首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper,we investigate the influence of the winter NAO on the multidecadal variability of winter East Asian surface air temperature(EASAT)and EASAT decadal prediction.The observational analysis shows that the winter EASAT and East Asian minimum SAT(EAmSAT)display strong in-phase fluctuations and a significant 60-80-year multidecadal variability,apart from a long-term warming trend.The winter EASAT experienced a decreasing trend in the last two decades,which is consistent with the occurrence of extremely cold events in East Asia winters in recent years.The winter NAO leads the detrended winter EASAT by 12-18 years with the greatest significant positive correlation at the lead time of 15 years.Further analysis shows that ENSO may affect winter EASAT interannual variability,but does not affect the robust lead relationship between the winter NAO and EASAT.We present the coupled oceanic-atmospheric bridge(COAB)mechanism of the NAO influences on winter EASAT multidecadal variability through its accumulated delayed effect of~15 years on the Atlantic Multidecadal Oscillation(AMO)and Africa-Asia multidecadal teleconnection(AAMT)pattern.An NAO-based linear model for predicting winter decadal EASAT is constructed on the principle of the COAB mechanism,with good hindcast performance.The winter EASAT for 2020-34 is predicted to keep on fluctuating downward until~2025,implying a high probability of occurrence of extremely cold events in coming winters in East Asia,followed by a sudden turn towards sharp warming.The predicted 2020/21 winter EASAT is almost the same as the 2019/20 winter.  相似文献   

2.
Seasonal prediction skill of winter mid and high northern latitudes climate from sea ice variations in eight different Arctic regions is analyzed using detrended ERA-interim data and satellite sea ice data for the period 1980–2013. We find significant correlations between ice areas in both September and November and winter sea level pressure, air temperature and precipitation. The prediction skill is improved when using November sea ice conditions as predictor compared to September. This is particularly true for predicting winter NAO-like patterns and blocking situations in the Euro-Atlantic area. We find that sea ice variations in Barents Sea seem to be most important for the sign of the following winter NAO—negative after low ice—but amplitude and extension of the patterns are modulated by Greenland and Labrador Seas ice areas. November ice variability in the Greenland Sea provides the best prediction skill for central and western European temperature and ice variations in the Laptev/East Siberian Seas have the largest impact on the blocking number in the Euro-Atlantic region. Over North America, prediction skill is largest using September ice areas from the Pacific Arctic sector as predictor. Composite analyses of high and low regional autumn ice conditions reveal that the atmospheric response is not entirely linear suggesting changing predictive skill dependent on sign and amplitude of the anomaly. The results confirm the importance of realistic sea ice initial conditions for seasonal forecasts. However, correlations do seldom exceed 0.6 indicating that Arctic sea ice variations can only explain a part of winter climate variations in northern mid and high latitudes.  相似文献   

3.
Summary Positive trend of the North Atlantic Oscillation (NAO) during last several decades was also accompanied by a positive trend of the East Atlantic Western Russia (EAWR) pattern. Decline of the Mediterranean precipitation during the period has also been noted. The precipitation decline over the western part of the region has been linked to the positive trend of the NAO. Explanation for the precipitation decline over the eastern Mediterranean by the role of the EAWR trend has also been suggested. An evaluation of the hypothesis is performed in the current study. A methodology for the determination of the characterizing typical low troposphere circulation during wet-months large-scale correlation-circulation patterns is suggested. The large-scale circulation patterns for three target areas over the northwestern, north-eastern, and southeastern Mediterranean regions are constructed separately for the low and high phase periods of the teleconnection regimes. According to the results, the precipitation decline over the Mediterranean region during the last several decades of the past century is explained by the positive trend of the EAWR, which in its turn was induced by that of the NAO. The trends have lead to the changes in the typical for the wet periods of the year low-troposphere circulation regimes associated with a decline in the water vapor transport from Atlantic.  相似文献   

4.
利用再分析数据,以在北半球冬季与北大西洋涛动(North Atlantic Oscillation,NAO)相关的向下游传播的准定常波列在欧洲地区是否发生反射为标准,将1957/1958年至2001/2002年这45个冬季分为高纬型和低纬型两类冬季,分别简称为在H型和L型冬季。在H(L)型冬季,和NAO相联系的向下游传播的Rossby波列主要沿高纬度(低纬度)路径传播。对比了在两种类型冬季NAO与同期大气环流、近地面温度(Surface Air Temperature,SAT)、海表面温度(Sea Surface Tempertaure,SST)和降水的关系。结果表明:大气环流方面,在H型冬季,300 hPa位势高度异常在西-西伯利亚和中-西伯利亚西部与NAO呈现正相关,而在L型冬季300 hPa位势高度异常在亚洲东海岸(约40°N)和北太平洋呈现正相关,在H型冬季与NAO相关的经向风异常在中纬度形成波列,而在L型冬季与NAO相关的经向风异常在副热带形成波列;SAT方面,在H型冬季SAT异常在欧亚大陆腹地高纬度地区与NAO呈现正相关,而在L型冬季与NAO相关的SAT异常在欧亚大陆腹地的高纬度地区相对较弱,但NAO造成的SAT异常可以扩展到亚洲东北部;降水方面,H型冬季与L型冬季主要区别在中国南方,在H型冬季降水异常与NAO的关系相对较弱,而在L型冬季降水异常与NAO呈现正相关关系;SST方面,同期SST异常在北大西洋中纬度海域与NAO呈现正相关,而在L型冬季与NAO相关的SST异常在北大西洋中纬度地区相对较弱,在北大西洋北部和南部较强。总体而言,在H型和L型冬季,NAO具有不同下游影响。  相似文献   

5.
Marine proxy evidence linking decadal North Pacific and Atlantic climate   总被引:1,自引:1,他引:0  
Decadal- to multidecadal variability in the extra-tropical North Pacific is evident in 20th century instrumental records and has significant impacts on Northern Hemisphere climate and marine ecosystems. Several studies have discussed a potential linkage between North Pacific and Atlantic climate on various time scales. On decadal time scales no relationship could be confirmed, potentially due to sparse instrumental observations before 1950. Proxy data are limited and no multi-centennial high-resolution marine geochemical proxy records are available from the subarctic North Pacific. Here we present an annually-resolved record (1818–1967) of Mg/Ca variations from a North Pacific/Bering Sea coralline alga that extends our knowledge in this region beyond available data. It shows for the first time a statistically significant link between decadal fluctuations in sea-level pressure in the North Pacific and North Atlantic. The record is a lagged proxy for decadal-scale variations of the Aleutian Low. It is significantly related to regional sea surface temperature and the North Atlantic Oscillation (NAO) index in late boreal winter on these time scales. Our data show that on decadal time scales a weaker Aleutian Low precedes a negative NAO by several years. This atmospheric link can explain the coherence of decadal North Pacific and Atlantic Multidecadal Variability, as suggested by earlier studies using climate models and limited instrumental data.  相似文献   

6.
Zhang  Xing  Wang  Qiang  Mu  Mu 《Theoretical and Applied Climatology》2017,129(3-4):815-831
The impacts of four teleconnection patterns on atmospheric circulation components over Eurasia and the Pacific region, from low to high latitudes in the Northern Hemisphere (NH), were investigated comprehensively in this study. The patterns, as identified by the Climate Prediction Center (USA), were the East Atlantic (EA), East Atlantic/Western Russia (EAWR), Polar/Eurasia (POLEUR), and Scandinavian (SCAND) teleconnections. Results indicate that the EA pattern is closely related to the intensity of the subtropical high over different sectors of the NH in all seasons, especially boreal winter. The wave train associated with this pattern serves as an atmospheric bridge that transfers Atlantic influence into the low-latitude region of the Pacific. In addition, the amplitudes of the EAWR, SCAND, and POLEUR patterns were found to have considerable control on the “Vangengeim–Girs” circulation that forms over the Atlantic–Eurasian region in winter or spring. The EA and EAWR mainly affect the westerlies in winter and spring and the POLEUR and SCAND, respectively, in summer and winter. Strong westerlies confine the extension of the North Polar vortex, which generally results in a small weak vortex and a shallow East Asian trough located in a position further east than normal. Furthermore, the North Polar vortex presents significant connections with the patterns during winter and summer. Analyses in this work suggest that the teleconnection patterns in summer could be driven, at least partly, by the Atlantic Multidecadal Oscillation, which to some degree might transmit the influence of the Atlantic Ocean to Eurasia and the Pacific region.  相似文献   

7.
In the 20 th century, Eurasian warming was observed and was closely related to global oceanic warming(the first leading rotated empirical orthogonal function of annual mean sea surface temperature over the period 1901–2004). Here, large-scale patterns of covariability between global oceanic warming and circulation anomalies are investigated based on NCEP–NCAR reanalysis data. In winter, certain dominant features are found, such as a positive pattern of the North Atlantic Oscillation(NAO), low-pressure anomalies over northern Eurasia, and a weakened East Asian trough. Numerical experiments with the CAM3.5, CCM3 and GFDL models are used to explore the contribution of global oceanic warming to the winter Eurasian climate. Results show that a positive NAO anomaly, low-pressure anomalies in northern Eurasia, and a weaker-than-normal East Asian trough are induced by global oceanic warming. Consequently, there are warmer winters in Europe and the northern part of East Asia. However, the Eurasian climate changes differ slightly among the three models. Eddy forcing and convective heating from those models may be the reason for the different responses of Eurasian climate.  相似文献   

8.
This study investigates the North Atlantic Oscillation (NAO) simulated by 17 global coupled ocean-atmosphere models participating in the Coupled Model Intercomparison Project (CMIP). Robust NAO indices are defined by calculating the leading principal components of winter time mean surface temperatures (land and sea) in the North Atlantic region (120°W-60°E, 20-80°N). Encouragingly, 13 out of 17 of the models capture the NAO surface temperature quadrupole pattern with centres of action over Northwest Europe, the northwest Atlantic, the southeastern USA, and the Middle East. The northern dipole is better captured than the southern dipole which is often simulated too far eastwards over the Atlantic Ocean. Out of the 17 models, ten models produce NAO indices that vary similar to the observations as stationary "weakly red noise" with only small correlations between successive winters (r < 0.3). Another five models drift monotonically towards warmer conditions, and two models exhibit long-term stochastic trends. Several of the models significantly overestimate the teleconnection between NAO and the tropical ENSO phenomenon.  相似文献   

9.
2009/2010年冬季云南严重干旱原因的进一步分析   总被引:8,自引:2,他引:6  
宋洁  杨辉  李崇银 《大气科学》2011,35(6):1009-1019
为了揭示2009/2010年冬季云南出现严重干旱灾害的原因,本文利用NCEP/NCAR再分析资料以及云南省台站降水资料计算得到的云南冬季降水指数,讨论了在北半球冬季(12~2月)北大西洋涛动(North Atlantic Oscillation,简称NAO)和云南省降水(旱涝)之间的联系.分析结果表明,在1961/19...  相似文献   

10.
北极海冰的气候变化与20世纪90年代的突变   总被引:5,自引:0,他引:5  
应用英国Had ley气候研究中心1968~2000年的1°×1°的北半球逐月海冰密集度资料,使用EOF分解等统计方法,探讨北极海冰的气候变化趋势、海冰的突变、海冰的季节持续性和各季的特色。结果表明:(1)自1968年以来,北极海冰的减小是北半球海冰变化的总趋势;海冰的趋势变化在海冰的年际总变化中占有相当重要的地位,可达50%左右。冬春季主要减少区域在格陵兰海、巴伦支海和白令海;夏秋季海冰减少是唯一趋势,中心在北冰洋边缘的喀拉海、拉普捷夫海、东西伯利亚海、楚科奇海、波弗特海。(2)20世纪80年代中后期北极海冰已出现减小趋势,在20世纪90年代,海冰又出现范围和面积的突然减少,中心在格陵兰海和巴伦支海;即海冰减少是加速的,其变化程度已远远超过一般的自然变化。(3)海冰有很好的季节持续性,有很强的隔季相关,也有较好的隔年相关;各季节海冰分布型之间有很好的联系,表现为海冰分布型的总体变化趋势是一致的,在海冰的减少中也体现了分布型的特征。  相似文献   

11.
春季北大西洋三极型海温异常变化及其与NAO和ENSO的联系   总被引:1,自引:0,他引:1  
利用1951—2016年HadISST逐月海表温度(Sea Surface Temperature,SST)资料,NCEP/NCAR再分析资料以及1958—2016年美国伍兹霍尔海洋研究所(Woods Hole Oceanographic Institution,WHOI)提供的OAFlux数据集,运用经验正交函数分解(Empirical Orthogonal Function,EOF)和偏相关分析等统计方法,研究了春季北大西洋海温异常的主要特征及其与春季NAO和前期冬季ENSO联系。结果表明:春季北大西洋海温异常EOF的第一模态是自北而南出现的三极结构的海温距平型,其方差贡献率为35.7%。春季北大西洋三极型海温异常的形成主要受到春季NAO主导作用,还受到前期冬季热带中东太平洋海温异常的影响。消除前期冬季Niňo3.4的影响后,春季北大西洋三极型海温异常指数与同期北大西洋涛动(North Atlantic Oscillation,NAO)指数的偏相关系数分别为0.50,通过了99%置信度水平的显著性检验。消除春季NAO的影响后,春季北大西洋三极型海温异常指数与前期冬季Niňo3.4指数的偏相关系数为-0.26,通过了95%信度水平的显著性检验。春季NAO正(负)位相引起的海表风场和海表湍流热通量的异常,进而激发出正(负)位相的北大西洋三极型海温异常。前期冬季ENSO事件可以引起春季大气环流异常和热带外海温异常,进而调制春季NAO对北大西洋三极型海温异常的影响。  相似文献   

12.
We analyze decadal climate variability in the Mediterranean region using observational datasets over the period 1850–2009 and a regional climate model simulation for the period 1960–2000, focusing in particular on the winter (DJF) and summer (JJA) seasons. Our results show that decadal variability associated with the winter and summer manifestations of the North Atlantic Oscillation (NAO and SNAO respectively) and the Atlantic Multidecadal Oscillation (AMO) significantly contribute to decadal climate anomalies over the Mediterranean region during these seasons. Over 30% of decadal variance in DJF and JJA precipitation in parts of the Mediterranean region can be explained by NAO and SNAO variability respectively. During JJA, the AMO explains over 30% of regional surface air temperature anomalies and Mediterranean Sea surface temperature anomalies, with significant influence also in the transition seasons. In DJF, only Mediterranean SST still significantly correlates with the AMO while regional surface air temperature does not. Also, there is no significant NAO influence on decadal Mediterranean surface air temperature anomalies during this season. A simulation with the PROTHEUS regional ocean–atmosphere coupled model is utilized to investigate processes determining regional decadal changes during the 1960–2000 period, specifically the wetter and cooler 1971–1985 conditions versus the drier and warmer 1986–2000 conditions. The simulation successfully captures the essence of observed decadal changes. Model set-up suggests that AMO variability is transmitted to the Mediterranean/European region and the Mediterranean Sea via atmospheric processes. Regional feedbacks involving cloud cover and soil moisture changes also appear to contribute to observed changes. If confirmed, the linkage between Mediterranean temperatures and the AMO may imply a certain degree of regional decadal climate predictability. The AMO and other decadal influences outlined here should be considered along with those from long-term increases in greenhouse gas forcings when making regional climate out-looks for the Mediterranean 10–20?years out.  相似文献   

13.
冬季北大西洋涛动极端异常变化与东亚冬季风   总被引:54,自引:16,他引:54  
武炳义  黄荣辉 《大气科学》1999,23(6):641-651
依据资料分析发现,冬季北大西洋涛动指数与冬季西伯利亚高压范围呈反向变化关系,冬季北大西洋涛动指数异常偏高(低)时期,30~50oN的亚洲大陆中部气压显著偏低(高),致使冬季西伯利亚高压和东亚冬季风减弱(增强)以及亚洲大陆北部气温显著偏高(低)。冬季西伯利亚高压范围异常变化对北大西洋涛动没有显著的影响,其对北半球海平面气压、850 hPa温度的影响也明显要弱于北大西洋涛动的影响。  相似文献   

14.
Holocene climate modes are identified by the statistical analysis of reconstructed sea surface temperatures (SSTs) from the tropical and North Atlantic regions. The leading mode of Holocene SST variability in the tropical region indicates a rapid warming from the early to mid Holocene followed by a relatively weak warming during the late Holocene. The dominant mode of the North Atlantic region SST captures the transition from relatively warm (cold) conditions in the eastern North Atlantic and the western Mediterranean Sea (the northern Red Sea) to relatively cold (warm) conditions in these regions from the early to late Holocene. This pattern of Holocene SST variability resembles the signature of the Arctic Oscillation/North Atlantic Oscillation (AO/NAO). The second mode of both tropical and North Atlantic regions captures a warming towards the mid Holocene and a subsequent cooling. The dominant modes of Holocene SST variability emphasize enhanced variability around 2300 and 1000 years. The leading mode of the coupled tropical-North Atlantic Holocene SST variability shows that an increase of tropical SST is accompanied by a decrease of SST in the eastern North Atlantic. An analogy with the instrumental period as well as the analysis of a long-term integration of a coupled ocean-atmosphere general circulation model suggest that the AO/NAO is one dominant mode of climate variability at millennial time scales.  相似文献   

15.
We use reconstructed data and multi-centennial integrations performed with the Bergen Climate Model Version 2 to investigate the impact of natural external forcing factors on the Indian summer monsoon (ISM) rainfall, the winter North Atlantic Oscillation (NAO), and the potential relationship between the ISM rainfall and the winter NAO on decadal to inter-decadal timescales. The model simulations include a 600-year control integration (CTL600) and a 600-year integration with time-varied natural external forcing factors from 1400 to 1999 (EXT600). Both reconstructed data and the simulation showed increased ISM rainfall 2–3 years after strong volcanic eruptions. Strong volcanic eruptions decrease the Indian Ocean sea surface temperature (SST), which increases the strength of the southwesterly winds over the Arabian Sea. With negative externally-forced radiative anomaly, the lower stratospheric pole-to-equator winter temperature gradient is enhanced, leading to a positive winter NAO anomaly with a time lag of 1 year. There is no significant correlation between the winter NAO and ISM rainfall in CTL600. However, the ISM rainfall is significantly positively correlated with the winter NAO in EXT600, with the NAO leading by 2–4 years, which is consistent with the NAO–ISM rainfall relationship in the reconstructed data. We suggest that natural external forcing factors regulate the inter-decadal variability of both the winter NAO and the ISM rainfall and thus likely lead to an increased statistical but not causal relationship between them on the inter-decadal timescale over the past centuries.  相似文献   

16.
The significance of the Atlantic meridional overturning circulation (MOC) for regional and hemispheric climate change requires a complete understanding using fully coupled climate models. Here we present a persistent, decadal oscillation in a coupled atmosphere–ocean general circulation model. While the present study is limited by the lack of comparisons with paleo-proxy records, the purpose is to reveal a new theoretically interesting solution found in the fully-coupled climate model. The model exhibits two multi-century-long stable states with one dominated by decadal MOC oscillations. The oscillations involve an interaction between anomalous advective transport of salt and surface density in the North Atlantic subpolar gyre. Their time scale is fundamentally determined by the advection. In addition, there is a link between the MOC oscillations and North Atlantic Oscillation (NAO)-like sea level pressure anomalies. The analysis suggests an interaction between the NAO and an anomalous subpolar gyre circulation in which sea ice near and south of the Labrador Sea plays an important role in generating a large local thermal anomaly and a meridional temperature gradient. The latter induces a positive feedback via synoptic eddy activity in the atmosphere. In addition, the oscillation only appears when the Nordic Sea is completely covered by sea ice in winter, and deep convection is active only near the Irminger Sea. Such conditions are provided by a substantially colder North Atlantic climate than today.  相似文献   

17.
Trends in atmospheric pressure, circulation and some relationships between North Atlantic Oscillation (NAO) indices, sea surface temperatures, and atmospheric circulation over Bulgaria are discussed in this article. Data for measured atmospheric pressure at stations Burgas, Pleven, and Sandanski are used. Information about atmospheric circulation over Bulgaria was obtained using sea level pressure and 700 hPa Omega (vertical velocity) reanalysis daily data for grid cells covering the territory of Bulgaria for the period 1948–2010. Zonal and meridional indices for Bulgaria were also calculated based on the data for sea level pressure. NAO index calculated by NOAA and NCAR is correlated with atmospheric pressure and circulation. A total of 12 areas in three major water basins influencing Bulgarian climate—North Atlantic, Mediterranean, and Black Seas—were studied. Main methods employed in the article are statistical—trend analysis, multiple linear regression, correlation, nonparametric tests, etc. There is no change in the mean values of atmospheric pressure over Bulgaria. Circulation over Bulgaria during the research period increases its anticyclonal patterns mainly due to the decrease of the number of cyclones. Dynamics in zonal and meridional indices for Bulgaria result in an increase of the northwest transport in the winter and an increase of the northeast transport in the summer. Cyclones over Bulgaria determine the values of atmospheric pressure. Influence of the NAO on atmospheric pressure and circulation is stronger in winter. Atmospheric processes, expressed by the number of cyclones and anticyclones, are most active in spring. Current trends are towards increasing of sea surface temperatures (SSTs) at all investigated places. Temporally, the effect of SSTs on the number of cyclones, anticyclones, zonal and meridional indices for Bulgaria during the different seasons comes with a delay of 1 to 3 months. Constructed multiple linear regression (MLR) models with predictors SSTs adequately describe the atmospheric circulation over Bulgaria. There is a clear pattern of SSTs distribution, which leads to a higher number of cyclones over Bulgaria in winter—lower than normal temperatures in the Aegean Sea and higher than normal in the Black Sea. A decrease in the difference of temperatures between the Gulf Stream and western colder parts leads to higher values of winter zonal transport over Bulgaria. Higher than normal temperatures in Black Sea lead to a higher number of cyclones in spring. Higher difference in temperatures of the North Atlantic leads to a stronger cyclogenesis and enhanced zonal transport, which affects autumn circulation over Bulgaria.  相似文献   

18.
This paper presents a concise summary of the studies on interdecadal variability of the East Asian winter monsoon (EAWM) from three main perspectives. (1) The EAWM has been significantly affected by global climate change. Winter temperature in China has experienced three stages of variations from the beginning of the 1950s: a cold period (from the beginning of the 1950s to the early or mid 1980s), a warm period (from the early or mid 1980s to the early 2000s), and a hiatus period in recent 10 years (starting from 1998). The strength of the EAWM has also varied in three stages: a stronger winter monsoon period (1950 to 1986/87), a weaker period (1986/87 to 2004/05), and a strengthening period (from 2005). (2) Corresponding to the interdecadal variations of the EAWM, the East Asian atmospheric circulation, winter temperature of China, and the occurrence of cold waves over China have all exhibited coherent interdecadal variability. The upper-level zonal circulation was stronger, the mid-tropospheric trough over East Asia was deeper with stronger downdrafts behind the trough, and the Siberian high was stronger during the cold period than during the warm period. (3) The interdecadal variations of the EAWM seem closely related to major modes of variability in the atmospheric circulation and the Pacific sea surface temperature. When the Northern Hemisphere annular mode/Arctic Oscillation and the Pacific decadal oscillation were in negative (positive) phase, the EAWM was stronger (weaker), leading to colder (warmer) temperatures in China. In addition, the negative (positive) phase of the Atlantic multi decadal oscillation coincided with relatively cold (warm) temperatures and stronger (weaker) EAWMs. It is thus inferred that the interdecadal variations in the ocean may be one of the most important natural factors influencing long-term variability in the EAWM, although global warming may have also played a significant role in weakening the EAWM.  相似文献   

19.
Summary ?The role of the two main European low-frequency oscillations – the East Atlantic/West Russian (EA/WR) and the North Atlantic Oscillation (NAO), in controlling the precipitation in the Eastern Mediterranean region is investigated based on the NCEP/NCAR reanalysis and the Israeli precipitation data for 1958–1998. The data on the EA/WR and NAO indices, received from the NCEP Climate Prediction Center, are also adapted. Composite mean sea level and precipitation anomaly patterns are constructed and analyzed. In addition to the widely investigated positive NAO trend, another, also positive EA/WR trend characterized atmospheric developments during the period. During NAO positive months, the EA/WR-associated positive SLP anomaly areas were shifted from the east Atlantic to southwest Europe. The areas were shifted to the north during the NAO-negative months and were located over central and northern Europe. This demonstrates that the use of fixed pressure NAO patterns may be not the optimum way to understand climate variability. Analysis of the NAO, EA/WR patterns, as well as that of their decadal trends, demonstrated a relationship between the main European oscillations and the EM precipitation. The results allow explanation of the observed reduction of the north Israeli precipitation by the EA/WR positive trend during the period. Received April 5, 2001; Revised February 14, 2002  相似文献   

20.
Global North Atlantic Oscillation (NAO) oceanic precipitation features in the latter half of the twentieth century are documented based on the intercomparison of multiple state-of-the-art precipitation datasets and the analysis of the NAO atmospheric circulation and SST anomalies. Most prominent precipitation anomalies occur over the ocean in the North Atlantic, where in winter a “quadrupole-like” pattern is found with centers in the western tropical Atlantic, sub-tropical Atlantic, high-latitude eastern Atlantic and over the Labrador Sea. The extent of the sub-tropical and high-latitude center and the amount of explained variance (over 50%) are quite remarkable. However, the tropical Atlantic center is probably the most intriguing feature of this pattern apparently linking the NAO with ITCZ variability. In summer, the pattern is “tripole-like” with centers in the eastern Mediterranean Sea, the North Sea/Baltic Sea and in the sub-polar Atlantic. In the eastern Indian Ocean, the correlation is positive in winter and negative in summer, with some link to ENSO variability. The sensitivity of these patterns to the choice of the NAO index is minor in winter while quite important in summer. Interannual NAO precipitation anomalies have driven similar fresh water variations in these “key” regions. In the sub-tropical and high-latitude Atlantic in winter precipitation anomalies have been roughly 15 and 10% of climatology per unit change of the NAO, respectively. Decadal changes of the NAO during the last 50 years have also influenced precipitation and fresh water flux at these time-scales, with values lower (higher) than usual in the high-latitude eastern North Atlantic (Labrador Sea) in the 1960s and the late 1970s, and an opposite situation since the early 1980s; in summer the North Sea/Baltic region has been drier than usual during the period 1965–1975 when the NAO was generally positive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号