首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Garnet-bearing assemblages of K-rich and K-poor metapelitesfrom the Ilesha Schist belt, SW Nigeria, are investigated. K-richsamples contain the assemblages (A) garnet–staurolite–muscovite–chlorite–magnetite,(B) andalusite–garnet–staurolite–muscovite–chlorite–magnetiteand (C) sillimanite–andalusite–garnet–muscovite–chlorite–magnetite.K-poor samples contain the assemblages (D) garnet–staurolite–cordierite–chloriteand (E) garnet–cordierite–chlorite ± staurolite.All assemblages contain quartz, plagioclase, biotite and ilmenite.PT pseudosections calculated in the system CaO–Na2O–K2O–TiO2–MnO–FeO–MgO–Al2O3–SiO2 –H2O ± O2 suggest peak metamorphismat 590 ± 20°C at 5 ± 0·5 kbar, followedby retrogression to 550°C at 3·0 kbar, in agreementwith field evidence, domain assemblages, mineral compositions,modes and geothermobarometry. The absence of compositional zonationshows that garnet in all investigated rocks nucleated and grewat constant P–T–X in equilibrium with associatedminerals on the thin-section scale. However, the garnet-in reactiondid not begin until the establishment of a significant temperatureoverstep of  相似文献   

2.
This paper concentrates on the petrology of eclogite-faciesmetapelites and, particularly, the significance of staurolitein these rocks. A natural example of staurolite-bearing eclogitic micaschistsfrom the Champtoceaux nappe (Brittany, France) is first described.The Champtoceaux metapelites present, in addition to quartz,phengite, and rutile, two successive parageneses: (1) chloritoid+staurolite+garnetcores, and (2) garnet rims+kyanite?chloritoid. Detailed microprobe analyses show that garnet and chloritoidevolve towards more magnesian compositions and that stauroliteis more Fe-rich than coexisting garnet. A comparison of thestudied rocks with other known occurrences of eclogitic metapelitesshows that whereas staurolite is always more Fe-rich than garnetin high-pressure eclogites, the reverse is true in low- to medium-pressuremicaschists. Phase relations between garnet, staurolite, chloritoid, biotite,and chlorite are analysed in the KFMASH system (with excessquartz, phengite, rutile, and H2O). The topology of univariantreactions is depicted for a normal and a reverse Fe-Mg partitioningbetween garnet and staurolite. Mineral compositional changesare also predicted for varying bulk-rock chemistries. In the studied micaschists, the zonal arrangement of garnetinclusions and the progressive compositional changes of ferromagnesianphases record part of the prograde P–T path, before theattainment of ‘peak’ metamorphic conditions (atabout 65O–7OO?C, 18–20 kb). The retrograde path,which records the uplift of the Champtoceaux nappe, occurs underdecreasing temperatures.  相似文献   

3.
Amphibolites of the Post Pond Volcanics, south-west corner ofthe Mt. Cube Quadrangle, Vermont, are characterized by a greatdiversity of bulk rock types that give rise to a wide varietyof low-variance mineral assemblges. Original rock types arebelieved to have been intrusive and extrusive volcanics, hydrothermallyaltered volcanics and volcanogenic sediments with or withoutadmixtures of sedimentary detritus. Metamorphism was of staurolite-kyanitegrade. Geothermometry yields a temperature of 535 ± 20°C at pressures of 5–6 kb. Partitioning of Fe and Mg between coexisting phases is systematic,indicating a close approach to chemical equilibrium was attained.Relative enrichment of Fe/Mg is garnet > staurolite >gedrite > anthophyllite cummingtonite hornblende > biotite> chlorite > wonesite > cordierite dolomite > talc;relative enrichment in Mn/Mg is garnet > dolomite > gedrite> staurolite cummingtonite > hornblende > anthophyllite> cordierite > biotite > wonesite > chlorite >talc. between coexisting amphiboles varies as a function ofbulk Fe/Mg, which is inconsistent with an ideal molecular solutionmodel for amphiboles. Mineral assemblages are conveniently divided into carbonate+ hornblende-bearing, hornblende-bearing (carbonate-absent)and hornblende-absent. The carbonate-bearing assemblages allcontain hornblende + dolomite+ calcite + plagioclase (andesineand/or anorthite) + quartz with the additional phases garnetand epidote (in Fe-rich rocks) and chlorite ± cummingtonite(in magnesian rocks). Carbonate-bearing assemblages are restrictedto the most calcic bulk compositions. Hornblende-bearing (carbonate absent) assemblages occur in rocksof lower CaO content than the carbonate-bearing assemblages.All of these assemblages contain hornblende + andesine ±quartz + Fe-Ti oxide (rutile in magnesian rocks and ilmenitein Fe-rich rocks). In rocks of low Al content, cummingtoniteand two orthoamphiboles (gedrite and anthophyllite) are common.In addition, garnet is found in Fe-rich rocks and chlorite isfound in Mg-rich rocks. Several samples were found that containhornblende + cummingtonite + gedrite + anthophyllite ±garnet +chlorite + andesine + quartz + Fe-Ti oxide ±biotite. Aluminous assemblages contain hornblende + staurolite+ garnet ± anorthite/bytownite (coexisting with andesine)± gedrite ± biotite ± chlorite ±andesine ± quartz ± ilmenite. Hornblende-absentassemblages are restricted to Mg-rich, Ca-poor bulk compositions.These rocks contain chlorite ± cordierite ± staurolite± talc ± gedrite ± anthophyllite ±cummingtonite ± garnet ± biotite ± rutile± quartz ± andesine. The actual assemblage observeddepends strongly on Fe/Mg, Ca/Na and Al/Al + Fe + Mg. The chemistry of these rocks can be represented, to a firstapproximation, by the model system SiO2–Al2O3–MgO–FeO–CaO–Na2O–H2O–CO2;graphical representation is thus achieved by projection fromquartz, andesine, H2O and CO2 into the tetrahedron Fe–Ca–Mg–Al.The volumes defined by compositions of coexisting phases filla large portion of this tetrahedron. In general, the distributionof these phase volumes is quite regular, although in detailthere are a large number of phase volumes that overlap otherphase volumes, especially with respect to Fe/Mg ratios. Algebraicand graphical analysis of numerous different assemblages indicatethat every one of the phase volumes should shift to more magnesiancompositions with decreasing µH2O. It is therefore suggestedthat the overlapping phase volumes are the result of differentassemblages having crystallized in equilibrium with differentvalues of µH2O or µCO2 and that the different valuesmay have been inherited from the original H2O and CO2 contentof the volcanic prototype. If true, this implies that eithera fluid phase was not present during metamorphism, or that fluidflow between rocks was very restricted.  相似文献   

4.
The prograde disappearance of staurolite can be described inthe model system K2O-FeO-MgO-Al2O3-SiO2-H2O (KFMASH) by thereaction: staurolite + muscovite + quartz = biotite + aluminumsilicate + garnet + water. The common occurrence and world—widedistribution of the assemblage staurolite-biotite-aluminum silicate-garnet(SBAG) in quartz-mica-schist suggest that the model reactionmay be over-simplified. Previous workers have suggested thatthe SBAG assemblage (1) is a strictly divariant assemblage thatbuffered water activity, (2) is stabilized by non-KFMASH components,and (3) did not attain equilibrium. We used least-squares regression to show that balanced reactionsdo not exist among the minerals in samples of SBAG assemblagesfrom Califonia and New England. The absence of reaction relationshipscan be explained by imbalances in two or three of the minorelements Zn, Mn, and either Ca or Na. The assemblage is apparentlystabilized by non-KFMASH components. Criteria for mapping staurolite-out isograds that representthe conditions of the KFMASH staurolite-out reaction dependon which of the four phases is the ‘extra’ phase,and require an understanding of the thermodynamic effects ofall the ‘extra’ components. Our results suggestthat transition zones of SBAG assemblages near staurolite-outisograds are the result of ‘extra’ components. However,it is uncertain whether µH2O of fluids in equilibriumwith SBAG assemblages varied across such zones.  相似文献   

5.
In situ eclogitic schist lenses occur in the coherent low-gradeepidote-zone Ward Creek metabasite unit of the Central Franciscanbelt. They contain almandine garnet, clinopyroxene, and rutile.They have slightly higher Mn content (0–5–1–0wt.%) than the coexisting Type III metabasites (0–12–0–25wt%) which contain epidote + glaucophane + actinolite + chlorite+ omphacite + quartz + sphene ? aragonite? lawsonite ? pumpellyite+ albite. The in situ eclogitic schists (130–140 Ma) canbe distinguished from older tectonic eclogites (150–160Ma) in Ward Creek as follows: (1) they are medium grained, whereasType IV tectonic eclogites are coarse grained; (2) they haveunaltered spessartine-rich idioblastic (0–4–10 mm)garnets, whereas Type IV tectonic eclogites have larger xenoblasticto hypidiomorphic spessartine-poor garnets which were corrodedand chloritized along the rim during retrograde metamorphism;(3) clinopyroxenes are chloromelanite in in situ eclogitic schistsbut omphacite in Type IV tectonic eclogites; (4) barroisiticamphiboles occur both as inclusions in garnets and as matrixminerals in Type IV tectonic eclogites but not in in situ eclogiticschists; (5) albite is present in in situ eclogitic schistsbut not in Type IV tectonic eclogites; and (6) the estimatedP-T condition of in situ eclogitic schists is 290 ?C < T<350 ?C, P = 8–9 kb, whereas that of Ward Creek Type IVtectonic eclogites is 500?C< r<540?C, P< 10–11–5kb. Medium-grained eclogites occur as individual blocks in WardCreek; they are different from Type IV tectonic eclogites butare very similar to in situ eclogitic schists. They have unalteredidioblastic garnet with high almandine and spessartine content(Alm47Sp23Gr20Py10), and they have chloromel-anitic clinopyroxeneand quartz but no barroisite. Paragonite is also stable in theseeclogites. The blocks formed at 380 ?C< r<400?C, and 9–5kb<P< 14 kb. They are presumably in situ eclogites formedat the highest-temperature part of the Ward Creek metabasiteunit and may be younger than Type IV tectonic eclogites. Such low-temperature occurrences of eclogitic assemblages aredue to the compositional effect on reactions between blueschistand eclogite that are insensitive to pressure and shift towardslower temperatures as bulk-rock MnO content and XFe/(Fe+Mg)increase. The Mn/(Mn + Fe) ratio of bulk rock is an importantfactor in controlling the P-T positions of these reactions attemperatures below 450 ?C, whereas the Fe/(Fe + Mg) ratio ofbulk-rock becomes important at temperatures higher than 450?C.  相似文献   

6.
Pelitic and calcareous rocks in the Whetstone Lake area havean unusually wide range of chemical composition. Metamorphicreactions have been deduced that represent the observed ‘discontinuities’in compatible mineral assemblages, and by plotting the reactantand the product assemblage of each reaction on a map, metamorphicisograds have been delincated ‘from both sides’.For the pelitic rocks, successively higher-grade isograds arebased on the following reactions: (1)chlorite+muscovite+garnetstaurolite+biotite+quartz+water; (2) chlorite+muscovite+staurolite+quartz kyanite+biotite+water; (3) kyanitesillimanite; (4)staurolite+museovite+quartzsillimanite+garnet+biotite+water. A fifth isograd, based on the reaction (5) biotite+calcite+quartzCa-amphibole+K-feldspar+carbon dioxide+water intersects the isograds based on reactions (2), (3), and (4)in such a manner as to indicate that the H2O/CO2 fugacity ratiowas significantly higher in the vicinity of a granite plutonthan in the metasedimentary rocks remote from the pluton. Chemicalanalyses of the coexisting minerals in reaction (5) indicatethat the real reaction may involve plagioclase, epidote, sphene,and Fe-Ti oxides as well.  相似文献   

7.
FREY  MARTIN 《Journal of Petrology》1978,19(1):95-135
The unmetamorphosed equivalents of the regionally metamorphosedclays and marls that make up the Alpine Liassic black shaleformation consist of illite, irregular mixed-layer illite/montmorillonite,chlorite, kaolinite, quartz, calcite, and dolomite, with accessoryfeldspars and organic material. At higher grade, in the anchizonalslates, pyrophyllite is present and is thought to have formedat the expense of kaolinite; paragonite and a mixed-layer paragonite/muscovitepresumably formed from the mixed-layer illite/montmorillonite.Anchimetamorphic illite is poorer in Fe and Mg than at the diageneticstage, having lost these elements during the formation of chlorite.Detrital feldspar has disappeared. In epimetamorphic phyllites, chloritoid and margarite appearby the reactions pyrophyllite + chlorite = chloritoid + quartz+ H2O and pyrophyllite + calcite ± paragonite = margarite+ quartz + H2O + CO2, respectively. At the epi-mesozone transition,paragonite and chloritoid seem to become incompatible in thepresence of carbonates and yield the following breakdown products:plagioclase, margarite, clinozoisite (and minor zoisite), andbiotite. The maximum distribution of margarite is at the epizone-mesozoneboundary; at higher metamorphic grade margarite is consumedby a continuous reaction producing plagioclase. Most of the observed assemblages in the anchi-and epizone canbe treated in the two subsystems MgO (or FeO)-Na2O–CaO–Al2O3–(KAl3O5–SiO2–H2O–CO2).Chemographic analyses show that the variance of assemblagesdecreases with increasing metamorphic grade. Physical conditions are estimated from calibrated mineral reactionsand other petrographic data. The composition of the fluid phasewas low in XCO2 throughout the metamorphic profile, whereasXCH4 was very high, particularly in the anchizone where aH2Owas probably as low as 0.2. P-T conditions along the metamorphicprofile are 1–2 kb/200–300 °C in the anchizone(Glarus Alps), and 5 kb/500–550 °C at the epi-mesozonetransition (Lukmanier area). Calculated geothermal gradientsdecrease from 50 °C/km in the anchimetamorphic Glarus Alpsto 30 °C/km at the epi-mesozone transition of the Lukmanierarea.  相似文献   

8.
The biotite isograd in pelitic schists of the Waterville Formationinvolved reaction of muscovite + ankerite + rutile + pyrite+graphite + siderite or calcite to form biotite + plagioclase+ ilmenite. There was no single reaction in all pelites; eachrock experienced a unique reaction depending on the mineralogyand proportions of minerals in the chlorite-zone equivalentfrom which it evolved. Quartz, chlorite, and pyrrhotite werereactants in some rocks and products in others. All inferredbiotite-forming reactions involved decarbonation and desulfidation;some were dehydration reactions and others were hydration reactions.P-T conditions at the biotite isograd were near 3500 bars and400 °C. C-O-H-S fluids in equilibrium with the pelitic rockswere close to binary CO2-H2O mixtures with XCO2 = 0.02–0.04.During the biotite-forming reaction, pelitic rocks (a) decreasedby 2–5 percent in volume, (b) performed – (4–11)kcal/liter P-V work on their surroundings, (c) absorbed 38–85kcal/liter heat from their surroundings, and (d) were infiltratedby at least 0.9–2.2 rock volumes H2O fluid. The biotite isograd sharply marks the limit of a decarbonationfront that passed through the terrane during regional metamorphism.Decarbonation converted meta-shales with 6–10 per centcarbonate to carbonate-free pelitic schists. One essential causeof the decarbonation event was pervasive infiltration of theterrane by at least 1–2 rock volumes H2O fluid early inthe metamorphic event under P-T conditions of the biotite isograd.Average shale contains 4–13 per cent siderite, ankerite,and/or calcite, but average pelitic schist is devoid of carbonateminerals. If the Waterville Formation serves as a general modelfor the metamorphism of pelitic rocks, it is likely that worldwidemany pelitic schists developed by decarbonation of shale caused,in part, by pervasive infiltration of metamorphic terranes byseveral rock volumes of aqueous fluid during an early stageof the metamorphic event.  相似文献   

9.
The terrane in the Panamint Mountains, California, was regionallymetamorphosed under low-pressure conditions and subsequentlyunderwent retrograde metamorphism. Prograde metamorphic isogradsthat mark the stability of tremolite + calcite, diopside, andsillimanite indicate a westward increase in grade. The studywas undertaken to determine the effects of the addition of Caon the types of assemblages that may occur in pelitic schists,to contribute to the understanding of the stability limits inP – T – aH2O – XFe of the pelitic assemblagechlorite + muscovite + quartz, and to estimate the change inenvironment from prograde to retrograde metamorphism. Peliticassemblages are characterized by andalusite + biotite + stauroliteand andalusite + biotite + cordierite. Within a small changein grade, chlorite breaks down over nearly the entire rangein Mg/(Mg + Fe) to biotite + aluminous mineral. Chlorite withMg/(Mg + Fe) = 0.55 is stable to the highest grade, and thegeneralized terminal reaction is chlorite + muscovite + quartz= andalusite + biotite + cordierite + H2O. Calcic schists arecharacterized by the assemblage epidote + muscovite + quartz+ chlorite + actinolite + biotite + calcite + plagioclase atlow grades and by epidote + muscovite + quartz + garnet + hornblende+ biotite + calcite + plagioclase at high grades. Epidote doesnot coexist with any AFM phase that is more aluminous than garnetor chlorite. Lithostatic pressure ranged from 2.3 kb to 3.0kb. During prograde-metamorphism temperatures ranged from lessthan 400° to nearly 700°C, and XH2O (assuming PH2O +PCO3 = Ptotal) is estimated to be 0.25 in siliceous dolomite,0.8 in pelitic schist, and 1.0 in calcic schist. Temperatureduring retrograde metamorphism was 450° ± 50°C,and all fluid were H2O-rich. A flux of H2O-rich fluid duringfolding is believed to have caused retrograde metamorphism.The petrogenetic grid of Albee (1965b) is modified to positionthe (A, Cd) invariant point relative to the aluminosilicatetriple point, which allows the comparison of facies series thatinvolve different chloritoid-reactions.  相似文献   

10.
Using an internally consistent thermodynamic dataset and updatedmodels of activity–composition relation for solid solutions,petrogenetic grids in the system NKFMASH (Na2O–K2O–FeO–MgO–Al2O3–SiO2–H2O)and the subsystems NKMASH and NKFASH have been calculated withthe software THERMOCALC 3.1 in the PT range 5–36kbar and 400–810°C, involving garnet, chloritoid,biotite, carpholite, talc, chlorite, kyanite/sillimanite, staurolite,phengite, paragonite, albite, glaucophane, jadeite, with quartz/coesiteand H2O in excess. These grids, together with calculated AFMcompatibility diagrams and PT pseudosections, are shownto be powerful tools for delineating the phase equilibria andPT conditions of Na-bearing pelitic assemblages for avariety of bulk compositions from high-P terranes around theworld. These calculated equilibria are in good agreement withpetrological studies. Moreover, contours of the calculated phengiteSi isopleths in PT pseudosections for different bulkcompositions confirm that phengite barometry is highly dependenton mineral assemblage. KEY WORDS: phase relations; HP metapelite; NKFMASH; THERMOCALC; phengite geobarometry  相似文献   

11.
Mineral assemblages in metapelites of the contact aureole of the Tono granodiorite mass, northeast Japan, change systematically during progressive metamorphism along an isobaric path at 2-3 kbar. The bulk rock compositions of metapelites are aluminous with A' values on an AFM projection larger than that of the chlorite join. The metapelites commonly contain paragonite in the low-grade zone. With increasing temperatures, andalusite is formed by the breakdown of paragonite. The importance of pyrophyllite as a source of Al2SiO5 polymorphs is limited in typical pelitic rocks.
The most common type of metapelite in the study area has FeO/(FeO + MgO) = 0.5–0.6, and develops assemblages involving chlorite, andalusite, biotite, cordierite, K-feldspar, sillimanite and almandine, with paragenetic changes similar to other andalusite-sillimanite type aureoles. Rocks with FeO/(FeO + MgO) > 0.8 progressively develop chloritoid-bearing assemblages from Bt-Chl-Cld, And-Bt-Cld, to And-Bt at temperatures between the breakdown of paragonite and the appearance of cordierite in the more common pelitic rocks in the aureole. The paragenetic relations are explained by a KFMASH univariant reaction of Chl + Cld = And + Bt located to the low-temperature side of the formation of cordierite by the terminal equilibrium of chlorite. A P-T model depicting the relative stability of chloritoid and staurolite at low- and medium-pressure conditions, respectively, is proposed, based on the derived location of the Chl + Cld = And + Bt reaction combined with the theoretical phase relations among biotite, chlorite, chloritoid, garnet and staurolite.  相似文献   

12.
The nomenclature of the chloritoid group, which includes ottrelite,is reviewed. Five new chemical analyses, and all published analysesthat are considered reliable, indicate that the chloritoid groupcan be represented by the general formula H2FeAI2SiO7 with upto two-fifths of the ferrous iron replaced by magnesium, upto one-sixth by manganese, and up to one-seventh of the aluminiumreplaced by ferric iron. Chloritoid crystallizes in both monoclinicand triclinic polymorphs. The triclinic unit cell is one-halfthe monoclinic unit cell. Both polymorphs are widely distributed;they may be distinguished by their X-ray diffraction powderpatterns. In most monoclinic chloritoids the optic plane isnormal to (010), whereas in most triclinic chloritoids it isnearly parallel to (010). Replacement of iron by magnesium lowersthe indices of refraction. With increasing temperatures chloritoid breaks down to ironcordierite+hercynite+vapour at low pressures and to staurolite+almandine+hercynite+vapourat high pressures. Chloritoid was synthesized only at pressuresof about 10,000 bars, but natural chloritoids were stable athigher pressures. At lower pressures chloritoid was not synthesizedbecause of the persistence of a metastable chamosite with a7 ? basal spacing. Natural chloritoids did not decompose belowabout 600? C at these lower pressures. Stress as defined byHarker is not necessary for the growth of chloritoid. Chloritoid-bearing rocks have a high content of alumina relativeto potash, soda, lime, and mafic components, and have more ferrousoxide than magnesium oxide. In pelitic and lateritic sedimentshaving these characteristics, chloritoid is one of the firstnew minerals to form during regional or contact metamorphism.In higher metamorphic grades it is accompanied by cordierite,andalusite, kyanite, or staurolite. It also grows in hydrothermalveins. Various reactions in which chloritoid is produced orconsumed are presented. 1Present address: Research Council of Alberta, Edmonton, Alberta, Canada.  相似文献   

13.
Detailed laboratory study has been made on pre-Tertiary coarse-grainedglaucophane schist, garnet-epidote amphibolite, and epidoteamphibolite in the eastern slope of the Central Mountain Range,Taiwan. These petrotectonic assemblages are considered to beexotic tectonic blocks emplaced within the feebly metamorphosedin situ graphite and quartzose schists of the Yuli belt. Thinlenses of Mn-rich metamorphosed tuff are intercalated withinthe metabasaltic rocks. Such high MnO (2 wt. per cent) and lowMgO (3–4 wt. per cent) tuffaceous rocks are similar inbulk composition to some volcanic clays collected in deep oceanbasins. They consist of the characteristic assemblage Mn-bearinggarnet (5–7 wt. per cent MnO and 30 volume per cent inthe rock)+muscovite+epidote+hornblende+quartz+ albite+rutile?pyrite. Successive stages of conversion of garnet-epidote amphiboliteto blueschist assemblages were noticed. The most recrystallizedschists display abundant Mn-bearing garnet, zoned amphibole,phengite, zoned epidote, stilpnomelane, chlorite, quartz, minoralbite, magnetite, and sphene. The recrystallization processis nearly isochemical except the glaucophane schists appearto be more oxidized and contain more Na2O than the relict amphibolites.Intimately associated amphibolites of basaltic composition,in contrast, contain the assemblage hornblende+paragonite+epidote+chlorite+quartz+albite+rutile. Microprobe analyses of the coexisting minerals in glaucophaneschists, garnet-epidote amphibolites and epidote amphibolitesyield the following results: (1) garnets, consisting of almandine,spessartine, and grossular components, are less Mn and Mg-richcompared to those in in situ metabasalts of the Franciscan;(2) rim epidotes of the glaucophane schists are more pistastic(XFe=0?27–0?30) than that of the garnet-epidote amphibolite(0?2–0?22) implying higher fO2 values for the glaucophanization;(3) phengitic micas of the glaucophane schist have less Al2O3content (29 wt. per cent) than those of the garnet-epidote amphibolite(32 wt. per cent) whereas micas of epidote amphibolites areparagonites with K/(K+Na) ratio of 0?04; (4) the zoned amphibolesshow glaucophane occurring marginal to cores of calcic amphibole.Sodic amphiboles with Al2O3 of 6-? to 10?4 wt. per cent arecrossite-glaucophane whereas all calcic amphiboles analyzedare barroisite-pargasite (Al2O3 greater than 10 wt. per cent). The garnet-epidote-rutile bearing glaucophane schist of Taiwanprobably recrystallized at temperatures above 350 ?C (the epidotezone) whereas the lawsonite-sphene glaucophane schists of theFranciscan equilibrated below 350 ?C (the lawsonite zone). TheMn-rich basaltic tuffs and their associated flows appear tohave been metamorphosed at profound depths and at the relativelyhigh temperatures of the epidote amphibolite facies, succeededlater by glaucophane schist facies metamorphism at lower temperatures.  相似文献   

14.
The phase relations of muscovite-quartz-bearing pelitic schistscontaining combinations of garnet (Grt), staurolite (St), chloritoid(Cld), biotitt (Bt) and chlorite (Chl) are examined (1) to assessthe influence of manganese on natural assemblages, and (2) toconstrain the topologies of petrogenetic grids, particularlywith respect to the controversial assemblage Cld +Bt. Two fieldareas were studied: Stonehaven, NE Scotland (p 4•5 kbar)and the SE Tauern Window, Austria (P 7 kbar), both characterizedby the up-grade progression from typical ‘garnet-zone’Grt+Chl assemblages to ‘staurolite-zone’ St+Bt±Grtassemblages via a narrow, complex zone containing Cld+Bt assemblages.In both areas, the following commonly observed chemographicrelations hold: Mg/(Mg+Fe): Grt<St<Cld<<Bt<Chl;Mn/(Mn+Fe+Mg): Chl Bt<<St<Cld<<Grt. These compositionsyield the MnAFM-discontinuous reaction (Ms+Qtz+H2O in excess):Cld+Chl = Grt+St+Bt. The distributions of mineral assemblages in both areas are moreconsistent with the operation of MnAFM reactions than of traditionalAFM reactions. Clear correlations exist between Mn content andassemblage in rocks that crystallized at the same P and T. In the SE Tauern, low-grade Grt+Chl assemblages show a widerange of Mn contents. The crystallization of low-Mn Grt+Chlassemblages down-grade of, but at similar pressures to, low-MnGrt+Cld+Bt+Chl assemblages implies that the right-hand sideof the reaction Grt+Chl = Cld+Bt (Fe, Mg) is stabilized by increasingT. The distributions of assemblages in the areas studied alsoshow differences that are ascribed to P effects. The assemblageGrt+St+Cld+Chl is common in the SE Tauern but absent from Stonehaven.Mn contents of respective minerals in the assemblage Grt+St+Cld+Bt+Chlare higher at Stonehaven than in the SE Tauern, implying thatthe Cld+Chl = Grt+St+Bt (Mn, Fe, Mg) reaction boundary extendsto the low-P side of the [AIs, Crd] invariant point in the Mn-freesystem. Schreincmakcrs' rules are used to construct two KFMnMASH grids,in which the Cld+Bt assemblage has markedly different stabilitylimits; one is based on the KFMASH grid of Harte & Hudson(Geological Society Special Publication 8, 323–337, 1979),in which Cld+Bt is stable over a narrow T interval at relativelylow P, and the other on the KFMASH grids of Spear & Cheney(Contributions to Mineralogy and Petrology 101, 149–164,1989) and Wang & Spear (Contributions to Mineralogy andPetrology 106, 217–235, 1991), in which Cld+Bt is stableover wide ranges of P and T. It is argued that available natural-rockdata are more compatible with the former. KEY WORDS: pelites; KFMnMASH petrogenetic grid; chloritoid + biotite; Stonehaven; Tauern Window  相似文献   

15.
KLEIN  CORNELIS  JR. 《Journal of Petrology》1966,7(2):246-305
The Wabush Iron Formation, of late Precambrian (Proterozoic)age is part of the Labrador Trough in southwestern Labrador,Canada. It is the regionally metamorphosed equivalent of lowgrade metamorphic (chlorite zone) iron-rich sediments of thecentral part of the Labrador Trough. The metamorphic grade iskyanite-staurolite zone, as concluded from conformably underlyingpelitic schist assemblages. Sedimentary textural features suchas very pronounced banding and a very rare occurrence of relicgranules are still preserved. The iron formation consists mainly of quartz, specularite, magnetite,cummingtonite-grunerite, and ferrodolomite-ankerite. Less commonare actinolite, anthophyllite, riebeckitetremolite, magnesioriebeckite,ferrosalite, orthopyroxene, aegirine-augite, aegirine, rhodonite,garnet (almandine, spessartine, calderite), siderite, rhodochrosite,calcite, and kutnahorite. Conventional wet chemical analyses or electron microprobe analyseshave been made of thirty-four phases belonging to the abovelist. Six additional electron probe analyses have been madeof phases from the underlying pelitic schists. All conventionallyanalyzed phases are characterized by complete optical, unitcell parameter, and density measurments. The analyzed assemblages from the silicate and silicate-carbonateiron formation include grunerite-ferrosalite, grunerite-eulite-siderite,grunerite-actinolite, grunerite-almandine, cummingtonite-spessartine,rhodonite-kutnahorite-calderite, aegirine-augite-riebeckite-tremolite,magnesioriebeckite-cummingtonite-rhodonite, aegirine-augite-rhodonite-rhodo-chrosite,and aegirine-rhodonite-calderite-rhodochrosite. The assemblages are concluded to be equilibrium assemblages.Of the volatile components, O2, CO2, and H2O, O2, is concludedto have behaved as an inert (buffered) component. Variationsin the activity of CO2 are concluded to have existed betweensilicate-oxide and carbonate-oxide members of the iron formation.It is not clear, however, whether CO2 has acted as a perfectlymobile component with strong aco2 gradients throughout the area,or as an inert component in some parts of the area. H2O is consideredto have been perfectly mobile. An increase in Mg/(Mg+Fe) ratioin ferromagnesian silicates is correlated with an increase inthe oxidation state of the assemblage. A similar increase in(Mg+Mn)/(Mg+Mn+Fe) is found in manganoan ferromagnesian silicateswith increasing activity of O2. A number of ferromagnesian silicatescontain large amounts of Na+ and Fe3+ as a result of the verylow Al2O3 content of the iron formation. The P and T conditionsof metamorphism are deduced from experimental studies applicableto the underlying pelitic schists.  相似文献   

16.
High-pressure metamorphic rocks form a coastal belt, 175 kmby 35 km, in northeastern New Caledonia. Metamorphic grade rangesfrom lawsonite-albite schists through glaucophane-epidote schiststo omphacite-garnet-quartz gneisses. In the eclogitic terrane,metabasites, locally containing relict pillow structure andigneous textures, with well-preserved eclogitic mineral assemblages,are intercalated with metasedimentary gneisses containing albite-epidote-garnet? glaucophane and barroisite. Omphacite is partly retrogressedto albite and ferromagnesian minerals in almost every paragneiss.The paragneisses show strong evidence of penetrative foldingand microfracturing and were more permeable to metamorphic fluidsthan were the metabasites. The metabasites are inferred to havebeen relatively ‘dry’ and free of penetrative deformationduring the latter stages of metamorphism and thus were preservedmetastably during uplift, erosion, and cooling. Fe-Mg exchange thermometry between omphacite and garnet suggeststemperatures between 520 and 600 ?C. Omphacite + quartz (molper cent jadeite = 37–43) does not coexist stably withalbite suggesting minimum pressures near 12 kb at 550 ?C. Remnantsof more jadeite-rich pyroxenes in paragneisses (jd50–60)suggest even higher pressure. The stable coexistence of chloritoidalmandine-quartz in paragneisses suggests relatively H2O-rich fluids werein equilibrium with this assemblage. The widespread stable occurrenceof sphene suggests relatively low fco2 during metamorphism.Late stage healed fractures in quartz contain H2O-rich fluidinclusions with relatively low density isochores. Limited geochronologicdata combined with these petrologic data suggest a fairly rapidinitial rate of uplift followed by a much slower rate of uplift  相似文献   

17.
Petrogenetic grids in the system NCKFMASH (Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O)and the subsystems NCKMASH and NCKFASH calculated with the softwareTHERMOCALC 3.1 are presented for the PT range 7–30kbar and 450–680°C, for assemblages involving garnet,chloritoid, biotite, carpholite, talc, chlorite, kyanite, staurolite,paragonite, glaucophane, jadeite, omphacite, diopsidic pyroxene,plagioclase, zoisite and lawsonite, with phengite, quartz/coesiteand H2O in excess. These grids, together with calculated compatibilitydiagrams and PT and TXCa and PXCa pseudosectionsfor different bulk-rock compositions, show that incorporationof Ca into the NKFMASH system leads to many of the NKFMASH invariantequilibria moving to lower pressure and/or lower temperature,which results, in most cases, in the stability of jadeite andgarnet being enlarged, but in the reduction of stability ofglaucophane, plagioclase and AFM phases. The effect of Ca onthe stability of paragonite is dependent on mineral assemblageat different PT conditions. The calculated NCKFMASH diagramsare powerful in delineating the phase equilibria and PTconditions of natural pelitic assemblages. Moreover, contoursof the calculated phengite Si isopleths in PT and PXCapseudosections confirm that phengite barometry in NCKFMASH isstrongly dependent on mineral assemblage. KEY WORDS: phase relations; metapelites; NCKFMASH; THERMOCALC; phengite geobarometry  相似文献   

18.
BUTLER  P.  Jr. 《Journal of Petrology》1969,10(1):56-101
Forty-seven specimens of the Wabush Iron Formation were collectedfrom ten outcrop areas. Twenty-five specimens contain the assemblage(1), quartz+clinopyroxene+calcite with or without orthopyroxene,grunerite, magnetite, ankerite, and siderite. Five specimenscontain assemblage (2), quartz+clinopyroxene+actinolite+calcite+magnetite+hematite,and two contain assemblage (3), quartz+orthopyroxene+actinolite+magnetite+hematite.In three specimens of assemblage (1), graphite occurs in theabsence of magnetite; pyrrhotite and pyrite occur separatelyor together in specimens with assemblage (1). Thirty-nine clinopyroxenes, 38 orthopyroxenes, 18 grunerites,7 actinolites, 16 calcites, 1 ankerite, and 1 siderite wereanalyzed for iron, manganese, and calcium by X-ray emissionspectrography. Magnesium contents were estimated by assumingstoichiometric proportions. Minerals occurring with hematite show low Fe/(Fe+Mg) ratios,and those in the other assemblages show higher values with awide range of variation. In orthopyroxene, Fe/(Fe+ Mg) rangesfrom 0·17 (with hematite) to 0·77. Regularity in the distributions of Fe, Mn, and Ca between pairsof coexisting minerals shows that equilibrium was attained inmost of the rocks studied. This regularity is also accomplishedin the distribution of Mn between calcite and coexisting silicatesas well as between the silicates themselves. Small differencesin the distributions of Ca and Fe depend on both outcrop areaand mineral assemblage. Phase rule considerations suggest that the specimens with dolomite-ankeriteor magnesitesiderite do not represent equilibrium assemblages.Variations in orthopyroxene compositions in assemblages withpyrite or pyrrhotite, or both, and magnetite indicate non-equilibrationof sulfides with silicates. The presence of the oxygen buffer,magnetite+hematite, attests to the immobility of oxygen duringmetamorphism. Within each outcrop area, over which the temperature and pressureare assumed to have been uniform, variations in the compositionsof the silicates in the sub-assemblages quartz+ orthopyroxene+gruneriteand quartz+orthopyroxene+clinopyroxene+calcite indicate gradientsof µH2O µCO2 and respectively. As characterizedby the composition of orthopyroxene, both gradients are relativelylow along strike, and high across strike. The direction of gradientsacross strike is almost without reversals, which is consistentwith intergranular diffusion of H2O and CO2. Phase rule restrictionsfor a majority of assemblages are not in accord with the simultaneousimposition of µH2O and µCO2 gradients on the rocks,nor the formation of an H2O-CO2 fluid phase during metamorphism.  相似文献   

19.
Abstract An outcrop of staurolite-bearing pelitic schist from the Solitude Range in the south-western Rocky Mountains, British Columbia, was examined in order to determine the nature of prograde garnet- and staurolite-producing reactions using information from garnet zoning and inclusion mineralogy. Although not present as a matrix phase, chloritoid is present as inclusions in garnet and is interpreted to have participated in the simultaneous growth of garnet and staurolite by a reaction such as chloritoid + quartz = garnet + staurolite + H2O.
A garnet zoning trend reversal, which is most pronounced with respect to almandine and grossular components, is present in the outer core of garnets. The location of the zoning reversal corresponds to the outer limit of chloritoid inclusions in garnet. As there is no evidence for polymetamorphism, the zoning reversal is interpreted to indicate continued garnet growth by prograde reaction(s) during a single metamorphic event after the exhaustion of chloritoid as a matrix phase.
Metamorphic conditions recorded by mineral rim compositions are 550–600° C at 6–7 kbar. Because there is no evidence for partial resorption of garnet during production of staurolite, we interpret these results to represent peak conditions.  相似文献   

20.
Four assemblages from calcic pelitic schists from South Strafford,Vermont, have been studied in detail to determine the relationshipbetween reaction history and compositional zoning of minerals.The lowest-grade assemblage is garnet + biotite + chlorite +plagioclase + epidote + quartz + muscovite + graphite + fluid.Along a path of isobaric heating, the net reaction is Chl +Ms + Ep + Gr = Grt + Bt + Pl + fluid. Garnet grows with decreasingFe/(Fe + Mg) and XSpa, (from 0•2 to 0•05), XGra staysnearly constant between 0•20 and 0•25, and plagioclasegrows with XAn increasing from peristerite to 0•2–0•5. The subsequent evolution depends on whether chlorite or epidotereacts out first. If chlorite is removed from the assemblagefirst, the net reaction along an isobaric heating path becomesGrt + Ms + Ep + Qtz + Gr = Bt + Pl + fluid. XAn of plagioclaseincreases to 0•20–0•70, depending on the bulk-rockcomposition and changes in pressure and temperature. If epidoteis removed first, the assemblage becomes a simple pelite andthe net reaction becomes Chl + Pl + Ms + Qtz = Grt + Bt + H2O.Plagioclase is consumed to provide Ca for growing garnet, andXAn, Fe/(Fe + Mg) of garnet, XGra, and XSpa all decrease. Afterboth chlorite and epidote are removed, continued heating upto the metamorphic peak of {small tilde}600C produces littleprogress of the reaction Grt + Ms = Bt + Pl; and XAn increases. The four assemblages have been numerically modeled using theGibbs method starting with measured compositions. The modelssuccessfully predict the observed compositional zoning and trendsof mineral growth and consumption along the computed P–Tpaths. The models also predict the compositional mineral zoningthat would have resulted from other P–T paths. * Present address: Department of Geology, University of Alabama, Tuscaloosa, Alabama 35487  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号