首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Embleton and Schmidt (1977) have published an account of the detailed movement of the palaeomagnetic pole, basing their discussion on recent palaeomagnetic data of Schmidt (1976). The poles used by Embleton and Schmidt (1977) do not accord with the palaeomagnetic data. Schmidt's data appear to need drastic modification, and even if they were correct, the deduced polar wandering trail of Embleton and Schmidt (1977) is of doubtful validity.  相似文献   

3.
Helium has been proposed as a pathfinder in exploration for uranium deposits, hydrocarbons and geothermal energy sources, as an indicator of faults and fissures and as a possible tool for earthquake prediction. The rationale is that during the decay of 238U to 206 Pb, eight 4He atoms are produced via the intermediary of alpha particle emission. Similarly, six 4He atoms are produced by the decay of 232Th to 208Pb. Some of the common isotopes of the rare earths Ce, Nd and Sm are also alpha emitters, but they are unlikely to give rise to detectable helium anomalies.  相似文献   

4.
All palaeomagnetic investigations from the Phanerozoic of Australia are summarized and critically reviewed. Some smaller studies have been combined to produce more viable palaeomagnetic poles all of which are only considered if standard cleaning procedures were used. Analysis of the resulting data shows that during the Early Palaeozoic the pole paths for northern and central Australia are similar confirming the regions were a single unit during that time. However, these paths and the one derived from a limited region of southeast Australia approach each other from opposite directions and appear to converge during the Devonian. This observation is consistent with interpretations of the geology of the Tasman Orogenic Zone in terms of plate-tectonic models and with palaeomagnetic data from the Gondwanic continents. The presence of possible ancient plate margins bounding the region, from which most palaeomagnetic results from southeast Australia are derived, confirms that this region only became welded to the main Australian plate in Devonian times. Data for the Mesozoic of southeast Australia continue to be incompatible both with the generally accepted Australia—Antarctica relationship and with all other Gondwanic results. There appears to be no geological evidence in support of the large-scale relative motion inferred by the data and they remain a puzzling inconsistency. Cenozoic results, however, are entirely compatible with the northward motion of Australia away from Antarctica as inferred from sea-floor spreading. Comparisons with results from India suggest that the drift history of India prior to 75 m.y. ago involved movement from a location adjacent to Antarctica. It is proposed that the Wharton Basin was occupied by a northerly extension of Peninsular India which lay adjacent to western Australia. This larger Indian subcontinent broke away from both Antarctica and Australia about 140 m.y. ago.  相似文献   

5.
Three major suites of silicate inclusions in sublithospheric diamonds show evidence of formation at depths > 250 km, and for each suite there is evidence of their formation from subducted material. Two of these are the well known basic (majoritic garnet) and ultrabasic (MgSi-perovskite + ferropericlase) suites. The third, the recently recognised Ca-rich suite, is characterised by carbonate, Ca-Si-Ti minerals and some aluminous material. Carbon isotope ratios in the host diamonds and geochemical-petrological features of the inclusions themselves provide evidence for their derivation from subducted lithosphere materials. The diamonds hosting the basic and ultrabasic suites are suggested to form in fluids/melts resulting from the release of water caused by dehydration reactions affecting both the crustal and mantle portions of a subducting slab of ocean lithosphere. Conversely, the diamonds containing the Ca-rich suite are linked with the formation of carbonatitic melts. In the Juina kimberlite province of Brazil, all three suites have been found in close proximity. A model is presented whereby the formation of the suites occurs progressively during the subduction and stagnation of a single lithospheric slab, with all three suites being transported to the lithosphere by a plume with which the carbonatitic melts of the Ca-rich suite are associated. Nd-Sr isotopic data are presented for the Juina majoritic-garnet inclusions, which supports their formation from oceanic crust of Mesozoic age. In conjunction with published age data for a Ca-Si-Ti inclusion, the Juina (Brazil) sublithospheric inclusions document a series of events involving diamond formation during and following the emplacement of a subducted slab between ca 190 and 90 Ma beneath west Gondwanaland. This slab and related subducted slabs dating from the Palaeozoic at the Gondwanan margin may be the source of the widespread DUPAL geochemical anomaly in the South Atlantic and Indian Oceans. The kimberlites bringing the diamonds to the Earth's surface may have arisen from a superplume, developed from a graveyard of former Gondwanan stagnant slabs, at the Core-Mantle-Boundary.  相似文献   

6.
Rock magnetic and palaeomagnetic studies were performed on Mesozoic redbeds collected from the central and southern Laos, the northeastern and the eastern parts of the Khorat Plateau on the Indochina Block. Totally 606 samples from 56 sites were sampled and standard palaeomagnetic experiments were made on them. Positive fold tests are demonstrated for redbeds of Lower and Upper Cretaceous, while insignificant fold test is resulted for Lower Jurassic redbeds. The remanence carrying minerals defined from thermomagnetic measurement, AF and Thermal demagnetizations and back-field IRM measurements are both magnetite and hematite. The positive fold test argues that the remanent magnetization of magnetite or titanomagnetite and hematite in the redbeds is the primary and occurred before folding. The mean palaeomagnetic poles for Lower Jurassic, Lower Cretaceous, and Upper Cretaceous are defined at Plat./Plon. = 56.0°N/178.5°E (A95 = 2.6°), 63. 3°N/170.2°E (A95 = 6.9°), and 67.0°N/180.8°E (A95 = 4.9°), respectively. Our palaeomagnetic results indicate a latitudinal translations (clockwise rotations) of the Indochina Block with respect to the South China Block of −10.8 ± 8.8° (16.4 ± 9.0°); −11.1 ± 6.2° (17.8 ± 6.8°); and −5.3 ± 4.7° (13.3 ± 5.0°), for Lower Jurassic, Lower Cretaceous, and Upper Cretaceous, respectively. These results indicate a latitudinal movement of the Indochina Block of about 5–11° (translation of about 750–1700 km in the southeastward direction along the Red River Fault) and clockwise rotation of 13–18° with respect to the South China Block. The estimated palaeoposition of the Khorat Plateau at ca. 21–26°N during Jurassic to Cretaceous argues for a close relation to the Sichuan Basin in the southwest of South China Block. These results confirm that the central part of the Indochina Block has acted like a rigid plate since Jurassic time and the results also support an earlier extrusion model for Indochina.  相似文献   

7.
An alternative model for the geodynamic evolution of Southeast Asia is proposed and inserted in a modern plate tectonic model. The reconstruction methodology is based on dynamic plate boundaries, constrained by data such as spreading rates and subduction velocities; in this way it differs from classical continental drift models proposed so far. The different interpretations about the location of the Palaeotethys suture in Thailand are revised, the Tertiary Mae Yuam fault is seen as the emplacement of the suture. East of the suture we identify an Indochina derived terrane for which we keep the name Shan–Thai, formerly used to identify the Cimmerian block present in Southeast Asia, now called Sibumasu. This nomenclatural choice was made on the basis of the geographic location of the terrane (Eastern Shan States in Burma and Central Thailand) and in order not to introduce new confusing terminology. The closure of the Eastern Palaeotethys is related to a southward subduction of the ocean, that triggered the Eastern Neotethys to open as a back-arc, due to the presence of Late Carboniferous–Early Permian arc magmatism in Mergui (Burma) and in the Lhasa block (South Tibet), and to the absence of arc magmatism of the same age East of the suture. In order to explain the presence of Carboniferous–Early Permian and Permo-Triassic volcanic arcs in Cambodia, Upper Triassic magmatism in Eastern Vietnam and Lower Permian–Middle Permian arc volcanites in Western Sumatra, we introduce the Orang Laut terranes concept. These terranes were detached from Indochina and South China during back-arc opening of the Poko–Song Ma system, due to the westward subduction of the Palaeopacific. This also explains the location of the Cathaysian West Sumatra block to the West of the Cimmerian Sibumasu block.  相似文献   

8.
R. Freund  D.H. Tarling   《Tectonophysics》1979,60(3-4):189-205
Preliminary results from a few Triassic, Jurassic and Cretaceous rocks indicate that Israel has behaved as part of the African plate during this period. Earlier palaeomagnetic results from the Lebanon, previously explained in terms of a separate Levantine plate, can be better explained in terms of differential motion between fault blocks in response to motions along the Dead Sea Fault. The available evidence allows determination of the net motions of specific fault blocks and is consistent with independent palaeogeographic indicators of the pretectonic relationship between these blocks.  相似文献   

9.
New pole positions for Triassic and Cretaceous times have been obtained from volcanic and sedimentary sequences in Central Iran. These new results confirm the general trend of the Apparent Polar Wander Path (APWP) of the Central-East-Iran microplate (CEIM) from the Triassic through the Tertiary as published by Soffel and Förster (1983, 1984). Two new palaeopoles for the Triassic of the CEIM have been obtained; limestones and tuffs from the Nakhlak region yield a mean direction of 094.0°/25.0°, N=12, k=4.1,α 95=24.7°, after bedding correction, corresponding to a palaeopole position of 310.8°E; 3.9°S, and volcanic rocks from the Sirjan regions yield a mean direction of 114.5°/35.1°, N=44, k=45.9,α 95=3.2° after bedding correction and a palaeopole position of 295.8°E; 10.3°N. Combining these with the two previously published results yields a new palaeopole position of 317.5°E; 12.7°N, for the Triassic of the CEIM, thus confirming that large counterclockwise rotations of the CEIM have occurred since the Triassic time. New results have also been obtained from Cretaceous limestones from the Saghand region of the CEIM. The mean direction of 340.7°/26.3°, N=33, k=44.3,α 95=3.8°, and the corresponding palaeopole position of 283.1°E; 64.4°N, is in agreement with previously determined Cretaceous palaeopole positions of the CEIM. Furthermore, results have also been obtained from Triassic dolomite, limestone, sandstone and siltstone from the Natanz region, which is located to the west of the CEIM. A total of 161 specimens from 44 cores taken at five sites gave a mean direction of the five sites at 033.3°/25.1°, N=5, k=69.0,α 95=9.3° and a palaeopole position of 167.2°E; 53.7°N. They pass the positive fold test of McElhinny (1964) on the level of 99% confidence. This pole position is in fairly good agreement with the mean Triassic pole position of the Turan Plate (149°E; 49°N). It indicates that the area of Natanz has not undergone the large counterclockwise rotation relative to the Turan plate since the Triassic, which has been shown for the CEIM. A Triassic palaeogeographic reconstruction of Iran, Arabia (Gondwana) and the Turan Plate (Eurasia) is also presented.  相似文献   

10.
The Precambrian and Phanerozoic drift of the Indian subcontinent is discussed on the hand of available palaeomagnetic data.Hard secondary magnetization components of Early Tertiary Deccan Trap origin were found in a number of red beds studied. Incompatabilities in some previously published red beds data of mainly Early Gondwana age are presumably due to incompletely cleaned results. A modified apparent polar wander curve is proposed after rejecting certain data on the grounds, that they reflect a later Deccan Trap remagnetization.The spatial and temporal relations between the Early Cretaceous Rajmahal Trap- and the Early Tertiary Deccan Trap effusions does not accord with a mantle fixed hot spot model. The Indian palaeomagnetic data when compared with data from the other Gondwanaland continents favour the hypothesis of an early fragmentational movement of Gondwanaland before Penno-Triassic times. Implications of available palaeomagnetic data on the convergence of India and Asia are discussed in relation to some recent plate tectonic models.
Zusammenfassung Die präkambrische und phanerozoische Drift des Subkontinentes Indien wird anhand bisheriger paläomagnetischer Daten diskutiert. Harte sekundäre Remanenzkomponenten von frühtertiärer Deccan-Trap-Herkunft wurden in einer Anzahl der untersuchten red beds festgestellt. Unvereinbarkeiten in bisher publizierten red bed-Daten von meist Frühgondwana-Alter sind anscheinend die Folge störend überlagernder und nur zum Teil durch die Entmagnetisierung beseitigter sekundärer Remanenzkomponenten. Eine modifizierte Polwanderungskurve wird vorgeschlagen nach Ausschluß bestimmter Daten wegen nicht völlig eliminierter sekundärer Deccan-Trap-Remanenzkomponenten.Die räumliche und zeitliche Beziehung zwischen den frühkretazischen Rajmahal-Trap- und den frühtertiären Deccan-Trap-Effusionen stimmt nicht überein mit den mantelfixierten hot spot-Modellen. Ein Vergleich der paläomagnetischen Daten Indiens mit Daten der anderen Gondwana-Kontinente stützt die Hypothese einer fragmentierenden Bewegung Gondwanas vor der Permotrias. Folgerungen der bisherigen paläomagnetischen Daten für die Konvergenz von Indien und Asien in Beziehung zu rezenten plattentektonischen Modellen werden diskutiert.

Résumé La dérive précambrienne et phanérozoique du subcontinent indien est discutée à partir des données paléomagnétiques connues aujourd'hui. Des composantes rémanentes secondaires dures, issues de l'activité volcanique du Deccan Traps au début du Tertiaire, ont été identifiées dans des couches rouges.Des contradictions entre quelques données paléomagnétiques, notamment des couches rouges permiennes et triassiques, sont probablement dues à des données issues d'une désaimantation insuffisante. Il a été proposé une courbe des pôles paléomagnétiques modifiée, après exclusion de certaines données d'où l'influence de cette aimantation sécondaire du Deccan Traps n'a pas été complètement éliminée.Les rélations dans le temps et dans l'espace entre les effusions des Rajmahal Traps (crétacé inférieur) et des Deccan Traps (début du tertiare) ne concordent pas avec le modèle d'un point chaud fixé dans le manteau. Les données paléomagnétiques Indiennes, comparées avec les données des autres continents gondwaniens, viennent à l'appui de l'hypothèse d'une ancienne phase de fragmentation du Gondwana avant l'époque permotriassique. Certaines implications des données paléomagnétiques disponibles sur le rapprochement de l'Inde et de l'Asie sont actuellement discutées, car elles ne semblent pas en accord avec de nouveaux modèles récemment présentés sur la tectonique des plaques intéressant cette partie du globe.

. -- « ». , , . , , — — . , , , . Rajmahal-Trap Deccan-Trap « », . -. .
  相似文献   

11.
Qing-Ren Meng   《Tectonophysics》2003,369(3-4):155-174
The northern China–Mongolia tract exhibited a tectonic transition from contractional to extensional deformation in late Mesozoic time. Late Middle to early Late Jurassic crustal shortening is widely thought to have resulted from collision of an amalgamated North China–Mongolia block and the Siberian plate, but widespread late Late Jurassic–Early Cretaceous extension has not been satisfactorily explained by existing models. Some prominent features of the extensional tectonics of the northern China–Mongolia tract are: (1) Late Jurassic voluminous volcanism prior to Early Cretaceous large-magnitude rapid extension; (2) overlapping in time of contractional deformation in the Yinshan–Yanshan belt with development of extension-related basins in the interior of the northern China–Mongolia tract; and (3) widespread occurrence of alkali granitic plutonism, extensional basins and metamorphic core complexes in the Early Cretaceous. A new explanation is advanced in this study for this sequence of events. The collision of amalgamated North China–Mongolia with Siberia led to crustal overthickening of the northern China–Mongolia tract and formation of a high-standing plateau. Subsequent breakoff at depth of the north-dipping Mongol–Okhotsk oceanic slab is suggested as the main trigger for late Mesozoic lithospheric extension of that tract. Slab breakoff resulted in mantle lithospheric stretching of the adjacent northern China–Mongolia tract with subsequent ascent of hot asthenosphere and magmatic underplating at the base of the crust. Collectively, these phenomena triggered gravitational collapse of the previously thickened crust, leading to late Late Jurassic–Early Cretaceous crustal extension, and importantly, coeval contraction along the southern margin of the plateau in the Yinshan–Yanshan belt. The proposed model provides a framework for interpreting the spatial and temporal relationships of distinct processes and reconciling some seemingly contradictory phenomena, such as the synchronous extension of northerly terranes during major contraction in the neighboring Yanshan–Yinshan belt.  相似文献   

12.
Northwestern China belts result from the Palaeozoic collage of Central Asia and the subsequent reactivations due to far-field effects of the Mesozoic Tibetan and the Cenozoic Himalayan collisions. Triassic is a crucial period to understand and decipher the tectonics related to these two episodes. About 250 oriented palaeomagnetic cores from 43 sites were collected from six sections of Upper Permian to Late Triassic sandstone, in South and West Junggar, Northwestern China. Thermomagnetic, IRM and hysteresis measurements reveal magnetite as the main carrier of the magnetic remanence with minor hematite and maghemite. Stepwise thermal demagnetisation has generally isolated two components. The low temperature component, up to 300–350 °C, displays a direction consistent with the present-day geomagnetic field. The locality-mean directions related to the high temperature component (above 350 °C) were also calculated. Two out of six sections display intense viscous magnetisation and the occurrence of maghemite reveals a possible Cenozoic chemical remagnetisation for these two localities. For the other four localities, we assume that the magnetisation is primary because: (1) AMS measurements reveal a primary fabric, (2) there are local occurrences of antipodal polarities, and (3) palaeolatitudes of tilt-corrected poles are compatible with previous studies. The consistency between the Early Triassic poles of West and South Junggar indicates that Junggar evolved as a rigid block only since Early Mesozoic. The comparison of the Late Palaeozoic and the Early Mesozoic poles of Junggar and those of Siberia and Tarim shows major rotations between the Late Permian and the Late Jurassic–Early Cretaceous. These periods of discrete rotations are characterized by strike-slip faulting in Tianshan and Altai and they may correlate with the major episodes of coarse-grained detrital sedimentation and uplift of the range. Especially, the counter-clockwise rotations of Junggar relative to Tarim and Siberia, which occurred between the Early and the Late Triassic and between the Late Triassic and the Late Jurassic, are accommodated by transpressive tectonics in the Tianshan and the Altai belts. This reactivation is a far-field effect of Tibetan blocks diachronous collisions. Therefore, these first Triassic palaeomagnetic results from Junggar infer that post-Carboniferous rotations were due to the combined effect of the post-orogenic transcurrent movement and the Mesozoic oblique reactivation.  相似文献   

13.
U–Pb (SHRIMP) detrital zircon age patterns are reported for 12 samples of Permian to Cretaceous turbiditic quartzo‐feldspathic sandstone from the Torlesse and Waipapa suspect terranes of New Zealand. Their major Permian to Triassic, and minor Early Palaeozoic and Mesoproterozoic, age components indicate that most sediment was probably derived from the Carboniferous to Triassic New England Orogen in northeastern Australia. Rapid deposition of voluminous Torlesse/Waipapa turbidite fans during the Late Permian to Late Triassic appears to have been directly linked to uplift and exhumation of the magmatically active orogen during the 265–230 Ma Hunter‐Bowen event. This period of cordilleran‐type orogeny allowed transport of large volumes of quartzo‐feldspathic sediment across the convergent Gondwanaland margin. Post‐Triassic depocentres also received (recycled?) sediment from the relict orogen as well as from Jurassic and Cretaceous volcanic provinces now offshore from southern Queensland and northern New South Wales. The detailed provenance‐age fingerprints provided by the detrital zircon data are also consistent with progressive southward derivation of sediment: from northeastern Queensland during the Permian, southeastern Queensland during the Triassic, and northeastern New South Wales — Lord Howe Rise — Norfolk Ridge during the Jurassic to Cretaceous. Although the dextral sense of displacement is consistent with the tectonic regime during this period, detailed characterisation of source terranes at this scale is hindered by the scarcity of published zircon age data for igneous and sedimentary rocks in Queensland and northern New South Wales. Mesoproterozoic and Neoproterozoic age components cannot be adequately matched with likely source terranes in the Australian‐Antarctic Precambrian craton, and it is possible they originated in the Proterozoic cores of the Cathaysia and Yangtze Blocks of southeast China.  相似文献   

14.
Palaeomagnetic data, and specifically remagnetizations, are used to constrain the geometric reconstruction at 100 Ma of three anticlines cored by gabbroic intrusions and Triassic shales in the Central High Atlas, Morocco. Previous palaeomagnetic results have revealed that the Mesozoic sediments of this region acquired a pervasive remagnetization at the end of the Early Cretaceous. The restoration of palaeomagnetic vectors to the remagnetization stage (100 Ma) allows us to determine the dip of the beds during this period and, thereby, to reconstruct structures during that time and determine the relative contributions of Mesozoic magmatic/diapiric uplift vs. Cenozoic compression to the present‐day dip. Our results indicate that three major anticlines in the Central High Atlas (Tasraft, Tassent and Tissila) were initiated to different degrees before the Late Cretaceous and were reactivated during Cenozoic compression to acquire their present‐day geometry. We also discuss the origin of these structures.  相似文献   

15.
Palaeogeographic reconstructions and structural analysis of the Late Carboniferous to Triassic of central eastern Australia indicate that sedimentation and deformation were responses to the prolonged application of a dextral rotational force couple to the craton margin and to eustatic sea‐level changes. The force couple distorted the craton margins and adjacent Yarrol‐New England geosyncline and orogen into an incipient coupled orocline. The influence of the couple commenced in the Late Devonian and continued with varying effect until the Late Triassic, when it reversed to a sinistral system, part of a completely different stress regime that controlled sedimentation and structure during the Early Jurassic. Within the craton, deformation mainly took the form of a series of en echelon depressions, such as the Drummond Basin, Koburra, Denison and Taroom Troughs. A lineament between Longreach and Roma marks the southern boundary of this type of strain, although crust beyond its limit was not so rigid as to be unaffected by the force couple. The Yarrol‐New England region during the Devonian and the Early Carboniferous was the site of geosynclinal deposition where a thick and typically volcanogenic wedge lay along the eastern border of the craton. During the Late Carboniferous and Early Permian comparable wedges were formed farther to the east, in effect building outwards into the geosyncline. The same tensional regime that created the geosyncline is seen as the means for thinning crust below the sediment wedge and thus provided thermal instability, and for the igneous diapirism expressed as both intrusion and extrusion that characterizes the orogen from the Late Carboniferous onwards. The dextral force couple was responsible for most of the deformation and for controlling final emplacement of plutons. Sea‐level rises were marked in the late Early Permian and again in the early Late Permian.  相似文献   

16.
华北地区晚中生代重大构造转折的地质证据   总被引:6,自引:3,他引:6  
华北地区在侏罗纪和白垩纪分别发生了两次不同性质的岩浆活动,早期形成一套高锶石英闪长岩,另一期为钾玄岩系。两套岩石分别代表地壳加厚和减薄的构造背景,两次岩浆活动的转折期大致在130Ma左右,此外,华北地区自垩纪广泛分布的碱性岩同样表明区域内在白垩纪曾发生过强烈的岩石圈伸展作用。这一地质特征与区内盆地地震剖面、造山带构造活动年龄、变质核杂岩的年龄、早向坚世太平洋板块运动方向和运动速率的改变以及郯庐断裂左旋运动年龄等地质资料相佐证。因此华北地区岩石圈减薄作用主要发生在早向垩世时期,晚侏罗世——早白垩世是华北地区中生代重大构造发生的转折点。  相似文献   

17.
有关长江下游中生代晚期火山岩系中铁矿的若干问题   总被引:2,自引:0,他引:2  
张炳焙 《矿床地质》1982,1(1):25-34
引言长江下游南京-芜湖(宁芜)和庐江-枞阳(庐枞)两个中生代晚期火山岩盆地中的铁矿,经过近年来各部门的地质队伍、科研单位及院校的详细工作,基本上查明了矿床的赋有状态、蚀变特征、矿石特点和成矿的主要控制因素,并在宁芜地区根据各种类型铁矿床之间的成因联系,建立了“玢岩铁矿”模式。虽然对“玢岩模式”的名称还有不同意  相似文献   

18.
19.
南海的形成揭示了大陆边缘张裂和盆地形成的复杂模式,尽管已经进行了广泛研究,但是关于基底岩石和深海盆沉积层的精确年代数据还很缺乏,这使得对南海张裂年代的估计存在很大的误差,对张裂机制和历史的各种假设没有得到验证.同时只有对南海的张裂过程有了精确地分析与刻画,才能更好地理解西太平洋边缘海盆地的形成以及它们在印支块体受印度-欧亚板块碰撞而向东南挤出、青藏高原隆升中可能起到的作用.2009年正式提交的国际综合大洋钻探计划(IODP)建议书735-Full建议在南海深海盆内的4个站位上实施钻探.这4个站位分布在南海盆地4个不同的次级构造单元上(南海东北部、西北次海盆、东部次海盆和西南次海盆),这样的站位设计会确保完成本建议书的整体研究目标,即揭示南海的张裂历史和它对晚中生代以来东南亚构造的启示.位于南海盆地最东北部的站位有助于确定该区域地壳的属性和验证古南海是否存在,位于西北次海盆的站住可能会提供南海的最早张裂年代,另外2个分别位于东部次海盆和西南次海盆的站位将重点确定2个次海盆的绝对年龄、基底矿物成分与磁化率以及2个次海盆的相对张裂次序.这些站位的水深大约在2 910~4 400 m,钻探深度预计到海底以下大约700~2 200 m,总的钻透深度为5 959 m,其中5 359 m穿透沉积层,另外600 m或400 m钻入基底.所有这些站位的位置是由已有的地球物理观测数据所确定,目前计划收集更多的地质与地球物理数据以满足IODP对井位调查数据的要求.  相似文献   

20.
闽西晚中生代基性岩脉的地球化学研究   总被引:20,自引:3,他引:17  
对闽西三个地区基性岩脉的地球化学研究发现,该区域的基性岩脉为亚碱性岩石系列,具有高 Al、低 Ti、Na2O > K2O的特征;相对富集大离子亲石元素,亏损高强场元素.半村辉绿岩脉和拔里角闪辉长岩脉以 Nb、Ta、Ti负异常为特征,林子坟辉长辉绿岩脉具有 Nb、Ta负异常和 Ti弱正异常.半村和拔里的岩脉稀土元素总量高,明显富集轻稀土元素,(La/Yb)N=6.8~8.4;林子坟的岩脉稀土元素总量相对较低,轻稀土元素弱富集,(La/Yb)N=2.0.结合基性岩脉的地球化学特征和区域构造演化分析,初步认为半村和拔里的基性岩脉来自与俯冲作用有关的富大离子亲石元素流体交代的富集地幔;林子坟基性岩脉是软流圈地幔部分熔融的产物,地壳混染作用是其相对富集大离子亲石元素的原因.结合玄武岩构造环境判别图解可知,半村和拔里岩脉具有的大陆边缘弧的特征并不指示基性岩脉形成的构造环境,而是说明其源区受到俯冲板片派生出来的流体交代作用.半村和拔里岩脉形成于大陆板内拉张带,林子坟岩脉形成于板内裂谷环境.与华南其他地区的基性岩脉对比表明,虽然晚中生代华南地区处于拉张的构造背景下,但是岩脉形成的构造环境与微量元素地球化学特征均有明显的差异,反映了各地区构造环境演变和地幔演化的复杂性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号