首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Rivers of South and Southeast Asia disgorge large suspended sediment loads, reflecting exceptionally high rates of erosion promoted by natural processes (tectonic and climatic) and anthropogenic (land‐use change) activities that are characteristic of the region. While particulate carbon and nitrogen fluxes have been characterized in some large Asian rivers, less is known about the headwater systems where much sediment and organic material are initially mobilized. This study, conducted in the 74‐km2 Mae Sa Experimental Catchment in northern Thailand, shows that the Sa River is an important source for particulate organic carbon (POC) and particulate organic nitrogen (PON) transported to larger river systems and downstream reservoirs. However, the yields during three years of investigation varied greatly: 5.0–22.3 Mg POC km?2 y?1 and 0.48–2.02 Mg PON km?2 y?1. The 22.3 Mg POC km?2 y?1 yield is the highest reported for any river on the Asian continent. Stream samples collected during 12 storms showed that almost 3% of the total suspended solid load is POC 0.7 µm to 2.0 mm in size. This percentage is higher than other values for most large rivers on the continent. Further, we documented a strong pulse hysteretic behaviour in the stream, whereby peak fluxes of POC and PON are often delayed (anticlockwise hysteresis) or accelerated (clockwise hysteresis) relative to stream flow peaks (or are complex), complicating the prediction of storm‐based or annual particulate carbon and nitrogen fluxes. Stream turbidity and total suspended sediment are reasonable proxies for POC and PON concentrations, while stream discharge is not a good predictor variable. Observed C:N ratios for measured particulate samples range from 3 to 83, with the high‐end values likely associated with fresh (non‐decomposed) vegetative material greater than 2 mm in diameter. The C:N ratio (weighted based on three sediment sizes) for 12 events ranges from 7.5 to 15.3. These modest values reflect the relatively low C:N ratios for small size fractions (0.7–0.63 µm) that comprise 50–90% of the TSS load in the events. Overall, organic material <0.63 µm contribute about 75% of the total POC load and 80% of the PON load. The annual C:N ratio for the river is approximately 10–11. Collectively, our findings indicate the occasionally high yields make the Sa River—and potentially other similar headwater rivers—a hot spot for POC and PON transported to downstream water bodies. Complex hysteresis patterns and high year‐to‐year variability hinders our ability to calculate and predict these yields without continuous, automated monitoring of discharge and turbidity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
H. Marttila  B. Kløve 《水文研究》2014,28(17):4756-4765
Lowland catchments in Finland are intensively managed, promoting erosion and sedimentation that negatively affects aquatic environments. This study quantified fine‐grained bed sediment in the main channel and upstream headwaters of the River Sanginjoki (399.93 km2) catchment, Northern Finland, using remobilization sediment sampling during the ice‐free period (May 2010–December 2011). Average bed sediment storage in river was 1332 g m?2. Storage and seasonal variations were greater in small headwater areas (total bed sediment storage mean 1527 g m?2, range 122–6700 g m?2 at individual sites; storage of organic sediment: mean 414 g m?2, range 27–3159 g m?2) than in the main channel (total bed sediment storage: mean 1137 g m?2, range 61–4945 g m?2); storage of organic sediment: mean 329 g m?2, range 13–1938 g m?2). Average reach‐specific bed sediment storage increased from downstream to upstream tributaries. In main channel reaches, mean specific storage was 8.73 t km?1, and mean specific storage of organic sediment 2.45 t km?1, whereas in tributaries, it was 126.94 and 34.05 t km?1, respectively. Total fine‐grained bed sediment storage averaged 563 t in the main channel and 6831 t in the catchment. The proportion of mean organic matter at individual sites was 15–47% and organic carbon 4–455 g C m?2, with both being highest in small headwater tributaries. Main channel bed sediment storage comprised 52% of mean annual suspended sediment flux and stored organic carbon comprised 7% of mean annual total organic carbon load. This indicates the importance of small headwater brooks for temporary within‐catchment storage of bed sediment and organic carbon and the significance of fine‐grained sediment stored in channels for the suspended sediment budget of boreal lowland rivers. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Erosion and the associated loss of carbon is a major environmental concern in many peatlands and remains difficult to accurately quantify beyond the plot scale. Erosion was measured in an upland blanket peatland catchment (0.017 km2) in northern England using structure-from-motion (SfM) photogrammetry, sediment traps and stream sediment sampling at different spatial scales. A net median topographic change of –27 mm yr–1 was recorded by SfM over the 12-month monitoring period for the entire surveyed area (598 m2). Within the entire surveyed area there were six nested catchments where both SfM and sediment traps were used to measure erosion. Substantial amounts of peat were captured in sediment traps during summer storm events after two months of dry weather where desiccation of the peat surface occurred. The magnitude of topographic change for the six nested catchments determined by SfM (mean value: 5.3 mm, standard deviation: 5.2 mm) was very different to the areal average derived from sediment traps (mean value: –0.3 mm, standard deviation: 0.1 mm). Thus, direct interpolation of peat erosion from local net topographic change into sediment yield at the catchment outlet appears problematic. Peat loss measured at the hillslope scale was not representative of that at the catchment scale. Stream sediment sampling at the outlet of the research catchment (0.017 km2) suggested that the yields of suspended sediment and particulate organic carbon were 926.3 t km–2 yr–1 and 340.9 t km–2 yr–1, respectively, with highest losses occurring during the autumn. Both freeze–thaw during winter and desiccation during long periods of dry weather in spring and summer were identified as important peat weathering processes during the study. Such weathering was a key enabler of subsequent fluvial peat loss from the catchment. © 2019 John Wiley & Sons, Ltd.  相似文献   

4.
Glacier recessions caused by climate change may uncover pro‐glacial lakes that form important sedimentation basins regulating the downstream sediment delivery. The impact of modern pro‐glacial lakes on fluvial sediment transport from three different Norwegian glaciers: Nigardsbreen, Engabreen and Tunsbergdalsbreen, and their long‐term development has been studied. All of these lakes developed in modern times in overdeepened bedrock basins. The recession of Nigardsbreen uncovered a 1.8 km long and on average 15 m deep pro‐glacial lake basin during 1937 to 1968. Since then the glacier front has been situated entirely on land, and the sediment input and output of the lake has been measured. The suspended sediment transport into and out of the lake averaged 11 730 t yr?1 and 2340 t yr?1 respectively. Thus, 20% remained in suspension at the outlet. The measured mean annual bedload supplied to the lake was 11 800 t yr?1, giving a total transport of 23 530 t yr?1 which corresponds to a specific sediment yield of 561 t km?2 yr?1. A 1.9 km long and up to 90 m deep pro‐glacial lake basin downstream from Engabreen glacier was uncovered during 1890 to 1944. The average suspended sediment load delivered from the glacier during the years 1970–1981 amounted to 12 375 t yr?1and the transport out of the lake was 2021 t yr?1, giving an average of 16% remaining in suspension. The mean annual bedload was 8000 t yr?1, thus the total transport was 20 375 t yr?1, giving a specific sediment yield of 566 t km?2 yr?1. For Tunsbergdalsbreen glacier, measurements in the early 1970s indicated that the suspended sediment transport was on average 44 000 t yr?1. From 1987 to 1993 the recession of the glacier uncovered a small pro‐glacial lake, 0.3 km long and around 9 m deep. Downstream from this, the suspended sediment load measured in 2009 was 28 000 t yr?1, indicating that as much as 64% remained in suspension. Flow velocity, grain size of sediment, and morphology of the lake are important factors controlling the sedimentation rate in the pro‐glacial lakes. A survey of the sub‐glacial morphology of Tunsbergdalsbreen revealed that there are several overdeepened basins beneath the glacier. The largest is 4 km long and 100 m deep. When the glacier melts back they will become lakes and act as sedimentation basins. Despite an expected increase in sediment yield from the glacier, little sediment will pass these lakes and downstream sediment delivery will be reduced markedly. Beneath Nigardsbreen there was only a small depression that may form a lake and the sediment delivery will not be significantly affected. © 2014 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

5.
Total organic carbon fluxes of the Red River system (Vietnam)   总被引:1,自引:0,他引:1       下载免费PDF全文
Riverine transport of organic carbon from terrestrial ecosystems to the oceans plays an important role in the global carbon cycle. The Red River is located in Southeast Asia where river discharge, sediment loads and fluxes of elements (carbon, nitrogen and phosphorus) associated with suspended solids have been dramatically altered over past decades as a result of reservoir impoundment and land use, population, and climate change. Dissolved organic carbon (DOC) and particulate organic carbon (POC) concentrations were measured monthly at four stations of the Red River system from January 2008 to December 2010. The results reveal that POC changed synchronically with total suspended solids (TSS) concentration and with the river discharge, whereas no clear trend was observed for DOC concentration. The mean value of total organic carbon (TOC = DOC + POC) flux in the delta of the Red River was 31.5 × 1013 ± 4.0 × 1013 MgC.yr?1 (range 27.9–35.8 × 1013 MgC.yr?1 which leads to a specific TOC flux of 2012 ± 255 kgC.km?2.yr?1 during this 2008–2010 period. About 80% of the TOC flux was transferred to the estuary during the rainy season as a consequence of the higher river water discharge. The high mean value of the POC:Chl‐a ratio (1585 ± 870 mgC.mgChl‐a?1) and the moderate C:N ratio (7.3 ± 0.1) in the water column system suggest that organic carbon in the Red River system is mainly derived from erosion and soil leaching in the basin. The effect of two new dam impoundments in the Red River was also observable with lower TOC fluxes in 2010 compared with 2008. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
River deltas are the major repositories of terrestrial sediment flux into the world's oceans. Reduction in riverine inputs into the deltas due to upstream damming might lead to a relative dominance of waves, tides and currents that are especially exacerbated by coastal subsidence and sea‐level rise ultimately affecting the delta environment. Analysis of multi‐date satellite imagery and maps covering the Krishna and Godavari deltas along the east coast of India revealed a net erosion of 76 km2 area along the entire 336‐km‐long twin delta coast during the past 43 years (1965–2008) with a progressively increasing rate from 1·39 km2 yr?1 between 1965 and 1990, to 2·32 km2 yr?1 during 1990–2000 and more or less sustained at 2·25 km2 yr?1 during 2000–2008. At present the Krishna has almost become a closed basin with decreased water discharges into the delta from 61·88 km3 during 1951–1959 to 11·82 km3 by 2000–2008; and the suspended sediment loads from 9 million tons during 1966–1969 to as low as 0·4 million tons by 2000–2005. In the case of the Godavari delta, although the water discharge data do not show any major change, there was almost a three‐fold reduction in its suspended sediment loads from 150·2 million tons during 1970–1979 to 57·2 million tons by 2000–2006. A comparison of data on annual sediment loads recorded along the Krishna and Godavari Rivers showed consistently lower sediment quantities at the locations downstream of dams than at their upstream counterparts. Reports based on bathymetric surveys revealed considerable reduction in the storage capacities of reservoirs behind such dams. Apparently sediment retention at the dams is the main reason for the pronounced coastal erosion along the Krishna and Godavari deltas during the past four decades, which is coeval to the hectic dam construction activity in these river basins. Copyright © 2010 John Wiley and Sons, Ltd.  相似文献   

7.
Seasonal suspended sediment transfer in glaciated catchments is responsive to meteorological, geomorphological, and glacio-fluvial conditions, and thus is a useful indicator of environmental system dynamics. Knowledge of multifaceted fluvial sediment-transfer processes is limited in the Alaskan Arctic – a region sensitive to contemporary environmental change. For two glaciated sub-catchments at Lake Peters, northeast Brooks Range, Alaska, we conducted a two-year endeavour to monitor the hydrology and meteorology, and used the data to derive multiple-regression models of suspended sediment load. Statistical selection of the best models shows that incorporating meteorological or temporal explanatory variables improves performances of turbidity- and discharge-based sediment models. The resulting modelled specific suspended sediment yields to Lake Peters are: 33 (20–60) t km−2 yr−1 in 2015, and 79 (50–140) t km−2 yr−1 in 2016 (95% confidence band estimates). In contrast to previous studies in Arctic Alaska, fluvial suspended sediment transfer to Lake Peters was primarily influenced by rainfall, and secondarily influenced by temperature-driven melt processes associated with clockwise diurnal hysteresis. Despite different sub-catchment glacier coverage, specific yields were the same order of magnitude from the two primary inflows to Lake Peters, which are Carnivore Creek (128 km2; 10% glacier coverage) and Chamberlin Creek (8 km2; 23% glacier coverage). Seasonal to longer-term sediment exhaustion and/or contrasting glacier dynamics may explain the lower than expected relative specific sediment yield from the more heavily glacierized Chamberlin Creek catchment. Absolute suspended sediment yield (t yr−1) from Carnivore Creek to Lake Peters was 27 times greater than from Chamberlin Creek, which we attribute to catchment size and sediment supply differences. Our results provide a foundational understanding of the current sediment transfer regime and are useful for predicting changes in fluvial sediment transport in glaciated Alaskan Arctic catchments.  相似文献   

8.
It is well known that sediment properties, including sediment‐associated chemical constituents and sediment physical properties, can exhibit significant variations within and between storm runoff events. However, the number of samples included in suspended sediment studies is often limited by time‐consuming and expensive laboratory procedures after stream water sampling. This restricts high frequency sampling campaigns to a limited number of events and reduces accuracy when aiming to estimate fluxes and loads of sediment‐associated chemical constituents. In this study, we address the potential of a portable ultraviolet–visible spectrophotometer (220–730 nm) to estimate suspended sediment properties in a resource efficient way. Several field deployable spectrophotometers are currently available for in‐stream measurements of environmental variables at high temporal resolution. These instruments have primarily been developed and used to quantify solute concentrations (e.g. dissolved organic carbon and NO3‐N), total concentrations of dissolved and particulate forms (e.g. total organic carbon) and turbidity. Here we argue that light absorbance values can be calibrated to estimate sediment properties. We present light absorbance data collected at 15‐min intervals in the Weierbach catchment (NW Luxembourg, 0.45 km2) from December 2013 to January 2015. In this proof‐of‐concept study, we performed a local calibration using suspended sediment loss‐on‐ignition (LOI) measurements as an example of suspended sediment property. We assessed the performance of several regression models that relate light absorbance measurements with the percentage weight LOI. The MM‐robust regression method presented the lowest standard error of prediction (0.48%) and was selected for calibration (adjusted r2 = 0.76 between observed and predicted values). The model was then used to predict LOI during a storm runoff event in December 2014. This study demonstrates that spectrophotometers can be used to estimate suspended sediment properties at high temporal resolution and for long‐time spans in a simple, non‐destructive and affordable manner. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
To investigate the effects of anthropogenic activity, namely, land use change and reservoir construction, on particulate organic carbon (POC) transport, we collected monthly water samples during September 2007 to August 2009 from the Longchuanjiang River to understand seasonal variations in the concentrations of organic carbon species and their sources and the yield of organic and inorganic carbon from the catchment in the Upper Yangtze basin. The contents of riverine POC, total organic carbon and total suspended sediment (TSS) changed synchronously with water discharge, whereas the contents of dissolved organic carbon had a small variation. The POC concentration in the suspended sediment decreased non‐linearly with increasing TSS concentration. Higher molar C/N ratio of particulate organic matter (average 77) revealed that POC was dominated by terrestrially derived organic matter in the high flows and urban wastewaters in the low flows. The TSS transported by this river was 2.7 × 105 t/yr in 2008. The specific fluxes of total organic carbon and dissolved inorganic carbon (DIC) were 5.6 and 6 t/km2/yr, respectively, with more than 90% in the high flow period. A high carbon yield in the catchment of the upper Yangtze was due to human‐induced land use alterations and urban wastes. Consistent with most rivers in the monsoon climate regions, the dissolved organic carbon–POC ratio of the export flux was low (0.41). Twenty‐two percent (0.9 t/km2/yr) of POC out of 4 t/km2/yr was from autochthonous production and 78% (3.1 t/km2/yr) from allochthonous production. The annual sediment load and hence the organic carbon flux have been affected by environmental alterations of physical, chemical and hydrological conditions in the past 50 years, demonstrating the impacts of human disturbances on the global and local carbon cycling. Finally, we addressed that organic carbon flux should be reassessed using adequate samples (i.e. at least two times in low‐flow month, four times in high‐flow month and one time per day during the flood period), daily water discharge and sediment loads and appropriate estimate method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
In humid, forested mountain belts, bedrock landslides can harvest organic carbon from above ground biomass and soil (OCmodern) while acting to refresh the landscape surface and turnover forest ecosystems. Here the impact of landslides on organic carbon cycling in 13 river catchments spanning the length of the western Southern Alps, New Zealand is assessed over four decades. Spatial and temporal landslide maps are combined with the observed distribution and measured variability of hillslope OCmodern stocks. On average, it is estimated that landslides mobilized 7.6 ± 2.9 tC km?2 yr?1 of OCmodern, ~30% of which was delivered to river channels. Comparison with published estimates of OCmodern export in river suspended load suggests additional erosion of OCmodern by small, shallow landslides or overland flow in catchments. The exported OCmodern may contribute to geological carbon sequestration if buried in sedimentary deposits. Landslides may have also contributed to carbon sequestration over shorter timescales (<100 years). 5.4 ± 3.0 tC km?2 yr?1 of the eroded OCmodern was retained on hillslopes, representing a net‐carbon sink following re‐vegetation of scar surfaces. In addition, it was found that landslides caused rapid turnover of the landscape, with rates of 0.3% of the surface area per decade. High rates of net ecosystem productivity were measured in this forest of 94 ± 11 tC km?2 yr?1, which is consistent with rapid landscape turnover suppressing ecosystem retrogression. Landslide‐OCmodern yields and rates of turnover vary between river catchments and appear to be controlled by gradients in climate (precipitation) and geomorphology (rock exhumation rate, topographic slope). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Carbon and total suspended sediment (TSS) loads were investigated from April 2006 to March 2008 in the mountainous watershed of the Isère River, French Alps (5570 km2). The river bed has been highly impounded for hydroelectricity production during the last century. Hydraulic flushes are managed every year to prevent TSS storage within upstream dams. The Isère River has been instrumented for high‐frequency monitoring of water, TSS by turbidity and carbon (organic, inorganic, dissolved and particulate) in order to evaluate the impact of natural floods and hydraulic flushes on annual loads. Annual TSS load which was estimated between 1.3 and 2.3 MT y?1 (i.e. 233 to 413 T km?2 y?1) highlighted the high erodibility of the Isère watershed. Annual carbon load was estimated between 173 103 T y?1 and 199 103 T y?1 (i.e 31 to 36 T km?2 y?1). About 80% of the annual carbon loads were inorganic. The impact of hydraulic flushes on annual loads appeared limited (less than 3% for annual TSS load and about 1.5% for annual carbon load), whereas the most important natural flood event contributed to 20% of the annual TSS load and 10% of the annual carbon load. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
In situ turbidity meters are being increasingly used to generate continuous records of suspended sediment concentration in rivers. However, the usefulness of the information obtained depends heavily on the existence of a close relationship between fluctuations in suspended sediment concentration and turbidity and the calibration procedure that relates suspended sediment concentration to the turbidity meter's signal. This study assesses the relationship between suspended sediment concentration and turbidity for a small (1·19 km2) rural catchment in southern Brazil and evaluates two calibration methods by comparing the estimates of suspended sediment concentration obtained from the calibrated turbidity readings with direct measurements obtained using a USDH 48 suspended sediment sampler. With the first calibration method, the calibration relationship is derived by relating the turbidity readings to simultaneous measurements of concentration obtained from suspended sediment samples collected from the vicinity of the turbidity probe during flood events. With the second method, the calibration is based on the readings obtained from the turbidity meter when the probe immersed in samples of known concentration prepared using soils collected from the catchment. Overall, there was a close link between fluctuations in suspended sediment concentration and turbidity in the stream at the outlet of the catchment, and the estimates of sediment concentration obtained using the first calibration method corresponded closely with the conventionally measured sediment concentrations. However, use of the second calibration method introduced appreciable errors. When the estimated sediment concentrations were compared with the measured values, the mean errors were ± 122 mg l?1 and + 601 mg l?1 for the first and second calibration procedures respectively. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
High‐frequency water discharge and suspended sediment concentration (SSC) databases were collected for 3 years on four contrasted watersheds: the Asse and the Bléone (two Mediterranean rainfall regime watersheds) and the Romanche and the Ferrand (two rainfall–snowmelt regime watersheds). SSCs were calculated from turbidity recordings (1‐h time step), converted into SSC values. The rating curve was calculated by means of simultaneous SSC measurement taken by water sampling and turbidity recording. Violent storms during springtime and autumn were responsible for suspended sediment transport on the Asse and the Bléone rivers. On the Ferrand and the Romanche, a large share of suspended sediment transport was also caused by local storms, but 30% of annual fluxes results from snowmelt or icemelt which occurred from April to October. On each watershed, SSC up to 50 g l?1 were observed. Annual specific fluxes ranged from 450 to 800 t km?2 year?1 and 40–80% of annual suspended sediment fluxes occurred within 2% of the time. These general indicators clearly demonstrate the intensity of suspended sediment transport on these types of watersheds. Suspended sediment fluxes proved to be highly variable at the annual scale (inter‐annual variability of specific fluxes) as well as at the event scale (through a hysteresis loop in the SSC/Q relationship) on these watersheds. In both cases, water discharge and precipitations were the main processes involved in suspended sediment production and transport. The temporal and spatial variability of hydro‐meteorological processes on the watershed provides a better understanding of suspended sediment dynamics. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Extreme sedimentation in Swift Creek, located in the Cascades foothills in NW Washington (48°55′N, 122°16′W), results from erosion of the oversteepened, unvegetated toe of a large (55 hectares) active landslide. Deposition of landslide‐derived sediment has necessitated costly mitigation projects in the channel including annual dredging and temporary sediment traps in an attempt to reduce the risk of flooding and damage to man‐made structures downstream. This study attempts to understand the process of sediment production along with the corresponding erosion rates of the sediment source to help with the development of mitigation plans and construction of optimal sediment reservoirs. The bedload and suspended sediment in the creek are a direct result of the weathering process of the serpentinitic bedrock underlying the landslide. The serpentinite does not weather to smectite clay, as previously thought. Instead, it weathers to asbestiform chrysotile with minor amounts of chlorite, illite and hydrotalcite, all of which occur in clay seeps on the unvegetated surface of the landslide. The chrysotile fibers average 2 µm in length and make up at least 50%, by volume, of the suspended load transported in Swift Creek. This study does not address the environmental or health implications of the asbestiform chrysotile transport or deposition. During the sampled time between February 2005 and February 2006, 127 discrete suspended sediment samples were collected and discharge was measured 66 times. The suspended sediment concentrations ranged from 0·02 g L?1 to 41·6 g L?1 and the discharge ranged from 0·0 m3 s?1 to 0·5 m3 s?1. A nonlinear functional model estimated the total suspended sediment flux from detailed precipitation records and discrete suspended sediment concentration and discharge measurements to be 910 t km?2 yr?1. When the suspended sediment flux is coupled with estimates of downstream deposition of coarse sediment, the estimated erosion rate for the entire Swift Creek landslide is 158 mm yr?1. The majority of the material entering Swift Creek is presumed to originate on the unvegetated toe of the landslide, for which the erosion rate is thus approximately 1 m yr?1. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Rainfall, peak discharges, and suspended sediment transport were surveyed for 280 events in three small (0.8 to 10 km2) catchments in a hilly area derived from Neogene marls, silts, and sands. Under similar hydrological input conditions, stream flow behaviour and sediment delivery differed considerably from one catchment to another, depending on topography, lithology, land use, and especially sediment availability. Analytical treatment of data showed a good fit between sediment yield and peak flow discharge. Less good, although still significant, was the correlation between sediment concentration and discharge values for different flow stages. Rainfall peak/basin lag time and rainfall/discharge showed poor or no correlation, mainly due to strong variations in rainfall distribution. Sediment concentration in the catchments varied enormously according to season, from zero up to 334 g 1?1; sediment yield was 160-900 tonnes km?2 yr?1 in the two major catchments, and over 5200 tonnes km?2 yr?1 in the headwater catchment, stressing the importance of small tributaries not only in inducing floods in downstream channels, but also in sediment supply.  相似文献   

16.
Sediment yield can be a sensitive indicator of catchment dynamics and environmental change. For a glacierized catchment in the High Arctic, we compiled and analyzed diverse sediment transfer data, spanning a wide range of temporal scales, to quantify catchment yields and explore landscape response to past and ongoing hydroclimatic variability. The dataset integrates rates of lake sedimentation from correlated varve records and repeated annual and seasonal sediment traps, augmented by multi‐year lake and fluvial monitoring. Consistent spatial patterns of deposition enabled reconstruction of catchment yields from varve‐ and trap‐based fluxes. We used hydroclimatic data and multivariate modeling to examine annual controls of sediment delivery over almost a century, and to examine shorter‐term controls of sediment transfer during peak glacier melt. Particle‐size analyses, especially for annual sediment traps, were used to further infer sediment transfer mechanisms and timing. Through the Medieval Warm Period and Little Ice Age, there were no apparent multi‐century trends in lake sedimentation rates, which were over three times greater than those during the mid‐Holocene when glaciers were diminished. Twentieth‐century sedimentation rates were greater than those of previous millennia, with a mid‐century step increase in mean yield from 240 to 425 Mg km?2 yr?1. Annual yields through the twentieth century showed significant positive relations with spring/summer temperature, rainfall, and peak discharge conditions. This finding is significant for the future of sediment transfer at Linnévatnet, and perhaps more broadly in the Arctic, where continued increases in temperature and rainfall are projected. For 2004–2010, annual yields ranged from 294 to 1330 Mg km?2 yr?1. Sediment trap volumes and particle‐size variations indicate that recent annual yields were largely dominated by spring to early summer transfer of relatively coarse‐grained sediment. Fluvial monitoring showed daily to hourly sediment transfer to be related to current and prior discharge, diurnal hysteresis, air temperature, and precipitation. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

17.
The primary objective of this study was to compute a detailed budget for a small semiarid tropical drainage basin in Kenya. Results indicated that transfer of sediments (‘inputs’) from primary source areas was minor in comparison to changes in storage. The major sediment source area within the Katiorin drainage basin was the colluvial hillslope zone. The net change in storage within this zone was approximately 2100 Mg yr?1. Surface wash and rilling were the dominant transport processes responsible for the remobilization of colluvial sediments. Sediment storage within the in-channel reservoir increased by 60 Mg yr?1, which was minor when compared to the total store of sediment in this reservoir. During 1986, the channel network stored only a small fraction ( < 3 per cent) of the sediment delivered from the hillslope subsystem. Therefore, the in-channel reservoir had limited influence on sediment conveyance to the basin outlet. These data indicate that a static equilibrium condition cannot be assumed within the Katiorin drainage basin. Such an assumption would result in erosion estimates of approximately 5.5 mm yr?1 for the entire basin (based on a sediment output of 7430 Mg km?2 yr?1 and a measured bulk density of 1.35 Mg m?3). However, this masked the actual rates of 1.2 to 7.1 mm yr?1 in subbasin primary source areas, and rates of 0.6 to 17 mm yr?1 for colluvial material in the various subbasins. The extreme accelerated erosion rates resulted from minimal ground vegetation, steep slopes, soil crust formation, an erodible substrate, and a well-integrated drainage network for rapid conveyance of sediments from the hillslope subsystem to the basin outlet.  相似文献   

18.
Changes in stream chemistry were studied for 4 years following large wildfires that burned in Glacier National Park during the summer of 2003. Burned and unburned drainages were monitored from December 2003 through August 2007 for streamflow, major constituents, nutrients, and suspended sediment following the fires. Stream‐water nitrate concentrations showed the greatest response to fire, increasing up to tenfold above those in the unburned drainage just prior to the first post‐fire snowmelt season. Concentrations in winter base flow remained elevated during the entire study period, whereas concentrations during the growing season returned to background levels after two snowmelt seasons. Annual export of total nitrogen from the burned drainage ranged from 1·53 to 3·23 kg ha?1 yr?1 compared with 1·01 to 1·39 kg ha?1 yr?1 from the unburned drainage and exceeded atmospheric inputs for the first two post‐fire water years. Fire appeared to have minimal long‐term effects on other nutrients, dissolved organic carbon, and major constituents with the exception of sulfate and chloride, which showed increased concentrations for 2 years following the fire. There was little evidence that fire affected suspended‐sediment concentrations in the burned drainage. Sediment yields in subalpine streams may be less affected by fire than in lower elevation streams because of the slow release rate of water during spring snowmelt. Published in 2008 by John Wiley & Sons, Ltd.  相似文献   

19.
Cultivated fields have been shown to be the dominant sources of sediment in almost all investigated UK catchments, typically contributing 85 to 95% of sediment inputs. As a result, most catchment management strategies are directed towards mitigating these sediment inputs. However, in many regions of the UK such as the Nene basin there is a paucity of sediment provenance data. This study used the caesium‐137 (137Cs) inventories of lake and floodplain cores as well as the 137Cs activities of present day sediment to determine sediment provenance. Sediment yields were also reconstructed in a small lake catchment. Low 137Cs inventories were present in the lake and floodplain cores in comparison to the reference inventory and inventories in cores from other UK catchments. Caesium‐137 activities in the present day sediments were low; falling close to those found in the channel bank catchment samples. It was estimated that 60 to 100% of the sediment in the Nene originated from channel banks. Pre‐1963 sediment yields were approximately 11.2 t km?2 yr?1 and post‐1963 was approximately 11.9 t km?2 yr?1. The lack of increased sediment yield post‐1963 and low sediment yield is unusual for a UK catchment (where a yield of 28 to 51 t km?2 yr?1 is typical for a lowland agricultural catchment), but is explained by the low predicted contribution of sediment from agricultural topsoils. The high channel bank contribution is likely caused by the river being starved of sediment from topsoils, increasing its capacity to entrain bank material. The good agreement between the results derived using cores and recently transported sediments, highlight the reliability of 137Cs when tracing sediment sources. However, care should be taken to assess the potential impacts of sediment particle size, sediment focusing in lakes and the possible remobilization of 137Cs from sedimentary deposits. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
In contrast to much previous research on blanket peat moorland, which has concentrated upon studies of the form and causes of gully erosion, this paper attempts to investigate sediment transport and to estimate both short-term and long-term sediment yields in such terrain. The research was conducted on Wessenden Head Moor to the west of Huddersfield, Yorkshire, where automatic stream sampling continued over a period of two years. Use of corrected rating curves (Ferguson, 1988) provided a mean estimate of sediment yield over this period of 55 t km?2 yr?1. In addition an estimate of longer-term sediment yield was derived from four reservoir sediment surveys in the Wessenden Valley. Total yield was 203.69 t km?2 yr?1, including an organic fraction of 38.82 t km ?2 yr?1. Stream sampling at three sites on Shiny Brook, including headwaters and the outflow to the reservoir, suggested that there is great temporal and spatial variability in mineral and organic inputs to the reservoirs. Although not excessive in gravimetric terms, the low density of peat means that there is a serious erosion problem. Estimates of erosion rates for the peat gully network at Shiny Brook appear to confirm earlier evidence concerning the relatively recent occurrence of this erosion, within the last two centuries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号