首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Assessing desertification by using soil indices   总被引:1,自引:0,他引:1  
Desertification generally refers to land degradation in arid, semiarid, and dry semi-humid climatic zones. It involves five principal processes: vegetation degradation, water erosion, wind erosion, salinization and waterlogging, and soil crusting and compaction. The aim of this study is assessing desertification using soil criteria. For this purpose, nine indices including sodium absorption ratio (SAR), soil gypsum percentage, soil texture, the content of HCO3 ?, the percentage of the organic matter, electrical conductivity (EC), pH, the content of the soil sodium, and chloride were used. The soil samples were taken in the north of Zayandeh-Rood River in Isfahan province of Iran, using soil data randomly sampled in a depth of 0–20 cm. After assessing the normality of the samples using Kolmogorov-Smirnov test, indices were imported into GIS environment and interpolated with IDW and normal and discrete kriging methods for delineating soil characteristics maps based on MEDALUS model. In this model, the data were firstly changed from 100 to 200. Thus 100 and 200 are estimated as the best and worst quality, respectively. Then the final map of soil criteria has been created by geometric mean of its indicators. The results showed that the maximum area is related to the medium class of desertification and is equal to 44,746 ha. The areas of severe and very severe classes of desertification are equal to 30,949 and 351 ha, respectively. The results also revealed that the indices of the organic matter and soil gypsum percentage are the most influential indices which affect desertification phenomenon.  相似文献   

2.
Soil erosion due to surface water is a standout among the serious threat land degradation problem and an hazard environmental destruction. The first stage for every kind of soil conservation planning is recognition of soil erosion status. In this research, the usability of two new techniques remote sensing and geographical information system was assessed to estimate the average annual specific sediments production and the intensity erosion map at two sub-basins of DEZ watershed, southwest of Lorestan Province, Iran, namely Absorkh and Keshvar sub-basins with 19,920 ha, using Modified Pacific Southwest Inter-Agency Committee (MPSIAC) soil erosion model. At the stage of imagery data processing of IRS-P6 satellite, the result showed that an overall accuracy and kappa coefficient were 90.3% and 0.901, respectively, which were considered acceptable or good for imagery data. According to our investigation, the study area can be categorized into three level of severity of erosion: moderate, high, and very high erosion zones. The amount of specific sediments and soil erosion predicted by MPSIAC model was 1374.656 and 2396.574 m3 km?2 year?1, respectively. The areas situated at the center and south parts of the watershed were subjected to significant erosion because of the geology formation and ground cover, while the area at the north parts was relatively less eroded due to intensive land cover. Based on effective of nine factors, the driving factors from high to low impact included: Topography > Land use > Upland erosion > Channel erosion > Climate > Ground cover > Soil > Runoff > Surface geology. The measured sediment yield of the watershed in the hydrometric station (Keshvar station) was approximately 2223.178 m3 km?2 year?1 and comparison of the amount of total sediment yield predicted by model with the measured sediment yield indicated that the MPSIAC model 38% underestimated the observed value of the watershed.  相似文献   

3.
Estimation of spatial extent of soil erosion, one of the most serious forms of land degradation, is critical because soil erosion has serious implications on soil fertility, water ecosystem, crop productivity and landscape beauty. The primary objective of the current study was to assess and map the soil erosion intensity and sedimentation yield of Potohar region of Pakistan. Potohar is the rainfed region with truncated and complex topography lying at the top of the Indus Basin, the world’s largest irrigation networks of canals and barrages. Spatially explicit Revised Universal Soil Loss Equation (RUSLE) Model integrated with Remote Sensing-GIS techniques was used for detecting/mapping of erosion prone areas and quantification of soil losses. The results show that the Potohar region is highly susceptible to soil erosion with an average annual soil loss of 19 tons ha?1 year?1 of which the maximum erosion (70–208 tons ha?1 year?1) was near the river channels and hilly areas. The sediment yield due to the erosion is as high as 148 tons ha?1 year?1 with an average of 4.3 tons ha?1 year?1. It was found that 2.06% of the total area falls under severe soil erosion, 13.34% under high erosion, 15.35% under moderate soil erosion while 69.25% of the area lies in the low (tolerable) soil erosion. Chakwal and Jhelum districts of the region are seriously affected by erosion owing to their topography and soil properties. The information generated in this study is a step forward towards proper planning and implementation of strategies to control the erosion and for protection of natural resources. It is, hence, necessary that suitable water harvesting structures be made to control water to prevent soil erosion and provision of water in the lean season in this region. Tree plantation and other erosion control practices such as strip cropping can also minimize soil erosion in this region.  相似文献   

4.
Land degradation is one of the most common issues in the eastern part of the Nile Delta area that threatens the ongoing agricultural activities and prohibits further reclamation expansions. The different degradation types and the associated risk assessment of some soils types of western Suez Canal region during the period from 1997 to 2010 is discussed. The assessment of the different degradation degrees in the investigated area has been carried out through integrating remote sensing, GIS and GLASOD approaches. Results revealed that the salinization, alkalization, soil compaction and water logging are the main types of land degradation in the area. The main causative factors of human induced land degradation types are; over irrigation, human intervention in natural drainage, improper time use of heavy machinery and the absence of conservation measurements. Low and moderately clay flats, gypsifferous flats, have high to very high risk in both salinization sodication and physical degradation. Values such as EC, ESP, and ground water level reach 104.0 dS/m, 176? % and 60 cm, respectively. These results will be of great help and be basic sources for the planners and decision makers in sustainable planning. The spatial land degradation model was developed based on integration between remote sensing data, geographic information system, soil characteristics and DEM.  相似文献   

5.
Assessment of soil erosion risk using SWAT model   总被引:3,自引:2,他引:1  
Soil erosion is one of the most serious land degradation problems and the primary environmental issue in Mediterranean regions. Estimation of soil erosion loss in these regions is often difficult due to the complex interplay of many factors such as climate, land uses, topography, and human activities. The purpose of this study is to apply the Soil and Water Assessment Tool (SWAT) model to predict surface runoff generation patterns and soil erosion hazard and to prioritize most degraded sub-catchment in order to adopt the appropriate management intervention. The study area is the Sarrath river catchment (1,491 km2), north of Tunisia. Based on the estimated soil loss rates, the catchment was divided into four priority categories for conservation intervention. Results showed that a larger part of the watershed (90 %) fell under low and moderate soil erosion risk and only 10 % of the watershed was vulnerable to soil erosion with an estimated sediment loss exceeding 10 t?ha?1?year?1. Results indicated that spatial differences in erosion rates within the Sarrath catchment are mainly caused by differences in land cover type and gradient slope. Application of the SWAT model demonstrated that the model provides a useful tool to predict surface runoff and soil erosion hazard and can successfully be used for prioritization of vulnerable areas over semi-arid catchments.  相似文献   

6.
Watershed degradation due to soil erosion and sedimentation is considered to be one of the major environmental problems in Iran. In order to address the critical conditions of watershed degradation in arid and semiarid regions, a study based on the Modified Pacific Southwest Inter-Agency Committee (MPSIAC) model was carried out at Golestan watershed, northeast of Iran. The model information layers comprising nine effective factors in erosion and sedimentation at the watershed site were obtained by digitalization and spatial interpolation of the basic information data in a GIS program. These factors are geology, soil, climate, runoff, topography, land cover, land use, channel, and upland erosion. The source data for the model were obtained from available records on rainfall and river discharge and sediment, topography, land use, geology, and soil maps as well as field surveys and laboratory analysis. The results of the MPSIAC model indicated that 60.75 % (194.4 km2) and 54.97 % (175.9 km2) of the total watershed area were classified in the heavy sedimentation and erosion classes, and the total basin sediment yield and erosion were calculated as 4,171.1 and 17,813.4 m3 km?2 year?1, respectively. In the sensitivity analysis, it was found that the most sensitive parameters of the model in order of importance were topography (slope), land cover and use, runoff, and channel erosion (R 2?=?0.92–0.94), while geology, climate (rainfall), soil, and upland erosion factors were found to have moderate effect to the model output (R 2?=?0.74–0.59).  相似文献   

7.
This study was carried out to determine the flux of nutrients and heavy metals from the Melai sub-catchment into Lake Chini through the process of erosion. Melai River is one of the seven feeder rivers that contributed to the present water level of Lake Chini. Three properties of soils, such as particle size, organic matter content, and soil hydraulic conductivity and three chemical soil properties, such as available nutrients, dissolved nutrients, and heavy metals, were analyzed and interpreted. Potential soil loss was estimated using the revised universal soil loss equation model. The results show that the soil textures in the study area consist of clay, silty clay, clay loam, and sandy silt loam. The organic matter content ranges from 3.40 to 9.92 %, while the hydraulic conductivity ranges from 5.2 to 25.3 cm/h. Mean values of available P, K, and Mg amount was 8.5 ± 3.7 μg/g, 24.5 ± 3.4 μg/g, and 20.7 ± 18.6 μg/g, respectively. The highest concentration of soluble nutrients was SO 4 ?2 (815.8 ± 624.1 μg/g), followed by NO3 ?-N (295.5 ± 372.7 μg/g), NH4 +-N (24.5 ± 22.1 μg/g) and PO4 3? (2.0 ± 0.8 μg/g). The rainfall erosivity value was 1658.7 MJ mm/ha/h/year. The soil erodibility and slope factor ranges from 0.06 to 0.26 ton h/MJ/mm and 7.63 to 18.33, respectively. The rate of soil loss from the Melai sub-catchment in the present condition is very low (0.0028 ton/ha/year) to low (18.93 ton/ha/year), and low level flow of nutrients and heavy metals, indicating that the Melai River was not the contaminant source of sediments, nutrients, and heavy metals to the lake.  相似文献   

8.
The objective of this study was to examine the variation of time and space and the effects of alpine meadow desertification, and the study area was selected at the Qinghai–Tibet Plateau of China. The sampling locations were categorized as the top, middle, bottom of the slope and flat in front of the slope, and the sites were classified as alpine meadow, light desertified land, moderate desertified land, serious desertified land, and very serious desertified land according to the level of alpine meadow desertification. This study examined spatial and temporal variability in soil organic carbon (SOC), total nitrogen (TN), pH, and soil bulk density due to wind erosion and documents the relationship between soil properties and desertification of alpine meadows. Desertification caused decreases to soil organic carbon and total nitrogen and increases to pH and soil bulk density. Soil properties were greatly affected by the level of alpine meadow desertification with the changes being attributed to overgrazing. The middle portion of slopes was identified as being the most susceptible to desertification. Carbon and nitrogen stocks were found to decrease as desertification progressed, the SOC stocks were 274.70, 273.81, 285.26, 196.20, and 144.36 g m?2 in the alpine meadow, light desertified land, moderate desertified land, serious desertified land and very serious desertified land, respectively; and the TN stocks were 27.23, 27.11, 28.35, 20.97, and 17.09 g m?2 at the top 30 cm soil layer, respectively. To alleviate desertification of alpine meadow, conservative grazing practices should be implemented.  相似文献   

9.
In recent times, soil erosion interlocked with land use and land cover (LULC) changes has become one of the most important environmental issues in developing countries. Evaluation of this complex interaction between LULC change and soil erosion is indispensable in land use planning and conservation works. This paper analysed the impact of LULC change on soil erosion in the north-western highland Ethiopia over the period 1986–2016. Rib watershed, the area with dynamic LULC change and severe soil erosion problem, was selected as a case study site. Integrated approach that combined geospatial technologies with revised universal soil loss equation model was utilized to evaluate the spatio-temporal dynamics of soil loss over the study period. Pixel-based overlay of soil erosion intensity maps with LULC maps was carried out to understand the change in soil loss due to LULC change. Results showed that the annual soil loss in the study area varied from 0 to 236.5 t ha?1 year?1 (tons per hectare per year) in 1986 and 0–807 t ha?1 year?1 in 2016. The average annual soil loss for the entire watershed was estimated about 40 t ha?1 year?1 in 1986 comparing with 68 t ha?1 year?1 in 2016, a formidable increase. Soil erosion potential that was estimated to exceed the average soil loss tolerance level increased from 34.5% in 1986 to 66.8% in 2016. Expansion of agricultural land at the expense of grassland and shrubland was the most detrimental factor for severe soil erosion in the watershed. The most noticeable change in soil erosion intensity was observed from cropland with mean annual soil loss amount increased to 41.38 t ha?1 year?1 in 2016 from 26.60 in 1986. Moreover, the most successive erosion problems were detected in eastern, south-eastern and northern parts of the watershed. Therefore, the results of this study can help identify the soil erosion hot spots and conservation priority areas at local and regional levels.  相似文献   

10.
Aurès region remains one of the most exposed areas to water erosion phenomenon in Algeria, because of the strong climatic aggressiveness, the rugged relief, the predominance of sensitive land, and a vegetative cover that does not play its protective role. This article is a part of studies performed to protect agricultural and water infrastructure in this region. The main objective of this study is the cartographic modeling of an erosion hazard at the Oued Chemoura watershed, representative of the Aurès. The modeling approach uses a geographic information system and incorporates the following six factors controlling erosion: slope, friability of substrate, erodibility of soils, land cover, rainfall erosivity, and support practices. Result shows a synthetic map of the soil erosion hazard which locates the most threatened areas and priorities for possible planning interventions. A statistical study on the relationship solid–liquid flow was developed. Measurements conducted at the station of Chemoura, over the period 1969–1994, were exploited for this purpose. The results show a high specific degradation varying between 50 and 360 tons km?2 season?1.  相似文献   

11.
Drastically disturbed soils caused by opencast mining can result in the severe loss of soil structure and increase in soil compactness. To assess the effects of mining activities on reconstructed soils and to track the changes in reclaimed soil properties, the variability of soil properties (soil particle distribution, penetration resistance (PR), pH, and total dissolved salt (TDS)) in the Shanxi Pingshuo Antaibao opencast coal-mine inner dump after dumping and before reclamation was analyzed using a geostatistics method, and the number of soil monitoring points after mined land reclamation was determined. Soil samples were equally collected at 78 sampling sites in the study area with an area of 0.44 km2. Soil particle distribution had moderate variability, except for silt content at the depth of 0–20 cm with a low variability and sand content at the depth of 20–40 cm with a high variability. The pH showed a low variability, and TDS had moderate variability at all depths. The variability of PR was high at the depth of 0–20 cm and moderate at the depth of 20–40 cm. There was no clear trend in the variance with increasing depth for the soil properties. Interpolation using kriging displayed a high heterogeneity of the reconstructed soil properties, and the spatial structure of the original landform was partially or completely destroyed. The root-mean-square error (RMSE) can be used to determine the number of sampling points for soil properties, and 40 is the ideal sampling number for the study site based on cross-validation.  相似文献   

12.
Soil losses and siltation of the hydrological system (watershed–dam) of K’sob were obtained using direct and indirect methods. The Wadi K’sob watershed of 1,484 km2, average slope of 0.14, and average elevation of 1,060 m is located in a semiarid climate. The average annual rainfall is 341 mm and the mean annual water discharge is 0.89 m3/s. Data from the Medjez gauging station located 6 km upstream of the dam, are the daily liquid flow and instantaneous concentrations of suspended sediments. Over a time period from 1973 to 2010, the relationship between water and sediment discharges is quantified by the equation: Q s?=?5.6 Q 1.31. Thus, in view of the availability data on a daily scale, the assessment of soil erodibility of the K’sob watershed was used to estimate specific soil losses of 203 t?km?2?year?1or 301,000 t eroded annually from the K’sob basin. The bathymetric measurements of the sediment volumes deposited in the K’sob dam, has quantified the annual siltation of 0.8 hm3, corresponding to an average erodibility of the K’sob watershed of 809 t?km?2?year?1. However, when adding the volume of sediment removed by the dredging operation and de-silting by the valves during heavy floods, the value of soil losses is 2,780 t?km?2?year?1. The indirect assessment of soil erodibility of the basin was obtained by applying two models: the quantitative geomorphological analysis (QGA) and PISA model (prediction of silting in the artificial reservoirs, in Italian: Previsioni dell’Interimento nei Serbatoi Artificiali) using physical and climatic factors in the watershed. The obtained results by QGA method underestimate specific soil losses of 524 t?km?2?year?1. The PISA model gives a value of 2,915 t?km?2?year?1, which is close to the value obtained by bathymetric measurements. This study concludes that PISA model is most suitable to estimate soil loss and siltation of the K’sob hydrological system.  相似文献   

13.
Groundwater hydrochemistry could reveal the interaction mechanism between groundwater and the environment, which provides a scientific basis for environmental resources management. In this study, Shukaliefu’s classification method and Piper diagram were adopted to determine the hydrochemical types of groundwater in the Tarim Basin of Xinjiang, China. The method of “one-vote veto” was applied to evaluate the quality of groundwater. Phreeqc software was used to calculate the saturation indices of calcite and fluorite in groundwater. By comparing groundwater quality data of 2003 and 2011, we characterized the variations in hydrochemical types and water quality types, salinization of groundwater and fluoride geochemistry of the plain area of the Tarim Basin. Results show that the primary anion in phreatic water in the plain area of the Tarim Basin changed from HCO3 ? to SO4 2? or Cl?. On the contrary, the primary anion in confined water changed from SO4 2? or Cl? to HCO3 ?. In 2003, 63.1 % of the sampling points in the study area exceeded the Class III water quality standard of China. In 2011, the proportion increased to 82.5 %. In addition, severe groundwater salinization was found at 19.7 % of the sampling points. Some of the deep groundwater samples were salinized as well. In the Aksu area at the north-west part of the Tarim Basin, F? concentration exceeding the standard limit (1 mg/L) was found to be 55.0 % of the groundwater samples tested. Based on these findings, it is concluded that the phreatic water in the study area was severely influenced by the industrial wastewater and domestic sewage related to human activities, while the confined water was less affected. The general quality of groundwater was in an aggravation trend, and the groundwater salinization was in a severe condition in this area. The Ca2+–Na+ ionic exchange, the unsaturated fluorite and oversaturated calcite in the aquifer of the Aksu area are proposed to cause F? enrichment in groundwater of this area.  相似文献   

14.
In the rocky mountain area of North China, soil fertility has decreased with severe soil and water losses under various land uses. Land use has been proven to affect soil fertility spatial distribution patterns at larger scales. However, less information is available about these effects in field scale plots. Soil samples were collected at 2-m intervals by grid sampling from an area (18?×?18 m) within three land use types (poplar woodland, rotation cropland with peanut and sweet potato, and peach orchard). Soil properties including soil particle composition, soil organic matter, total nitrogen (TN), nitrate nitrogen (NO3 ?-N), total phosphorus (TP), and available phosphorus (AP) were measured for each sample. The spatial variability and spatial pattern of the soil properties were assessed for the three contrasting land use types. NH4 +-N, NO3 ?-N, and AP in the peach orchard and NO3 ?-N in the poplar woodland exhibited strong variation (coefficient of variance >100 %). Other properties showed moderate variations. With annual plowing and fertilization, soil properties in the rotation cropland had less variability and greater spatial autocorrelated ranges. The spatial dependences of sand content, TN, NO3 ?-N, and SWC in both the peach orchard and the rotation cropland were weaker than those in the poplar woodland, but the spatial dependences of TP and AP in the peach orchard were stronger than those in either the rotation cropland or the poplar woodland. Human activities such as plowing, fertilization, and harvesting had obvious effects on the spatial variability and spatial pattern of soil properties.  相似文献   

15.
Studies on denudation processes and soil loss rates can provide insight into the landscape evolution, climate change, and human activities, as well as on land degradation risk. The aims of this study were to analyze the space–time distribution of denudation processes and evaluate the soil loss changes occurred during the period 1955–2016 by using an approach integrating geomorphological, geospatial and modeling analysis. The study area is a representative stream catchment of the Crati Valley (Calabria, southern Italy), which is affected by severe erosion processes. The combined use of aerial photographs interpretation, field survey, geostatistics, and GIS processing has allowed to characterize the types of denudation processes and land use change in space and time. Revised universal soil loss equation implemented in GIS environment was used to estimate the space–time pattern of soil loss and the soil erosion rates for each investigated year. The results showed that from 1955 to 2016, the study area was highly affected by denudation processes, mainly related to landslides and water erosion (slope wash erosion and gully erosion). Comparison of denudation processes maps showed that the total area affected by erosion processes has increased by about 31% and the distribution of geomorphic processes and their space–time evolution resulted from the complex interrelation between geoenvironmental features and human activities. The main land use changes concerned a decrease in areas covered by woodland, scrubland and pasture and an increase in croplands and barren lands that favored erosion processes. The most susceptible areas to soil loss in both years were mapped, and the mean soil loss rates for the study area were 6.33 Mg ha?1 y?1 in 1955 and 10.38 Mg ha?1 y?1 in 2016. Furthermore, the soil loss in 2016 has increased by about 64% compared to 1955. Finally, the results showed that integrating multi-temporal analysis of denudation processes, land use changes and soil loss rates might provide significant information on landscape evolution which supports decision makers in defining soil management and conservation practices.  相似文献   

16.
Estimation of soil erosion using RUSLE in Caijiamiao watershed,China   总被引:4,自引:1,他引:3  
Jinghu Pan  Yan Wen 《Natural Hazards》2014,71(3):2187-2205
Soil erosion is a serious environmental and production problem in China. In particular, natural conditions and human impact have made the Chinese Loess Plateau particularly prone to intense soil erosion area. To decrease the risk on environmental impacts, there is an increasing demand for sound, and readily applicable techniques for soil conservation planning in this area. This work aims at the assessment of soil erosion and its spatial distribution in hilly Loess Plateau watershed (northwestern China) with a surface area of approximately 416.31 km2. This study was conducted at the Caijiamiao watershed to determine the erosion hazard in the area and target locations for appropriate initiation of conservation measures using the revised universal soil loss equation (RUSLE). The erosion factors of RUSLE were collected and processed through a geographic information system (GIS)-based approach. The soil erosion parameters were evaluated in different ways: The R-factor map was developed from the rainfall data, the K-factor map was obtained from the soil map, the C-factor map was generated based on Landsat-5 Thematic Mapper image and spectral mixture analysis, and a digital elevation model with a spatial resolution of 25 m was derived from topographic map at the scale of 1:50,000 to develop the LS-factor map. Support practice P factor was from terraces that exist on slopes where crops are grown. By integrating the six-factor maps in GIS through pixel-based computing, the spatial distribution of soil loss in the study area was obtained by the RUSLE model. The results showed that spatial average soil erosion at the watershed was 78.78 ton ha?1 year?1 in 2002 and 70.58 ton ha?1 year?1 in 2010, while the estimated sediment yield was found to be 327.96 × 104 and 293.85 × 104 ton, respectively. Soil erosion is serious, respectively, from 15 to 35 of slope degree, elevation area from 1,126 to 1,395 m, in the particular area of soil and water loss prevention. As far as land use is concerned, soil losses are highest in barren land and those in waste grassland areas are second. The results of the study provide useful information for decision maker and planners to take appropriate land management measures in the area. It thus indicates the RUSLE–GIS model is a useful tool for evaluating and mapping soil erosion quantitatively and spatially at a river watershed scale on a cell basis in Chinese Loess Plateau and for planning of conservation practices.  相似文献   

17.

The gullied systems from the Falciu Hills within the Chioara catchment (2997 ha) consist of both main types of gullies, discontinuous and large continuous ones along valley bottoms, and lots of ephemeral gullies. Several methods have been used to measure and estimate gully characteristics. Then, the gully development stages, the effect of the natural conditions, and especially the impact of land management on gullying in the Falciu Hills over the last two centuries have been defined. In addition, the role of gully erosion in triggering landslides has also been studied. Two main periods have been distinguished (until 1960 and 1961–2012) for assessing major characteristics of land degradation. The results show that total gully area in the Chioara catchment is 66.4 ha excepting for the ephemeral gullies, and areas occupied by gullies from the five study sub-catchments (2334 ha) account for two-thirds. Total length of the main gully network in the entire catchment is 33.2 km from which the five sub-catchments account for 71 %. The mean gully density of 1.11 km km−2 supports the evidence that here gullying is the major environmental threat. Half of the gully areal growth and three-quarters of the new landslide area occurred over the 1961–2012 period. Delayed deforestation peaking during 1830–1930 and land conversion to arable use resulted in severe soil erosion, high aggradation along the non-gullied valley bottoms, and severe gullying. The average gully head retreat rate over the last two centuries from four trunk continuous gullies is 14 m year−1, and the sediment yield from gullying only accounted for 54–69 % of the sediment mass produced by water erosion. The evolution of gullies is linked to major land-use changes in the study area. Despite a decreasing tendency of gullying and catchment area over the last half century, gullying still remains problematically high in East Romania.

  相似文献   

18.
The installation of a rural settlement complex in the watershed stream Indaiá has promoted changes in land-use and vegetation cover dynamics; however, the effects of intensive agriculture and cattle farming in rural settlements on soil loss rates are not well known. Predictive models implemented in geographic information systems have proven to be effective tools for estimating erosive processes. The erosion predictive model Revised Universal Soil Loss Equation (RUSLE) is a useful tool for analyzing, establishing and managing soil erosion. RUSLE has been widely used to estimate annual averages of soil loss, by both interrill and rill erosion, worldwide. Therefore, the aim of this work was to estimate the soil loss in the watershed stream Indaiá, using the RUSLE model and geoprocessing techniques. To estimate soil loss, the following factors were spatialized: erosivity (R), erodibility (K), topography (LS), land-use and management (C) and conservation practices (P); the annual soil loss values were calculated using the RUSLE model equation. The estimated value of soil loss in the hydrographic basin ranged from 0 to 4082.16 Mg ha?1 year?1 and had an average value of 47.81 Mg ha?1 year?1. These results have demonstrated that 68.16 % of the study area showed little or no soil loss based on the Food and Agriculture Organization’s (FAO 1980) classification. When comparing the average value of soil loss obtained using the RUSLE model with the Natural Potential for Erosion, a 16-fold reduction in soil was found, which highlighted the fact that vegetation cover (C factor) has a greater influence than other factors (R, K and LS) on soil loss prediction attenuation. These results lead to the conclusion that soil loss occurs by different methods in each settlement in the basin and that erosive processes modeled by geoprocessing have the potential to contribute to an orderly land management process.  相似文献   

19.
The Universal Soil Loss Equation (USLE) is an erosion estimation model to assess the soil losses that would generally result from splash, sheet, and rill erosion. At the present study, spatial distribution of different erosion prone areas were identified by USLE model to determine the average annual soil losses at Mashhad plain, northeast of Iran. Soil losses were estimated on a 100?×?100 m cell basis resolution by overlaying the five digital parameter layers (R, K, LS, C, P). To determine the critical soil loss regions at the plain, cell-based USLE parameters were multiplied by Arc-GIS ver.9.3. The estimated annual soil losses values were subsequently grouped into five classes ranging from 0 to 0.25 t/h/year around the trough line of the plain at Kashaf-rud River to 2–10 t/ha/year at the hills and pediment plains. Our results indicated a good correlation between land units of hills and pediment plains with the values of soil losses at the study area (R 2 ?=?0.72), also the statistical analysis exhibited a high correlation between land use/cover of dry farming and soil losses (R 2 ?=?0.78).  相似文献   

20.
A pot experiment was conducted to monitor the dynamic response of photosynthesis of Amorpha fruticosa seedlings to different concentrations of petroleum-contaminated soils from April to September. The results showed that the photosynthetic rates, stomatal conductance and transpiration rate of seedlings significantly decreased in 5–20 g kg?1 petroleum-contaminated soil during the three given sampling period of July 31 (early), August 30 (mid-term) and September 29 (late). However, the intercellular CO2 concentration significantly increased in 10 g kg?1 contaminated soil, while declined in 20 g kg?1 contaminated soil during the early sampling period as well as in 20 g kg?1 contaminated soil during the late sampling period. The leaf relative water content of seedlings significantly increased in 20 g kg?1 contaminated soil during the early sampling period, while it dropped dramatically in 15–20 g kg?1 contaminated soil during the late sampling period. The contents of chlorophyll a, chlorophyll b and the total chlorophyll of seedlings showed a sharp decline during the three sampling periods in contaminated soil. Comprehensively, considering the negative effects of petroleum on the photosynthesis, growth performance and remediation effect on petroleum of A. fruticosa seedlings, this plant was tolerant of petroleum-contaminated soil and was potentially useful for the phytoremediation of petroleum-contaminated sites in northern Shaanxi, China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号