes show annual variability of ∼12 per cent. The variability increases to ∼40 per cent over a decade. The formally derived time-scale of variation of 30 years can only be a rough estimate, since this is also the length of the available data span. The variability is compared with that of FG Vir, which shows lower amplitude variability.
The cyclic behaviour of the amplitude variations excludes an evolutionary origin. There exists some evidence that a mode at 6.12 d−1, which appeared during 1996 and 1997, may have been present with small amplitudes in the 1976–1978 time period.
The pulsation mode at 7.375 d−1 exhibited the most rapid decrease found so far: the V amplitude dropped from the highest known value of 15 mmag in 1974 to 4 mmag in 1976 and 1 mmag in 1977. After that the mode has been increasing in amplitude. There exists a phase jump between 1976 and 1977, suggesting the growth of a new mode. It is interesting to note that this mode also has the strongest coupling with other modes with combination frequencies, f i ± f j . The amplitudes of these combination frequencies are also strongly variable from year to year. We speculate that power is transferred between the modes through mode-coupling.  相似文献   

16.
17.
18.
19.
We use I -band imaging to perform a variability survey of the 13-Myr-old cluster h Per. We find a significant fraction of the cluster members to be variable. Most importantly, we find that variable members lie almost entirely on the convective side of the gap in the cluster sequence between fully convective stars and those which have a radiative core. This result is consistent with a scenario in which the magnetic field changes topology when the star changes from being fully convective to one containing a radiative core. When the star is convective, the magnetic field appears dominated by large-scale structures, resulting in global-size spots that drive the observed variability. For those stars with radiative cores, we observe a marked absence of variability due to spots, which suggests a switch to a magnetic field dominated by smaller-scale structures, resulting in many smaller spots and thus less apparent variability. This implies that wide field variability surveys may only be sensitive to fully convective stars. On the one hand, this reduces the chances of picking out young groups (since the convective stars are the lower mass and therefore fainter objects), but conversely the absolute magnitude of the head of the convective sequence provides a straightforward measure of age for those groups which are discovered.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号