首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
承德是京津冀地区重要的水源涵养区和防风固沙区,是京津冀生态环境支撑区的重要组成部分,其植被状况将直接影响着区域生态环境质量的改善。基于MOD13Q1时间序列NDVI资料,利用线性回归分析法、像元二分法、稳定性分析法等测度承德市全域2000—2018年植被覆盖时空演变特征,并分析气候、地形等因素对植被覆盖的影响。结果表明:(1)承德市全域植被状况年际变化总体发生了改善,植被生长季夏季的NDVI值最高,月度变化中7月份NDVI值最大,多年均值达到0.775 2。(2)植被年际变化趋势显著性存在空间差异,植被指数极显著增加区域面积最大,占比59.08%,而极显著减少和显著减少的区域面积较小,分别占全域的0.76%和0.58%,主要分布在承德市中部、南部等地区。(3)承德市各区县植被覆盖状况均以较高覆盖度为主,面积达到45 585.69 km2。在多年植被覆盖度稳定性格局中,西北部波动较大,其余大部分地区稳定性好,波动较低。(4)承德市NDVI受5—7月份降水量和月均温的影响较大,植被的长势可能受到了前期气象条件的滞后效应影响。地形特征对承德全域植被覆盖状况也有一定的影响,总体来看承德市地势低平地区的NDVI值相对较低。研究结果可为承德市加强重要区域生态保护、优化国土空间开发格局和科学制定生态修复措施提供参考。  相似文献   

2.
3.
The Ejina Oasis (EO), located in arid northwest China, is a typical arid area in the world. The ecosystem in the oasis has become worse since the 1990s. However, it began to improve after the Chinese government took the mandatory measure to redistribute the water in Heihe in 2000. To understand this change, the remote sensing images in 1990, 2000 and 2006 were selected, and exertion related Land Use/Cover Change (LUCC) model was employed. Results showed that: (1) non-vegetation cover was the main body of the vegetation cover in oasis, showing a trend of increase at the beginning and diminution later, while low, medium and high vegetation cover was the other way around; (2) the area of low, medium and high vegetation cover in 2006 was less than that in 1990; the status and trend index P t of oasis vegetation cover was 0.62 in 1990–2000, which means that the oasis ecosystem of Ejina was getting worse and was under an unbalanced status; P t was 0.27 in 2000–2006 indicating that the oasis ecosystem was restored obviously and the whole system tended to be balanced; (3) all of these changes should be attributed to the water resources redistribution in Heihe River, which played a leading role, as well as the measures and relevant policies taken by the local government, which promoted the rapid recovery of the medium and high vegetation.  相似文献   

4.
刘泽  陈建平 《地质通报》2021,40(12):2159-2166
基于北京市2000—2015年SPOT遥感影像归一化植被指数(NDVI),结合气温、降水量、日照时长等气候因子,采用一元线性回归分析法、趋势分析法、变异系数法及二阶偏相关系数法,剖析北京NDVI时空变化与气候因子的相关性:2000—2015年间,北京植被覆盖变化总体呈缓慢波动上升趋势;中心城区多为低植被覆盖区,郊区多为...  相似文献   

5.

泥河湾盆地沉积巨厚的上新世末至晚更新世的河湖相、湖沼相地层,是进行上新世至更新世环境变化研究的理想区域。本研究选择泥河湾盆地郝家台NHA钻孔的上新统稻地组顶部厚19.2 m,深度为15600~17520 cm,通过对其岩性段97个孢粉和粒度分析,探讨了该地区上新世末期植被及气候变化特征。根据已有古地磁及地层对比,采样地层的年代为2.92~2.56 Ma。分析结果显示,该时段植被及气候变化可划分为4个阶段:阶段1(2.92~2.82 Ma),松属花粉含量多高于30%,云杉属多低于20%;阔叶乔木约13%,为研究段最高;草本植物以蒿属、藜科为主,含量均在10%~20%之间,指示采样点周边应以阔叶林和松林为主,山地云杉林存在,气候较温暖湿润。阶段2(2.82~2.71 Ma),云杉属花粉含量明显上升,最高达90%,蒿属和藜科花粉比例也增加明显,最高可达80%,为研究段最高值;松属花粉含量明显降低,多低于10%;阔叶树木的花粉减少至5%以下,表明在此期间气候总体趋于变冷变干,且气候变化剧烈,林线下降,周边植被以云杉林或草原为主。阶段3(2.71~2.66 Ma),松属花粉含量明显上升,达40%以上,云杉属含量总体下降,多低于30%;阔叶乔木少见;蒿属、藜科含量低于10%;蕨类孢子约11%,达到整段最高值,指示气候转暖湿,周边植被以松林为主,云杉林退至山地,但阔叶树花粉含量较低,显示温暖程度低于阶段1。阶段4(2.66~2.56 Ma),云杉属花粉占绝对优势,多高于80%,松属多低于10%;阔叶乔木近乎消失,暗针叶林扩张,气候进一步变冷,进入更新世的冰期环境。由此可见,上新世末期(2.92 Ma以来)至更新世的气候变化存在明显的2个暖期和2个冷期。其中研究段代表寒冷气候的云杉属花粉高含量阶段与深海氧同位素代表寒冷的MIS 102、MIS 104、G2、G6和G10阶段有较好的对应关系。

  相似文献   

6.
裴杰  牛铮  王力  黄妮  曹建华 《中国岩溶》2018,37(4):608-616
基于Google Earth Engine遥感大数据云计算平台,以云南省南洞地下河流域为例,利用近2 000景30 m分辨率Landsat-NDVI长时间序列数据,采用像元二分模型对研究区1988-2016年的年最大植被覆盖度进行定量估算,并分别从流域整体和像元尺度分析近29 a间植被覆盖度的时空变化特征。研究结果表明:(1)南洞地下河流域大部分区域处于中等覆盖度和中高覆盖度,覆盖度随高程和坡度的增加而增大,其中年最大植被覆盖度 > 60%的区域占流域总面积的45.75%;(2)近29 a来,流域年最大植被覆盖度整体呈现不断增加的趋势,年均增长速率为0.56%,其中植被覆盖度轻微改善或是明显改善的面积占38.84%;(3)相比1988年,2016年高植被覆盖区和中高植被覆盖区面积分别增长50.51%、18.40%;而中等植被覆盖区、中低植被覆盖区和低植被覆盖区面积分别减少24.05%、47.95%和37.72%。封山育林等石漠化治理工程以及气候变化对于流域植被恢复和生态环境重建具有重要影响,其研究成果可为后续石漠化监测提供重要的基础研究数据。   相似文献   

7.
8.
Palynological analysis of sub surface samples at 1.20 m deep sediment profile from Srinagar, southwest Tripura, provides information on vegetation and climate during 7000–3000 years B.P. During this time span, the area is occupied by moist deciduous forest under warm humid climate with intermittent changes in precipitation regime i.e., comparatively less humid around 6.8 Kyr B.P. and 3.7–3.8 Kyr B.P.  相似文献   

9.
The present research evaluated the relation between the normalized difference vegetation index (NDVI) changes and the climate change during 2000–2014 in Qazvin Plain, Iran. Daily precipitation and mean temperature values during 2015–2040 and 2040–2065 were predicted using the statistical downscaling model (SDSM), and these values were compared with the values of the base period (2000–2014). The MODIS images (MOD13A2) were used for NDVI monitoring. In order to investigate the effects of climate changes on vegetation, the relationship between the NDVI and climatic parameters was assessed in monthly, seasonal, and annual time periods. According to the obtained results under the B2 scenario, the mean annual precipitation at Qazvin Station during 2015–2040 and 2040–2065 was 6.7 mm (9.3%) and 8.2 mm (11.36%) lower than the values in the base period, respectively. Moreover, the mean annual temperature in the mentioned periods was 0.7 and 0.92 °C higher than that in the base period, respectively. Analysis of the correlations between the NDVI and climatic parameters in different periods showed that there is a significant correlation between the seasonal temperature and NDVI (P < 0.01). Moreover, the NDVI will increase 0.009 and 0.011 during 2015–2040 and 2040–2065, respectively.  相似文献   

10.
The objective of the current study is to use satellite data to assess the mutual influence between vegetation and climate. The Ismailia Governorate was selected as a case study to investigate the impact of vegetation cover expansion on both land surface and air temperature from 1983 to 2010 and vice versa. This observation site was carefully selected as a clear example of the high rate of the reclamation and vegetation expansion process in Egypt. Land surface temperature (LST) was estimated through the Advanced Very High Resolution Radiometer (a space-borne sensor embarked on the National Oceanic and Atmospheric Administration) data while air temperature (T air) was collected from ground meteorological stations in the study area. Irrigated agriculture is the largest consumer of freshwater resources. However, consistent information on irrigation water use is still lacking. Relative humidity, wind speed, solar radiation, and T air data were inserted in the Penman–Monteith equation to calculate potential evapotranspiration (ETo), while both LST and T air were used to observe the relative water status of the study area as a result of the water deficit index (WDI). Then, both WDI and ETo were used to calculate actual evepotranspiration (ETC.). The results showed that LST decreased by about 2.3 °C while T air decreased by about 1.6 °C during the study period. The results showed also that the vegetation cover expanded from 25,529.85 ha in 1985 to 63,140.49 ha in 2009 with about 147 % increase. This decrease in LST and air temperature was according to the expansion of the cultivated land that was proved through the processing of three Landsat TM and Landsat ETM+ imageries acquired in June 19, 1985, June 7, 1998, and June 29, 2009. The vegetation water consumption was affected by the decreasing surface and air temperature. The results showed that the water deficit index decreased by about 0.35, and actual evapotranspiration increased by about 2.5 mm during the study period.  相似文献   

11.
淮河流域作为我国重要的粮食产地,其水资源利用情况具有很高的研究价值。利用MODIS蒸散发数据产品(MOD16/ET)、降水和气温时序数据以及土地利用数据,探讨了淮河流域2000—2014年蒸散量时空变化特征及其对气候变化、土地利用的响应。结果表明:淮河流域蒸散量在空间上表现为南高北低,蒸散量多年均值为589.1 mm,夏季最高,冬季最低。整体而言,淮河流域15年间蒸散量具有先增加后减少的趋势;趋势分析结果显示,31.4%的地区蒸散量呈显著或极显著减少趋势,5.4%的地区蒸散量呈显著或极显著增加趋势,63.2%的地区蒸散量无显著变化。从蒸散量的气候因子分区看,52.0%的区域表现为非气候因子驱动型,44.1%的地区为降水驱动型,双因子驱动型和气温驱动型范围很小,面积占比分别为2.4%、1.5%,表明人类活动对蒸散发的影响巨大。四种植被覆盖土地利用蒸散量均值表现为林地>水田>旱地>草地。根据2000—2014年土地利用转变引起蒸散量变化的统计结果,草地转变为水田时蒸散量明显增加,旱地转变为草地、林地转变为旱地后蒸散量明显减少。  相似文献   

12.
基于气象要素的中国积雪类型划分及积雪特征分布   总被引:2,自引:2,他引:0  
李晓峰  梁爽  赵凯  王建  车涛  李震 《冰川冻土》2020,42(1):62-71
积雪分类对于深刻认识积雪性质及其时空分布具有重要意义。积雪是气候的产物, 气象参数是导致积雪性质差异的主要因素, 利用实测的气象参数能够对积雪性质进行大范围的有效分类。应用长时间序列高时空分辨率全国地面气象驱动格网数据集, 提取中国区域冬季大气温度、 降水量和近地表风速信息, 基于冬季气象要素的二叉树积雪类型划分方法, 采用Sturm等提出的季节性积雪类型划分体系, 对中国区域的积雪类型进行了划分, 相比Sturm等的积雪分类结果空间分辨率显著提高, 利用“中国积雪特性及分布调查”项目2017—2018年全国实测雪坑数据, 描述了积雪类型对应的空间统计分布特征, 为制定符合中国区域特色的积雪类型分类系统奠定了基础。积雪分类结果表明: 中国区域的积雪类型划分为5种, 分别是大草原型、 泰加林型、 苔原型、 高山型及瞬时型, 不同的中国积雪类型表现出与Sturm等的分类描述有所不同的积雪特性。  相似文献   

13.
Climate change is expected to have a significant impact on the Himalayan region, which may ultimately affect the water security and agriculture productivity in the region. Investigations of hydrologic regimes and their linkage to climatic trends are therefore gaining importance to reduce vulnerability of growing implications in the region. In the present study, the eWater source software implementation of GR4JSG snow melt model was used for snow melt runoff modeling of the Astore river basin, western Himalayas. The model calibration and validation indicated a close agreement between the simulated and observed discharge data. The scenario of 0.9 °C increase in temperature indicated 33% rise in the river discharge, while an increase of 10% in precipitation may exaggerate the river flows by 15%. The scenario of 100% increase in glaciated area showed 41% increase in the Astore river discharge. On the other hand, reduction of 50% glacier cover may result in 34% decline in the river discharge, while 0% glacier coverage may reduce the river discharges by 49% from that of the base year 2014. It is essential to develop a long-term water resource monitoring process and adapt water management systems taking into account the socio-economic and ecological complexities of the region.  相似文献   

14.
第四纪冰期与间冰期旋回的形成过程,及其陆生植被系统的响应及演化过程是研究地质时期全球变化的重点问题,本文通过对华北地区北部LN1钻孔的121个高质量孢粉数据重建了过去3 Ma以来的区域植被演化过程。研究结果显示,区域植被经历了4个主要发展过程,约3~2 Ma气候相对温暖湿润,主要为以松、桦、栎、胡桃、榆等组成的落叶阔叶林;约2 Ma,区域植被急剧变化,主要表现为针叶林扩张,阔叶林比例的减少,在2~1. 2 Ma转变为以松、云杉、桦为主的针阔叶混交林。在中更新世全球气候转型期,区域植被再次发生迅速改变,在约1. 2~0. 7 Ma转变为稀树的灌丛草原,0. 7 Ma以后区域气候进一步干旱化,在最近0. 7 Ma内区域环境转变为典型草原为主的植被景观。区域的植被变化反映了华北平原区近3 Ma以来整体上呈现出干旱化与寒冷化的趋势,其中2. 0 Ma,1. 2 Ma, 0. 7 Ma气候事件最为突出。上述结果反映了华北地区植被的演变过程及季风降水的逐渐减少与北极冰盖在近3 Ma以来的迅速扩张期同步对应。  相似文献   

15.
16.
Radiocarbon-dated pollen and diatom records from Hoton-Nur lake (48°40'N, 88°18'E), northwest Mongolia are used to reconstruct Holocene vegetation and climate changes. Steppe, which covered the area some time before 9000 BP (all ages are given in 14C BP), was replaced by boreal conifer forest-steppe by 9000-8500 BP. At the same time, planktonic diatoms increased in abundance from 5 to 45%. After 4000 BP there was a sharp reduction in forest and re-establishment of steppe. Changes in the pollen composition were accompanied by a decrease in the abundance of planktonic diatoms from 35-50% (between 9000 and 5500 BP) to less than 10% soon after 4000 BP. These and other published data from Mongolia suggest wetter conditions during the early and middle Holocene than those of today. This pattern probably reflects an expansion of the Pacific monsoon recorded in geological data from China and simulated in climate-model experiments, and suggests that the summer monsoon influenced a larger area than might appear if the Chinese records only are taken into consideration.  相似文献   

17.
18.
Biological soil crusts (BSCs) perform essential ecosystem functions in arid and semi-arid ecosystems worldwide. The formation, development, and distribution of BSCs are influenced by changes in multiple environmental factors, including changes in the vascular plant community. The influence of changes in vegetation factors on BSC cover in 8-, 12-, and 16-year-old rehabilitated grasslands were studied in the hilly area of the Chinese Loess Plateau. The rate of degradation of BSCs underneath litter (P < 0.01) and the degradation cover of BSCs (P < 0.05) differed significantly between the 8- and 16-year-old successions. Stepwise multiple linear regression analysis showed that the main vegetation factors influencing the dynamics of BSC cover differed among the 8-, 12-, and 16-year-old rehabilitated grasslands. Basal cover, phytomass, and litter cover were the main vegetation factors influencing the dynamics of BSC cover on 8-year-old rehabilitated grassland. Phytomass, litter thickness, and litter cover were the main factors influencing the dynamics of BSC cover on 12-year-old rehabilitated grassland. On 16-year-old rehabilitated grassland, Pielou evenness index, litter thickness, and litter biomass were the main vegetation factors influencing degradation of BSC cover underneath litter, whereas basal cover, litter thickness, and litter biomass were the main vegetation factors influencing the degradation cover of BSCs. At particular stages of herbaceous succession, vegetation factors can have a large influence on changes in the community’s basal cover and litter, which are key factors influencing changes in BSC cover. The degradation of BSCs underneath litter may be a result of complicated eco-physiological processes.  相似文献   

19.
The Hanjiang Formation of Langhian age(middle Miocene) in the Pearl River Mouth Basin (PRMB),South China Sea consists of deltaic siliciclastic and neritic shelf carbonate rhythmic alternations,which form one of the potential reservoirs of the basin.To improve stratigraphic resolutions for hydrocarbon prospecting and exploration in the basin,the present study undertakes spectral analysis of high-resolution natural gamma-ray(NCR) well-logging record to determine the dominant frequency components and test whether Milankovitch orbital signals are recorded in rhythmic successions.Analytical results indicate the orbital cycles of precession(~19 ka and~23 ka), obliquity(~41 ka),and eccentricity(~100 ka and~405 ka),which provide the strong evidence for astronomically driven climate changes in the rhythmic alternation successions.Within biochronological constraint,a high-resolution astronomical timescale was constructed through the astronomical tuning of the NGR record to recent astronomically calculated variation of Earth’s orbit. The astronomically tuned timescale can be applied to calculate astronomical ages for the geological events and bioevents recognized throughout the period.The first downhole occurrences of foraminifers Globorotalia peripheroronda and Globigerinoides sicanus are dated at 14.546 Ma and 14.919 Ma,respectively,which are slightly different from earlier estimates in the South China Sea. When compared with the global sea-level change chart,the astronomical estimate for the sequences recognized based on microfossil distributions have the same end time but the different initiation time. This is probably due to the local or regional tectonic activities superimposed on eustatic rise which postponed the effect of global sea-level rising.Astronomical timescale also resolves the depositional evolution history for the Langhian Stage(middle Miocene) with a variation that strongly resembles that of Earth’s orbital eccentricity predicted from 13.65 Ma to 15.97 Ma.We infer that the main factor controlling the variability of the sedimentation rate in the Hanjiang Formation is related to the~405-ka-period eccentricity.  相似文献   

20.
The flora and vegetation of Central Eurasia evolved in the Paleogene to a significant extent in line with the scenario similar to the Late Cretaceous one. The position of high-rank phytochores was controlled by the global climatic zonality, while development stages of the flora depended on interaction between the Arctic and Tethyan water masses and direction of atmospheric flows and were determined by principal geological and paleogeographic events in the Paleogene history of Central Eurasia. Five main stages are definable in development of the Paleogene flora: (1) early-middle Danian with the wide distribution of temperate-thermophilic floras in the middle and high latitudes and their westward and southward expansion from the Pacific and Arctic regions of the Boreal realm; (2) Late Paleocene-Early Eocene with the maximal advancement of the Tethyan flora to the high latitudes and northward migration of phytochore boundaries in response to intense water exchange between the Tethys and Atlantic oceans with its trade currents and atmospheric heat transfer directly from the tropical zone in absence of the Alpine-Himalayan orogen; (3) Lutetian with development of subtropical monsoon-type floras under influence of the water mass exchange between the Arctic Basin and Peritethys with the monsoon-induced currents and atmospheric heat transfer from the Peritethys under conditions of the restricted connection between the Central Asia basins and Tethys; (4) (?) late Lutetian-Priabonian reflecting the climate inversion due to isolation of the West Siberian Sea from the Arctic Basin against the background of its continuing connection with the Peritethys; the formation of the semiclosed West Siberian Sea at that time was accompanied by development of a climate with humid winters, hot dry summers, and deficiency of average annual precipitation in the middle latitudes of Central Eurasia, where luxuriant subtropical Quercus-Laurus forests with Castanopsis that prevailed at the preceding stage were replaced by sclerophyllous arboreal-frutescent maquis; (5) Oligocene marked by the formation of the temperate deciduous mesophyllous coniferous-broad-leaved Turgai flora after definitive desiccation of the West Siberian Sea and Turgai Seaway due to global regression induced by glaciation (transition from the “warm” to “cold” biosphere).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号