首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ly α and Ly β line profiles in a solar prominence were observed with high spatial and spectral resolution with SOHO/SUMER. Within a 60-arcsec scan, we measure a very large variety of profiles: not only reversed and nonreversed profiles but also red-peaked and blue-peaked ones in both lines. Such a spatial variability is probably related to both the fine structure in prominences and the different orientations of mass motions. The usage of integrated-intensity cuts along the SUMER slit allowed us to categorize the prominence in three regions. We computed average profiles and integrated intensities in these lines in the range 2.36 – 42.3 W m−2 sr−1 for Ly α and 0.027 – 0.237 W m−2 sr−1 for Ly β. As shown by theoretical modeling, the Ly α/Ly β ratio is very sensitive to geometrical and thermodynamic properties of fine structure in prominences. For some pixels, and in both lines, we found agreement between observed intensities and those predicted by one-dimensional models. But a close examination of the profiles indicated a rather systematic disagreement concerning their detailed shapes. The disagreement between observations and thread models (with ambipolar diffusion) leads us to speculate about the importance of the temperature gradient between the cool and coronal regions. This gradient could depend on the orientation of field lines as proposed by Heinzel, Anzer, and Gunár (Astron. Astrophys. 442, 331, 2005).  相似文献   

2.
In an earlier research the employment of a radiation transport model with angle-dependent partial frequency redistribution, self-absorption by interplanetary hydrogen, realistic solar HLyαemission profile, and a time dependent `hot' hydrogen model to analyze 5 interplanetary HLyα glow spectra obtained with theHubble–Space–Telescope–GHRS spectrometer, has not resulted in unequivocal determination of a set of thermodynamical parameters of the interstellar hydrogen The residual discrepancies between the model and the data concern the observations performed within an interval of 1 year close to the solar minimum from very similar lines of sight. In this paper we investigate by calculating interplanetary HLyα lines with the use of a one hydrogen distribution and several solar HLyα line profiles whether this residual may be caused by possible variations in time of the shape of the solar HLyα emission line profile which cause variable illuminations of the interplanetary gas. These variations of illuminations cause variations in Doppler shift of the resonant interplanetary HLyα line that can amount to ≃ 4 km s-1in the line peak. Consequently we conclude that without adequate knowledge of the solar HLyα emission line profile during spectral observations of the interplanetary hydrogen gas it is impossible to obtain an agreement between models and observations better than by this value. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Pulsar emission     
  相似文献   

4.
5.
6.
Zongjun Ning  H. Wu  F. Xu  X. Meng 《Solar physics》2007,242(1-2):101-109
We analyze the pulses in high-frequency drift radio structures observed by the spectrometer at Purple Mountain Observatory (PMO) over the frequency range of 4.5 – 7.5 GHz during the 18 March 2003 solar flare. A number of individual pulses are determined from the drifting radio structures after the detected gradual component subtraction. The frequency distributions of microwave pulse occurrence as functions of peak flux, duration, bandwidth, and time interval between two adjacent pulses exhibit a power-law behavior, i.e. . From regression fitting in log-log space, we obtain the power-law indexes, α P=7.38±0.40 for the peak flux, α D=5.39±0.86 for the duration, and α B=6.35±0.56 for the bandwidth. We find that the frequency distribution for the time interval displays a broken power law. The break occurs at about 500 ms, and their indexes are α W1=1.56±0.08 and α W2=3.19±0.12, respectively. Our results are consistent with the previous findings of hard X-ray pulses, type III bursts, and decimetric millisecond spikes.  相似文献   

7.
8.
We report the observations of the solar chromosphere from a newly commissioned solar telescope at the incursion site near Pangong Tso lake in Merak (Leh/Ladakh). This new \(\hbox {H}_{\alpha }\) telescope at the Merak site is identical to the Kodaikanal \(\hbox {H}_{\alpha }\) telescope. The telescope was installed in the month of August 2017 at the Merak site. The telescope consists of a 20-cm doublet lens with additional re-imaging optics. A Lyot filter with 0.5 Å passband isolates the Balmer line of the hydrogen spectra to make the observations of the solar chromosphere. The observations made in \(\hbox {H}_{\alpha }\) wavelength delineates the magnetic field directions at the sunspot and the quiet regions. A CCD detector records the images of the chromosphere with a pixel resolution of 0.27\(^{\prime \prime }\) and covers 9.2\(^{\prime }\) field-of-view. This telescope has a good guiding system that keeps the FoV in the intended position. We report the development of control software for tuning the filter unit, control detector system, observations and calibration of the data to make it useful for the scientific community. Some preliminary results obtained from the Merak \(\hbox {H}_{\alpha }\) telescope are also presented. This high altitude facility is a timely addition to regularly obtain \(\hbox {H}_{\alpha }\) images around the globe.  相似文献   

9.
The Lyα line emission of high-redshift galaxies depends on the density and temperature distribution of the gas, the kinematics and the dust content. We use a finite element method to model theLyα radiation of different 3D configurations considering complete frequency redistribution and the influence of velocity fields. Our results show that the central absorption feature of the double-peaked Lyα line profile observed in many radio galaxies with z=2-4 is probably the consequence of frequency redistribution rather than foreground absorption. The blue peak of the profile is enhanced for models with in fall motion and the red peak for models with outflow motion. In particular, we attempt to model the extendedLyα emission of high-redshift radio galaxies, where we consider results of corresponding hydrodynamical simulations to select possible model configurations. We find that Lyα photons scattered outside a jet-influenced low-density region are able to produce an extended Lyα halo. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
Lepreti  F.  Fanello  P.C.  Zaccaro  F.  Carbone  V. 《Solar physics》2000,197(1):149-156
We calculated the Hurst exponent H for the daily averaged intensity Q of optical flares, an index which describes the solar activity. We found that H0.74±0.02 in the range of scales from about 20 days up to 450 days. This value is well beyond H= , expected for a stochastic Brownian process, thus indicating that the solar cycle could show persistence on small scales, in agreement with what has been found using other indices of the solar cycle.  相似文献   

11.
MIRI is the Mid InfraRed Instrument for the James Webb Space Telescope (JWST) and will provide imaging, coronography and integral field spectroscopy in the range between 4.9 and 28.6  $\upmu \hbox{m}.$ We summarise solar system observations which may be possible with this instrument, drawing on examples of observations made with previous space missions such as IRAS, ISO and Spitzer.  相似文献   

12.
I discuss the properties of gas-rich forming galaxies. I particularlyemphasize the latest results on Lyα emission that are relevant to the search of distant young galaxies. The interdependance of the Lyα escape with the properties of the ISM in starburst galaxies is outlined. A new modelfrom G. Tenorio-Tagle and his collaborators explains Lyα profiles instarburst galaxies from the hydrodynamics of superbubbles powered by massivestars. I stress again that since Lyα is primarely a diagnostic ofthe ISM, it is mandatory to understand how the ISM and Lyα arerelated to firmly relate Lyα to the cosmic star–formation rate. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Stochastic temperatures and turbulence are characterized by average velocities u th and < u turb  > ≡ u 0 and fluctuations uth {u'_{th}} and u′ (<u′ > = 0). Thus, the Doppler width of a line also has a fluctuating component Dl¢D \Delta {\lambda '_D} . Observed spectra correspond to the radiative flux averaged over time and over a star’s surface, <Hλ>. Usually, only the average velocities u th and u 0 are taken into account in photospheric models and these yield the Doppler width DlD(0) \Delta \lambda_D^{(0)} of a line in the customary way. The fluctuations Dl¢D \Delta {\lambda '_D} mean that near a line center the average absorption coefficient < αλ > is larger than the usual αλ, which depends only on the average velocities u th and u 0. This enhances the absorption line near the center and is not explained by the photospheric models. This new statistical effect depends on the wavelength of the line. A comparison of observed lines with model profiles yields an estimate for the average level of fluctuations in the Doppler width, h = á | Dl¢D | ñ
/ DlD(0) \eta = {{{\left\langle {\left| {\Delta {{\lambda '}_D}} \right|} \right\rangle }} \left/ {{\Delta \lambda_D^{(0)}}} \right.} , which characterizes the average stochasticity of a photosphere and is important for understanding the physics of photospheres. The depths of lines in synthetic spectra of stars are often greater than the observed values. The observed disagreement between the theoretical and actually observed depths of lines can be corrected by introducing an additional parameter, the fluctuation level η. Then it is possible to obtain estimates of η for a number of stars.  相似文献   

14.
15.
IRAS data on 13 normal and 4 shell A stars are analyzed to detect circumstellar matter around them. Most of the stars rotate rapidly; five of them have been studied before. By comparing the observed fluxes, IUE and ground-based, with Kurucz’s models in the 0.17-0.9 µm range, the stars’ parameters were determined ( $$T_{\hbox{\ \hbox{$\mid$}\kern -1em\lower .5em \hbox{$\leftarrow$}}} g_{\hbox{\ \hbox{$\mid$}\kern -1em\lower .5em \hbox{$\leftarrow$}}} $$ , and angular diameter), which were used to find the IR flux excesses over the photospheric emission. Infrared excesses were found in 15 of the stars. The excesses themselves are interpreted as thermal emission from dust particles with an effective temperature in the range from 70 to 200 K. The effective radius of the circumstellar disk is estimated to be from 7 to 400 R*,  相似文献   

16.
A simple consistency argument for hypothesis of the galactic halo origin of the Lyα forest absorption lines is advanced, based on the recent determination of column-density vs. impact parameter relation for the low-redshift gaseous galactic haloes. It is shown that observations of neutral hydrogen absorption around luminous galaxies are consistent with the index of the power-law column density distribution derived from statistical analyses of large samples of high-redshift Lyα forest lines.PACS: 98.62.Ra, 98.62.Gq, 98.80.Es This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
18.
For a few months around perihelion, thecentral part of the Hale–Bopp hydrogencloud has been optically thick to thesolar Lyα radiation, and hassignificantly reduced the solar flux availablefor the resonance glow of interstellarhydrogen beyond the comet. This shadowing effecton the interstellar gas is the first everobserved comet shadow. It is modeled andcompared with SWAN observations. Shadowmodelling will help to constrain the cometwater production and radiative transfer effectsin the interstellar ionisation cavity.  相似文献   

19.
Korendyke  C.M.  Vourlidas  A.  Cook  J.W.  Dere  K.P.  Howard  R.A.  Morrill  J.S.  Moses  J.D.  Moulton  N.E.  Socker  D.G. 《Solar physics》2001,200(1-2):63-73
The Very-high-resolution Advanced ULtraviolet Telescope (VAULT) experiment was successfully launched on 7 May 1999 on a Black Brant sounding rocket vehicle from White Sands Missile Range. The instrument consists of a 30 cm UV diffraction limited telescope followed by a two-grating, zero-dispersion spectroheliograph tuned to isolate the solar L emission line. During the flight, the instrument successfully obtained a series of images of the upper chromosphere with a limiting resolution of 0.33 arc sec. The resulting observations are the highest-resolution images of the solar atmosphere obtained from space to date. The flight demonstrated that sub-arc second ultraviolet images of the solar atmosphere are achievable with a high-quality, moderate-aperture space telescope and associated optics. Herein, we describe the payload and its in-flight performance.  相似文献   

20.
Sedna is the first inner Oort cloud object to be discovered. Its dynamical origin remains unclear, and a possible mechanism is considered here. We investigate the parameter space of a hypothetical solar companion which could adiabatically detach the perihelion of a Neptune-dominated TNO with a Sedna-like semimajor axis. Demanding that the TNO’s maximum value of osculating perihelion exceed Sedna’s observed value of 76 AU, we find that the companion’s mass and orbital parameters (m c , a c , q c , Q c , i c ) are restricted to $$m_c>rapprox 5\hskip.25em\hbox{M}_{\rm J}\left(\frac{Q_c}{7850\hbox{ AU}} \frac{q_c}{7850\hbox{ AU}}\right)^{3/2}$$ during the epoch of strongest perturbations. The ecliptic inclination of the companion should be in the range $45{\deg}\lessapprox i_c\lessapprox 135{\deg}$ if the TNO is to retain a small inclination while its perihelion is increased. We also consider the circumstances where the minimum value of osculating perihelion would pass the object to the dynamical dominance of Saturn and Jupiter, if allowed. It has previously been argued that an overpopulated band of outer Oort cloud comets with an anomalous distribution of orbital elements could be produced by a solar companion with present parameter values $$m_c\approx 5\hskip.25em\hbox{M}_{\rm J}\left(\frac{9000\hbox{ AU}}{a_c}\right)^{1/2}.$$ If the same hypothetical object is responsible for both observations, then it is likely recorded in the IRAS and possibly the 2MASS databases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号